JPS5822510B2 - Treatment method for sulfur-containing fuel - Google Patents

Treatment method for sulfur-containing fuel

Info

Publication number
JPS5822510B2
JPS5822510B2 JP55135840A JP13584080A JPS5822510B2 JP S5822510 B2 JPS5822510 B2 JP S5822510B2 JP 55135840 A JP55135840 A JP 55135840A JP 13584080 A JP13584080 A JP 13584080A JP S5822510 B2 JPS5822510 B2 JP S5822510B2
Authority
JP
Japan
Prior art keywords
sulfur
fuel
alkaline earth
dioxide gas
sulfur dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55135840A
Other languages
Japanese (ja)
Other versions
JPS5761087A (en
Inventor
秋本信吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55135840A priority Critical patent/JPS5822510B2/en
Publication of JPS5761087A publication Critical patent/JPS5761087A/en
Publication of JPS5822510B2 publication Critical patent/JPS5822510B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】 この発明は硫黄またはその化合物を含む燃料の処理法、
特に燃焼に際して亜硫酸ガスの発生を伴わない含硫燃料
の処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a method for treating fuel containing sulfur or its compounds;
In particular, the present invention relates to a method for treating sulfur-containing fuel that does not involve the generation of sulfur dioxide gas during combustion.

諸燃料に含まれる硫黄またはその化合物は在来式の燃焼
によると亜硫酸ガスとして放出されて公害源となるので
、種々の排煙脱硫法ならびに装置によって除害する方式
がとられている。
Sulfur or its compounds contained in various fuels are released as sulfur dioxide gas when conventionally burned and become a source of pollution, so various flue gas desulfurization methods and devices are used to remove the pollution.

しかし、処理するガス中には亜硫酸ガス(0,5〜1.
5%)のほか炭酸ガス、窒素酸化物、過剰空気などを含
む排ガスを発生し、例えば11の重油から約13Nmの
燃焼ガスを発生し、その処理量は膨大な量となる。
However, the gas to be treated contains sulfur dioxide gas (0.5-1.
5%), as well as carbon dioxide, nitrogen oxides, and excess air.For example, approximately 13 Nm of combustion gas is generated from 11 heavy oils, and the amount of gas to be processed is enormous.

従ってその処理装置も、例えば石炭火力発電所の一例を
示すと、その建設費に於いて、ボイラ、発電機、排煙脱
硫装置の建設費は約1:1:1と莫大な費用を要するほ
か、中和剤を含む循環液の処理、その他排水の後処理な
どに多額の経費を必要とし、それだけ電力費の増大を余
儀なくされている。
Therefore, in the case of a coal-fired power plant, for example, the construction cost of the boiler, generator, and flue gas desulfurization equipment is approximately 1:1:1, which is a huge cost. , treatment of circulating fluid containing a neutralizing agent, and other post-treatment of wastewater require a large amount of expense, which inevitably increases electricity costs.

また燃焼炉に水酸化マグネシウム粉、あるいは炭酸石灰
粉等を直接吹込んで燃焼中に脱硫を行う試みがなされた
が、脱硫効率も25%程度にとどまり目的を達成するこ
とができず、実用化にいたっていない。
Attempts have also been made to directly inject magnesium hydroxide powder or lime carbonate powder into the combustion furnace to desulfurize during combustion, but the desulfurization efficiency remained at around 25%, failing to achieve the objective. Not good.

このため巷間では多少燃料費は嵩むが、水添脱硫、その
他の方法で硫黄分を少なくした燃料を使用して排煙脱硫
操作を省略することが一部で実施されている。
For this reason, fuel costs are somewhat higher, but in some cases the flue gas desulfurization operation is omitted by using fuel with reduced sulfur content through hydrodesulfurization or other methods.

一方では省エネルギーの立場から石炭への転換をしよう
とする時代となりつつある。
On the other hand, we are entering an era in which people are trying to switch to coal from the standpoint of energy conservation.

しかし、石炭は石油より安価ではあるが、固体であるの
でそのままでは事前処理による原料の脱硫は不可能であ
り、運搬、取扱い上からその液化も試みられているが未
だしの状態にある。
However, although coal is cheaper than petroleum, since it is a solid, it is impossible to desulfurize the raw material by pre-treatment as it is, and attempts have been made to liquefy it for transportation and handling reasons, but this has not yet been achieved.

この発明は以上の事態に鑑みなされたもので、燃焼に際
して亜硫酸ガスの発生を伴わない簡単かつ安価な燃料の
処理法を提案することを目的とする。
This invention was made in view of the above situation, and an object of the present invention is to propose a simple and inexpensive fuel treatment method that does not involve the generation of sulfur dioxide gas during combustion.

この発明は硫黄または硫黄化合物を含む燃料に対して、
含有硫黄分と当量または小過剰にあたるアルカリ土類金
属の酸化物および水酸化物から選ばれる1種またはそれ
以上の物質を混和し、還元状態下に維持して硫黄または
硫黄化合物をアルカリ土類金属の硫化物に還元した後燃
焼させることにより、アルカリ土類金属の硫酸塩を生成
させることを特徴とする亜硫酸ガスの発生を伴わない含
硫燃料の処理法である。
This invention applies to fuels containing sulfur or sulfur compounds.
One or more substances selected from oxides and hydroxides of alkaline earth metals in an amount equivalent to or in slight excess of the sulfur content are mixed and maintained under reducing conditions to convert sulfur or sulfur compounds into alkaline earth metals. This is a method for treating sulfur-containing fuel that does not involve the generation of sulfur dioxide gas, and is characterized by generating sulfates of alkaline earth metals by reducing them to sulfides and then burning them.

一般的には石炭に対してはこれを還元状態で乾留してコ
ークスを製造するときには、石炭中に含まれる硫黄化合
物の20〜45%が硫化水素としてガス中に移行する。
Generally, when coal is carbonized in a reduced state to produce coke, 20 to 45% of the sulfur compounds contained in the coal are transferred into gas as hydrogen sulfide.

従って精製前のガスは容積で10〜25%(4〜15
g/ m3)の硫化水素のほかに二硫化炭素、硫化カル
ボニール、チオシアン酸、メルカプタン、チオフェンな
どの有機硫黄等0.2〜0.7 g/ m’を含んでい
ることが知られている。
Therefore, the gas before purification is 10-25% (4-15%) by volume.
In addition to hydrogen sulfide (g/m3), it is known to contain 0.2 to 0.7 g/m' of organic sulfur such as carbon disulfide, carbonyl sulfide, thiocyanic acid, mercaptan, and thiophene.

これらのうち硫化水素は酸化鉄と鋸屑との混合槽を通し
、硫化鉄として分離している。
Of these, hydrogen sulfide is separated as iron sulfide through a mixing tank with iron oxide and sawdust.

そしてその残余は発生ガス中にあるいは製品コークス中
に残留する。
The remainder remains in the generated gas or product coke.

しかし、石炭を直接燃料とする場合、すなわち酸化状態
ではその中に含まれている硫黄分は事前処理によってこ
れを除去することが困難なため、これらはすべて亜硫酸
ガスとして排煙中に移行するから排煙脱硫しなければな
らない。
However, when coal is used directly as a fuel, that is, in an oxidized state, it is difficult to remove the sulfur contained in it through preliminary treatment, and all of this is transferred to flue gas as sulfur dioxide gas. Flue gas must be desulfurized.

一方、重油に於いてはあらかじめ事前処理としてクラウ
ス法のような低減処理によることもできるが、特殊の場
合を除いて分溜による方式によりA重油、B重油、およ
びC重油に区分されるものの、硫黄分はC重油が最も高
く3%をオーバーするものが多い。
On the other hand, heavy oil can be subjected to a reduction treatment such as the Claus method as a preliminary treatment, but except in special cases, it is classified into A heavy oil, B heavy oil, and C heavy oil by fractional distillation. C heavy oil has the highest sulfur content, often exceeding 3%.

従ってこれを燃焼すると多量の亜硫酸ガスの発生を伴わ
ない排煙脱硫を必要とする。
Therefore, combustion of this requires flue gas desulfurization without generating a large amount of sulfur dioxide gas.

燃焼中の硫黄分は還元状態では硫化水素になるが、これ
をそのまま燃焼すると亜硫酸ガスになる。
The sulfur content during combustion becomes hydrogen sulfide in a reduced state, but if it is burned as is, it becomes sulfur dioxide gas.

ところが還元状態でアルカリ土類金属の酸化物または水
酸化物を存在させると、それらの酸化物が生成し、これ
をそのまま燃焼すると硫酸塩が生成し固定される。
However, when oxides or hydroxides of alkaline earth metals are present in a reduced state, these oxides are produced, and when these oxides are burned as they are, sulfates are produced and fixed.

バーナーから燃料を噴射して燃焼する場合、燃料の噴射
ノズルを炉内に突出させてノズル開口部と炉壁間に加熱
管を形成すると、加熱管およびノズル周辺では還元状態
にあるので、あらかじめ燃料中にアルカリ土類金属の酸
化物、水酸化物等を共存させると上記のような硫黄化合
物は硫化物となり、これがノズルから噴射されて燃焼さ
れると、酸化雰囲気では硫酸化合物に転化固定されて亜
硫酸ガスの発生を防止することができる。
When injecting fuel from a burner for combustion, if the fuel injection nozzle protrudes into the furnace and a heating tube is formed between the nozzle opening and the furnace wall, the area around the heating tube and nozzle is in a reduced state, so the fuel When oxides, hydroxides, etc. of alkaline earth metals coexist in the sulfur compound, the above-mentioned sulfur compounds become sulfides, and when this is injected from the nozzle and burned, it is converted and fixed to sulfuric compounds in an oxidizing atmosphere. It is possible to prevent the generation of sulfur dioxide gas.

このため本発明に於いては金儲燃料に対し、それらの中
に含まれる硫黄分と当量または小過剰量のアルカリ土類
金属の酸化物または水酸化物の微粉末を混合した状態で
、直接燃焼バーナーから炉内に突出した加熱管を通して
噴射し燃焼を行うと、加熱管および還元炎部分では硫化
物、さらに酸化炎部分ではこれが硫酸塩に転化され、溶
済として燃焼炉内で捕集できる。
For this reason, in the present invention, the money-making fuel is directly mixed with fine powder of alkaline earth metal oxide or hydroxide in an amount equivalent to or slightly in excess of the sulfur content contained in the fuel. When injected from a combustion burner through a heating tube protruding into the furnace and combusted, sulfide is converted to sulfide in the heating tube and reducing flame section, and further to sulfate in the oxidizing flame section, which can be collected as molten waste in the combustion furnace. .

一般的にブンセン灯の炎の様子を見ると、還元炎と酸化
炎とが判然と区別して認められるところである。
Generally speaking, when looking at the flame of a Bunsen lamp, a reduction flame and an oxidation flame can be clearly distinguished.

還元炎は火炎のバーナーに近い部分に形成される安定化
域に生成する比較的温度の低い部分であり、酸化炎はバ
ーナーから遠い部分に形成される拡散炎域に生成する比
較的温度の高い部分である。
Reducing flame is a relatively low-temperature part of the flame that occurs in a stabilizing zone that is formed near the burner, while oxidizing flame is a relatively high-temperature part that is generated in a diffusion flame zone that is far from the burner. It is a part.

上記還元炎の部分でも一部硫化物が生成するが、この部
分の滞留時間は短いので硫化物の生成は完全ではなく、
すぐに酸化炎領域に入って亜硫酸ガスが生成する。
Some sulfide is also generated in the above-mentioned reducing flame area, but the residence time in this area is short, so sulfide generation is not complete.
It immediately enters the oxidizing flame region and sulfur dioxide gas is produced.

アルカリ土類金属の酸化物あるいは水酸化物を混入した
燃料をバーナーから炉内に突出する加熱管を通して高速
で噴射して燃焼させた場合、燃料が加熱管および安定化
域の還元炎部分で530〜580℃に加熱されると、そ
の中で発生した硫化水素は硫化カルシウムまたは硫化マ
グネシウムとして固定され、これが拡散炎域の酸化炎部
分では1000℃以上の酸化雰囲気となり、上記硫化物
が硫酸塩に酸化されて溶済となり、その結果燃焼ガス中
には亜硫酸ガスは発生しない。
When fuel mixed with alkaline earth metal oxides or hydroxides is injected and combusted at high speed through a heating tube protruding into the furnace from a burner, the fuel reaches 530% in the reducing flame part of the heating tube and stabilization zone. When heated to ~580°C, the hydrogen sulfide generated therein is fixed as calcium sulfide or magnesium sulfide, which becomes an oxidizing atmosphere of over 1000°C in the oxidizing flame part of the diffusion flame region, and the sulfide is converted to sulfate. It is oxidized and dissolved, and as a result, no sulfur dioxide gas is generated in the combustion gas.

そしてこれらの溶済と燃料固有の溶済とは混融状態とな
って、外観上重質性で分離性も良く、集塵機で充分捕集
可能である。
These dissolved substances and the dissolved substances specific to the fuel form a mixed molten state, which has a heavy appearance and good separability, and can be sufficiently collected by a dust collector.

しかるに従来性われている方式では、安定化域で生成し
た硫化水素は拡散炎域では空気酸化されて亜硫酸ガスと
なって炉外に放出されるため、排煙脱硫処理が必要とな
るわけである。
However, in the conventional method, the hydrogen sulfide generated in the stabilization zone is oxidized in the air in the diffusion flame zone and becomes sulfur dioxide gas, which is released outside the furnace, which requires flue gas desulfurization treatment. .

また炉内に直接酸化カルシウムや水酸化マグネシウム等
を吹込む方式では燃料中に含まれる硫黄や酸化物はすで
に燃焼して稀薄な亜硫酸ガスとなったのち酸化カルシウ
ム、水酸化マグネシウム等と接触するため、反応性が悪
く、脱硫効率が低かったわけである。
In addition, in the method of injecting calcium oxide, magnesium hydroxide, etc. directly into the furnace, the sulfur and oxides contained in the fuel have already been burned and become dilute sulfur dioxide gas, and then come into contact with the calcium oxide, magnesium hydroxide, etc. , the reactivity was poor and the desulfurization efficiency was low.

一方、ナトリウムなどのアルカリ塩を使用すると、重油
の場合にはその中に含まれるバナジウムと低溶融性塩を
形成し、いわゆる「バナジウムアタック」現象をおこし
、炉構成鉄材の腐食原因となる恐れがあるが、水沫のよ
うにアルカリ土類金属の酸化物あるいは水酸化物ではそ
の心配はない。
On the other hand, if alkaline salts such as sodium are used, in the case of heavy oil, they may form low-melting salts with the vanadium contained in the oil, causing the so-called "vanadium attack" phenomenon, which may cause corrosion of the iron materials that make up the furnace. However, there is no such concern with alkaline earth metal oxides or hydroxides such as water droplets.

石炭類についてもその中に含まれる硫黄化合物は重油と
同様に硫酸カルシウムや硫酸マグネシウムを生成し、残
渣とともに炉内で捕集できる。
Similarly to heavy oil, the sulfur compounds contained in coal produce calcium sulfate and magnesium sulfate, which can be collected together with the residue in the furnace.

しかし、石炭の場合は添加物との混合促進し、かつバー
ナーから噴射するため、粉炭として使用することが望ま
しい。
However, in the case of coal, it is preferable to use it as pulverized coal because it facilitates mixing with additives and is injected from a burner.

重油使用の場合には添加剤の粒度は40ミクロン、すな
わち325メツシュ程度のものがよい。
When heavy oil is used, the particle size of the additive is preferably about 40 microns, that is, about 325 mesh.

いずれの場合も添加剤と混合状態でバーナーからの炉内
に突出する加熱管を通して噴射し、還元状態で加熱後燃
焼させることにより、亜硫酸ガスの生成なく燃焼を行う
ことができる。
In either case, by injecting the mixture with additives through a heating tube protruding into the furnace from a burner, heating it in a reducing state, and then burning it, combustion can be performed without producing sulfur dioxide gas.

本発明の処理対象となる燃料としては、原油、重油、石
炭、ボタ、オイルサンド、オイルセール、COM等の硫
黄または硫黄化合物含有の燃料がある。
Fuels to be treated in the present invention include fuels containing sulfur or sulfur compounds, such as crude oil, heavy oil, coal, bottom, oil sand, oil sail, and COM.

実験例 各試料にその硫黄含有量に対して1.1当量にあ:たる
各添加剤を加え、これを磁製るつぼに採り、磁製撹拌棒
でよく混和し蓋をして最高850°Cで0.5hr加熱
したところ、るつぼ内は酸素欠乏下に加熱されて還元状
態に維持された後、着火して燃焼が起こった。
Experimental Example Add 1.1 equivalent of each additive to each sample based on its sulfur content, place it in a porcelain crucible, mix well with a porcelain stirring bar, cover and heat at a maximum of 850°C. When the crucible was heated for 0.5 hours, the inside of the crucible was heated in an oxygen-deficient state and maintained in a reduced state, and then ignited and combustion occurred.

その後、未燃物のないことを確かめて、これに塩化亜鉛
液と温湯を添加し、さらに熱水で洗浄して残渣と洗液と
に分け、さらに残渣には塩酸を加えて硫化亜鉛を溶出し
、両洗液より鉄、アルミニウムを濾別して250 CC
とし、それぞれSO4,CaまたはMg、Znを測定し
た。
After that, after confirming that there is no unburnt material, zinc chloride solution and hot water are added to it, and it is further washed with hot water to separate the residue and washing liquid, and then hydrochloric acid is added to the residue to elute the zinc sulfide. Then, iron and aluminum were filtered out from both washing liquids and 250 CC
SO4, Ca, Mg, and Zn were measured respectively.

そしてCaSO4に相当するSとZnに相当するSとの
合量を以って固定されたSとして表示した。
The total amount of S corresponding to CaSO4 and S corresponding to Zn was expressed as fixed S.

結果を表1に示す。The results are shown in Table 1.

この結果から、各燃料中の硫黄分は高歩留で固定されて
いることがわかる。
This result shows that the sulfur content in each fuel is fixed at a high yield.

※ 石炭1:重油1の混合物 実施例 添加剤として水酸化カルシウム、水酸化マグネシウムを
それぞれ、硫黄含有量に対して11当量添加した重油を
トーチランプにより加熱管部で加熱して還元状態に維持
した後噴射して燃焼し、発生した廃ガスは水冷円管を通
して放出し、その中に含有された亜硫酸ガスを北用式検
知管で測定した結果、いずれの場合も発色を認めず、亜
硫酸ガスはく20ppI11であった。
*Example of a mixture of coal 1 and heavy oil 1 Heavy oil to which calcium hydroxide and magnesium hydroxide were each added in an amount of 11 equivalents relative to the sulfur content as additives was heated in a heating pipe section using a torch lamp and maintained in a reduced state. After the post-injection and combustion, the generated waste gas was released through a water-cooled circular pipe, and the sulfur dioxide gas contained therein was measured using a Kitayo type detection tube. In both cases, no color was observed, indicating that sulfur dioxide gas was not present. It was 20ppI11.

この場合、使用した重油中の硫黄含有量は2.07%で
あった。
In this case, the sulfur content in the heavy oil used was 2.07%.

以上のとおり、本発明によれば、アルカリ土類金属の酸
化物または水酸化物を燃料に混合して燃焼することによ
り、燃料中の硫黄分を硫酸塩として還元状態下に加熱し
て硫黄分をアルカリ土類金属の硫化物に転換した後、固
定し、簡単かつ安価に亜硫酸ガスの発生を防止すること
ができるという効果がある。
As described above, according to the present invention, by mixing an alkaline earth metal oxide or hydroxide with fuel and burning it, the sulfur content in the fuel is converted into sulfate and heated to a reduced state. After converting into alkaline earth metal sulfide, it is fixed and has the effect of easily and inexpensively preventing the generation of sulfur dioxide gas.

Claims (1)

【特許請求の範囲】[Claims] 1 硫黄または硫黄化合物を含む燃料に対して、含有硫
黄分と当量または小過剰にあたるアルカリ土類金属の酸
化物および水酸化物から選ばれる1種またはそれ以上の
物質を混和し、環元状態下に維持して硫黄または硫黄化
合物をアルカリ土類金属の硫化物に還元した後燃焼させ
ることにより、アルカリ土類金属の硫酸塩を生成させる
ことを特徴とする亜硫酸ガスの発生を伴わない含硫燃料
の処理法。
1. One or more substances selected from oxides and hydroxides of alkaline earth metals in an amount equivalent to or slightly in excess of the sulfur content are mixed with fuel containing sulfur or sulfur compounds, and the mixture is heated under cyclic conditions. A sulfur-containing fuel that does not generate sulfur dioxide gas and is characterized by producing alkaline earth metal sulfates by reducing sulfur or sulfur compounds to alkaline earth metal sulfides and then burning them. processing method.
JP55135840A 1980-10-01 1980-10-01 Treatment method for sulfur-containing fuel Expired JPS5822510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55135840A JPS5822510B2 (en) 1980-10-01 1980-10-01 Treatment method for sulfur-containing fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55135840A JPS5822510B2 (en) 1980-10-01 1980-10-01 Treatment method for sulfur-containing fuel

Publications (2)

Publication Number Publication Date
JPS5761087A JPS5761087A (en) 1982-04-13
JPS5822510B2 true JPS5822510B2 (en) 1983-05-09

Family

ID=15160982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55135840A Expired JPS5822510B2 (en) 1980-10-01 1980-10-01 Treatment method for sulfur-containing fuel

Country Status (1)

Country Link
JP (1) JPS5822510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143222U (en) * 1988-03-25 1989-10-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3314764A1 (en) * 1983-04-23 1984-10-31 Akzo Gmbh, 5600 Wuppertal FUEL BRIQUETTES
JPS61190009A (en) * 1985-02-16 1986-08-23 Itsuo Onaka Production of powder
JP2008169338A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of reducing unburned coal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032077A (en) * 1973-07-25 1975-03-28
JPS5343706A (en) * 1976-10-03 1978-04-20 Taiho Kogyo Co Ltd Method of controlling harmful component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032077A (en) * 1973-07-25 1975-03-28
JPS5343706A (en) * 1976-10-03 1978-04-20 Taiho Kogyo Co Ltd Method of controlling harmful component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143222U (en) * 1988-03-25 1989-10-02

Also Published As

Publication number Publication date
JPS5761087A (en) 1982-04-13

Similar Documents

Publication Publication Date Title
US6250235B1 (en) Method and product for improved fossil fuel combustion
CS229621B2 (en) Method for reduction of sulphur emission in brown-coal-fired furnaces of the power stations
DE4313102A1 (en) Method of reducing the amount of exhaust gas to eliminate NO¶x¶ emissions from combustion, preferably from waste incineration
CN110240123B (en) Method for preparing sulfuric acid by using rotary kiln incineration waste sulfur and sulfur-containing waste liquid
JPH0222284B2 (en)
US4384923A (en) Process for the hygienization of carbonation sludges
CN1127776A (en) Sulfur-immobilizing coal-saving additive
KR101542076B1 (en) Composite for combusition of solide fuel and methode for using the same
JPS5822510B2 (en) Treatment method for sulfur-containing fuel
CN113210013A (en) Composite catalyst and application thereof
CN103432881A (en) Synthesis of novel energy by using sulfur dioxide or carbon dioxide as raw materials
US3974783A (en) Method for improving sewage sludge incineration
US4851151A (en) Process for production of synthesis gas with reduced sulfur content
JP3712262B2 (en) Operation method of gas turbine with additive
DE3437074C2 (en)
CN103305313B (en) Combustion catalyst for low-heat value coal
KR20180068353A (en) Combuston Accelerator
US4469032A (en) Zone combustion of high sulfur coal to reduce SOx emission
CN1060675A (en) Design method of waste slag coal-saving additive
KR100664974B1 (en) Combusting Composition of Accelerator for Scale Environmental Contaminant Reduction/Prohibition
KR100538120B1 (en) activated chemicals of buring for coal
CN112479529B (en) Dry distillation process for treating oil sludge
GB2196984A (en) Oil based additive for reduction of combustion formed nitrous gases
DE1960082A1 (en) Process for melting down metals
JPS5822073B2 (en) Treatment method for sulfur-containing fuel