JPS58224105A - Preliminary treatment of molten iron - Google Patents

Preliminary treatment of molten iron

Info

Publication number
JPS58224105A
JPS58224105A JP10546282A JP10546282A JPS58224105A JP S58224105 A JPS58224105 A JP S58224105A JP 10546282 A JP10546282 A JP 10546282A JP 10546282 A JP10546282 A JP 10546282A JP S58224105 A JPS58224105 A JP S58224105A
Authority
JP
Japan
Prior art keywords
amount
quicklime
hot metal
oxygen
preliminary treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10546282A
Other languages
Japanese (ja)
Other versions
JPS6225725B2 (en
Inventor
Michiharu Ozawa
小沢 三千晴
Yoshiaki Hara
義明 原
Hideji Takeuchi
秀次 竹内
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10546282A priority Critical patent/JPS58224105A/en
Publication of JPS58224105A publication Critical patent/JPS58224105A/en
Publication of JPS6225725B2 publication Critical patent/JPS6225725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To reduce the cost for a preliminary treatment of molten iron and to improve working efficiency by calculating and controlling the required amts. and compsns. of a refining flux and a gaseous carrier from the actually measured values and target values of the components and temp. of the molten iron before and after the preliminary treatment. CONSTITUTION:The components and temp. of molten iron are compared with the target components and temp. of a preliminary treatment, and the min. amt. of a quicklime refining flux as well as the compsn. and amt. of a gaseous carrier required for achieving said target are calculated. An injection operation is carried out in accordance with the results thereof to reduce the unit of the refining flux in the preliminary treatment of the molten iron, whereby the cost is reduced and the working efficiency is improved. The above-mentioned refining flux consists of a slag forming agent consisting essentially of quicklime, a fluxing agent of >=1 kind among fluorite, rock crystal and colemanite and a solid oxygen source to be mixed according to need. The gaseous carrier consists of >=1 kind among gaseous oxgen or an oxidative gas contg. the same as a component element, gaseous nitrogen and other inert gases.

Description

【発明の詳細な説明】 この発明は、溶銑の予備処理方法に関し、とくに該処理
に使用する精錬フラックス原単位の効果的な低減を実現
しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for pre-treatment of hot metal, and particularly aims to effectively reduce the unit consumption of refining flux used in the treatment.

周知のように、溶銑中のけい素やりんは転炉吹錬などの
精錬過程において、酸素と反応させることによって低減
させることができる。
As is well known, silicon and phosphorus in hot metal can be reduced by reacting with oxygen during a refining process such as converter blowing.

しかしながら処理溶銑中のけい素およびりんの含有量が
高い場合に、りんを除去するためには、スラグの環基a
 (OaO/ si、o、 )を高くすると共にスラグ
量を多くする必要があることから、とりわけ多量の遣滓
剤たとえば生石灰を必要とし、これが精錬時間の延長ひ
いては溶銑の温度降下をもたらし、しかも転炉のような
高温雰囲気下では脱りん効率が悪いので、さほどの脱り
ん効果は望め得ない。
However, when the content of silicon and phosphorus in the treated hot metal is high, in order to remove phosphorus, it is necessary to
Since it is necessary to increase (OaO/si, o, ) and the amount of slag, a particularly large amount of slag expelling agent, such as quicklime, is required, which lengthens the refining time and lowers the temperature of the hot metal. Since the dephosphorization efficiency is poor in a high-temperature atmosphere such as in a furnace, a significant dephosphorization effect cannot be expected.

また溶銑中のいおうけ、酸化性雰囲気で行う転炉吹錬で
は、その除去は期待できない。
In addition, removal cannot be expected in converter blowing carried out in an oxidizing atmosphere in the molten pig iron.

このため現在では、高炉から出銑された溶銑を酸化精錬
のために転炉へ装入する前段階で、溶銑浴中に精錬7ラ
ツクスのキャリヤガスとともにすルインジエクシ日ンを
行うことによって不純物のりんやいおうなどを除去する
、いわゆる溶銑の予備処理が実施されている。かくして
転炉製鋼過程において、脱りん(以下脱Pという)、脱
硫(同脱S)のために使用される副原料の使用量を減じ
て、低りん、低硫鋼の溶製を容易にすると共に、スラグ
生成量の減少によって鉄の歩留りを向上させることがで
きる。
For this reason, at present, before the hot metal tapped from the blast furnace is charged into the converter for oxidation refining, impurity phosphorus is removed by injecting it into the hot metal bath together with 7 lux of carrier gas. A so-called preliminary treatment of hot metal is carried out to remove slag and other substances. In this way, the amount of auxiliary raw materials used for dephosphorization (hereinafter referred to as deP) and desulfurization (same desulfurization) in the converter steel manufacturing process is reduced, making it easier to melt and manufacture low-phosphorus and low-sulfur steel. At the same time, the yield of iron can be improved by reducing the amount of slag produced.

ところでかような予備処理に供される精錬フラックスの
成分組成については、従来から種々検討されているとは
いうものの、それらはいずれも反応効率に主眼をおいた
もので、コスト面から検討された事例はほとんどない。
By the way, although there have been various studies on the composition of the refined flux used in such pretreatment, they have all focused on reaction efficiency and have not been studied from a cost perspective. There are very few cases.

しかもこの種の精錬フラξノクスとしては、各成分が事
前に配合されたものを用いるのが普通で、溶銑の成分や
温度に合わせて配合比を調整することは、これまでなさ
れていなかった。このため精錬フラックスの各成分中、
とくに生石灰やほたる石などの危滓成分は、安全性を見
込んで幾分条目に配合されていることもあって、予備処
理終了後に目標成分とするに足る必要鳳よりもかなり多
かったのである。
Moreover, this type of refining furnace ξnox is usually used with each component mixed in advance, and it has not been possible to adjust the blending ratio according to the components and temperature of the hot metal. For this reason, in each component of refined flux,
In particular, hazardous components such as quicklime and fluorite were mixed into the mixture somewhat in order to ensure safety, and the amount was much higher than the amount needed to make them the target components after preliminary treatment.

かような造滓剤の金分の添加は、スラグ生成量の無用の
増加をもたらし、精錬フラックス原単位を高めるだけで
なく予備処理操業の作業能率の低下を招くため、その改
善が望まれていた。
The addition of gold to the slag agent causes an unnecessary increase in the amount of slag produced, which not only increases the smelting flux consumption rate but also reduces the efficiency of pretreatment operations, so improvement is desired. Ta.

この発明は、以上の事情に鑑みて開発されたもので、造
滓剤として安価な生石灰を用い、しかもそれを含めて精
錬フラックスの各成分の使用量を必要最少限に抑えて精
錬7ラツクスの原単位を低減することにより、溶銑の予
備処理におけるコストの低減を作業能率の向上に併せ可
能ならしめたものである。
This invention was developed in view of the above circumstances, and uses inexpensive quicklime as a slag-forming agent, and also minimizes the amount of each component of the smelting flux, including it, to reduce the amount of smelting flux to 7 lacs. By reducing the basic unit, it is possible to reduce the cost in pre-treatment of hot metal while improving work efficiency.

すなわちこの発明は、溶銑浴中に生石灰系の精錬7ラツ
クスを、キャリヤガスによりインジェクションをして溶
銑の予備処理を行うに際し、該イ、ンジエクション前の
溶銑の成分および温度を、該予備処理の目標とする姶理
険の溶銑の成分、温度と比較して、該目標達成に必要と
する最少限の精錬フラックスの成分量ならびにキャリヤ
ガスの組成および量を演算し、この演算結果に基いてイ
ンジェクション操業を行うことをもって、上記課題の解
決手段とするものである。
In other words, this invention provides a method for pre-treating hot metal by injecting quicklime-based refined 7 lac into a hot metal bath using a carrier gas. By comparing the composition and temperature of the hot metal of Airiken, we calculate the minimum amount of components of the refining flux and the composition and amount of carrier gas necessary to achieve the target, and then start the injection operation based on the calculation results. By doing so, we aim to solve the above problem.

この発明で使用する精錬7ラツクスは、生石灰を主体と
する貨滓剤、はたる石、氷晶石およびコレマナイトなど
の媒溶剤、さらには必要に応じ混合する固体酸素源たと
えば鉄鉱石、ミルスケールなどの配合物が有利に適合す
る。
The refined 7 lacs used in this invention include a slag agent mainly composed of quicklime, a solvent such as clapstone, cryolite, and colemanite, and a solid oxygen source mixed as necessary, such as iron ore and mill scale. Formulations of are advantageously suited.

またキャリヤガスとしては、酸素もしくはこれを成分元
素とする酸化性ガス、窒素ガスおよびその他年活性ガス
のうちから選んだ一種または二種以上からなる気体が有
利に適合する。
Further, as the carrier gas, a gas consisting of one or more selected from oxygen or an oxidizing gas containing oxygen as a component, nitrogen gas, and other active gases is advantageously suitable.

以下この発明を由来するに至った実験結果に基き、この
発明を具体的に説明する。
This invention will be specifically explained below based on the experimental results that led to this invention.

第1図aおよびbに、造滓剤として生石灰を、また酸素
源としてキャリヤガス中に配合した酸素ガスを用いて予
備処理を行った場合の、脱P率と脱Pに寄与する供給酸
素量および供給生石灰量との関係をそれぞれ示す。
Figures 1a and b show the dephosphorization rate and the amount of oxygen supplied that contributes to dephosphorization when preliminary treatment is performed using quicklime as a slag-forming agent and oxygen gas mixed in carrier gas as an oxygen source. and the relationship with the amount of quicklime supplied.

脱P率は、供給酸素量に比例してほぼ直線的に増加する
のに対し、供給石灰量とはとくに強い相関は見られない
。すなわち生石灰系精錬7ラツクスを使用する溶銑の脱
Pにおいては、脱P反応は生石灰よりも酸素量に強く依
存することがわかる。
While the dephosphorization rate increases almost linearly in proportion to the amount of oxygen supplied, there is no particularly strong correlation with the amount of lime supplied. In other words, it can be seen that in the dephosphorization of hot metal using quicklime-based refined 7 lux, the dephosphorization reaction depends more strongly on the amount of oxygen than on quicklime.

また第2図aおよびbに、スラグ−メタル間のP分配(
(%P、O,)/C%Pal )およびS分配((%S
)/〔%S〕) について調べた結果を、供給生石灰量
と供給酸素量との比の関数としてそれぞれ示す。
In addition, Fig. 2 a and b show the P distribution between slag and metal (
(%P,O,)/C%Pal) and S distribution ((%S
)/[%S]) are shown as a function of the ratio of the amount of quicklime supplied to the amount of oxygen supplied.

第2図aより、脱Pは供給酸素量によってほぼ一義的に
決定され、生石灰量はPを固定するに足る量だけ存在す
ればよいことがわかる。また脱Sについては同図すに示
されたように、生石灰量が多いほど、かつ酸素量が少な
いほど進展することは、周知のとおりである。
From FIG. 2a, it can be seen that dephosphorization is almost uniquely determined by the amount of supplied oxygen, and that the amount of quicklime that is sufficient to fix P is sufficient. Furthermore, as shown in the figure, it is well known that the greater the amount of quicklime and the lower the amount of oxygen, the more progress is made in removing S.

このように単純に供給酸素量を増すと脱Pは進むが脱S
は停滞することになり、一方供給生石灰量を増すと脱S
は進むけれども脱Pに対しては必要以上の生石灰量とな
って精錬フラックスの原単位をいたずらに増加させるこ
とになるのである。
In this way, if the amount of supplied oxygen is simply increased, dephosphorization progresses, but
On the other hand, increasing the amount of quicklime supplied will result in de-S
Although progress is made, the amount of quicklime is more than necessary for P removal, which unnecessarily increases the basic unit of refining flux.

次に、第1図、第2図に示した結果に、生成スラグの計
算塩基度とPIS分配との関係を加味し、スラグメタル
間のP、Sバランスがら生石灰の原単位と予備処理後の
〔%P〕、〔%S〕との関係について調べた結果を第8
図に整理して示す。
Next, we added the relationship between the calculated basicity of the produced slag and the PIS distribution to the results shown in Figs. The results of investigating the relationship between [%P] and [%S] are shown in Part 8.
It is organized and shown in the figure.

同図より、脱Pについては必要m素置さえ確保できれば
、生石灰を大量に添加する必要はないことが、また脱S
については上記の脱Pに必要な酸素量の下で目標Sに見
合った生石灰量が必要になることがわかる。たとえば予
備処理後に〔%P)−0,02とするためには、8 N
m’/lの酸素量が必要で、この場合の生石灰の必要量
は18 kg/lである。−4方予備処理後にC%8〕
−°・°10を”成す6′−″は・供給酸素量が6 N
m’/lの場合には25 kg/lの生石灰を確保する
必要がある。従って目標の〔%P)。
The figure shows that there is no need to add a large amount of quicklime as long as the required m
It can be seen that an amount of quicklime corresponding to the target S is required under the amount of oxygen required for dephosphorization as described above. For example, to obtain [%P)-0.02 after pretreatment, 8 N
m'/l of oxygen is required, and the required amount of quicklime in this case is 18 kg/l. -C%8 after 4-way pretreatment]
6′-” which forms −°・°10 means that the amount of oxygen supplied is 6 N.
m'/l, it is necessary to secure 25 kg/l of quicklime. Therefore, the target [%P].

〔%S〕を同時に達成するためには、溶鋼トン当り□”
8 Nm  の酸素および25kgの生石灰を必要とす
るわけである。
In order to achieve [%S] at the same time, □” per ton of molten steel.
This requires 8 Nm of oxygen and 25 kg of quicklime.

ところで予備処理に用いる酸素源としては、鉄鉱石やミ
ルスケールなどの固体酸素源と、酸素ガスなどの気体酸
素源があるが、それらの使用比率は予備処理後の溶銑の
目標温度によって決定される。すなわちたとえば予備処
理に必要とする酸素のすべてを固体酸素源から供給した
場合には、溶銑の温度降下が大きくなって目標値を下回
るおそれが生じるが、この場合には固体酸素源の一部な
いしは全部を適宜に気体酸素源と置換することにより、
容易に目標温度とすることができるのである。
By the way, the oxygen sources used in pretreatment include solid oxygen sources such as iron ore and mill scale, and gaseous oxygen sources such as oxygen gas, and the ratio of their use is determined by the target temperature of the hot metal after pretreatment. . In other words, for example, if all the oxygen required for pretreatment is supplied from a solid oxygen source, the temperature drop of the hot metal will increase and there is a risk that it will fall below the target value. By replacing all with a gaseous oxygen source as appropriate,
The target temperature can be easily achieved.

次にこの発明法に従って溶銑の脱Pおよび脱Sを行う場
合の、精錬7ラツクス各成分の必要量ならびにキャリヤ
ガスの組成および量の演算のし方について説明する。
Next, a description will be given of how to calculate the required amount of each component of the seven lacs of refining and the composition and amount of the carrier gas when deP and S are removed from hot metal according to the method of the present invention.

↑ 予備処理前の溶銑成分を各々〔%S土〕。。↑ Each hot metal component before pretreatment [%S soil]. .

〔%P〕。、〔%S〕。、処理前温度をT。で、また目
標成分を〔%P)f、〔%s)f、目標温度をTfで表
わすものとする。脱Pに必要な酸素ml vosは前掲
第1図からも明らかなように(% Si )。と〔%P
〕。、〔%P)fの関数として下記(1)式の如く表わ
すことができる。
[%P]. , [%S]. , the temperature before treatment is T. Also, assume that the target components are represented by [%P)f and [%s)f, and the target temperature is represented by Tf. As is clear from the above-mentioned FIG. 1, the oxygen ml vos required for dephosphorization is (% Si ). and [%P
]. , [%P) can be expressed as a function of f as shown in equation (1) below.

Vo、 −f、((%P)。、(:%p)f、(%Si
n。) −一−(1)また酸素量V。、を使用した場合
のけい累減少量ΔS1は下記(2)式 %式%(2) ここで脱Pに必要な生石灰量W7ineは次式(8)。
Vo, -f, ((%P)., (:%p)f, (%Si
n. ) -1-(1) Also, the amount of oxygen V. , the cumulative decrease in osmolarity ΔS1 is expressed by the following formula (2), % formula (2). Here, the amount of quicklime W7ine required for dephosphorization is expressed by the following formula (8).

(4)の連立方程式の解として求まる。It is found as a solution to the simultaneous equations in (4).

log (%P)/〔%”’f −f8 (vos +
Δsx、w、1m0) −−−(s)1000((%P
 )。−C%P)f)−(%” )×”81&q  −
−−−−(4)ここで(%P):予備処理後のスラグ中
のP濃度Wslati  を予備処理後のスラグ量Ws
zag=f4(ΔSi、W71me)(8)、(4)式
で求めたwji、meをAとする。
log (%P)/[%”'f −f8 (vos +
Δsx, w, 1m0) ---(s)1000((%P
). −C%P)f)−(%” )×”81&q −
----(4) Here, (%P): P concentration Wslati in the slag after preliminary treatment is the amount of slag after preliminary treatment Ws
zag=f4(ΔSi, W71me) (8) Let A be wji and me obtained by equation (4).

−力説Sに必要な生石灰量W /、1m6は次式(5)
 + (6)。
-The amount of quicklime required for force theory S, W/, 1m6, is calculated using the following formula (5)
+ (6).

の連立方程式の解として求まる。It is found as the solution of the simultaneous equations.

log ((%S)/〔%5)f)−f、(vo、、Δ
S土+Wlime)−−n5)1ooo(C%Sol。
log ((%S)/[%5)f)-f, (vo,, Δ
S soil + Wlime)--n5) 1ooo (C%Sol.

−C%S:]f)−(%S)xWszag−一−−−(
61(%S)+予備処理後のスラグ中のS濃度(5)、
(6)式で求めたW7imeをBとすると、目標のPI
SFfiJ分を同時に満足する生石灰量はA、Hのうち
大なる方である。
-C%S:]f)-(%S)xWszag-1---(
61 (%S) + S concentration in slag after pretreatment (5),
If W7ime obtained by equation (6) is B, the target PI
The amount of quicklime that simultaneously satisfies SFfiJ is the greater of A and H.

以上で必要な酸素量と生石灰量が決定された。The amount of oxygen and quicklime required was determined above.

次に必要酸素量の供給源については、気体酸素源からの
酸素量をx1固体酸素源がらの酸素量をyとすると、x
、yの量は下記(’y) t (s1式によって決定さ
れる。
Next, regarding the source of the required amount of oxygen, if the amount of oxygen from the gaseous oxygen source is x1 and the amount of oxygen from the solid oxygen source is y, then x
, y is determined by the following equation ('y) t (s1).

M−f、(Δo、ΔSi、ΔIn、ΔP + W/im
8+ T□+ Tf) −−−(7)Vo @ ==x
 + y   −−−(8)ここでΔO= f7 (V
OB+ T□ )Δ” =f8 ”’011 ’ ”l
ime +ΔSi、’I’。)Δp−(%P〕。−〔%
P)f また予備処理によって生成したスラグは流動性を持たせ
ることが必要でそのためには媒溶剤としてほたる石など
のスラグ融点を下げる物質を配合させる必要があるが、
第4図に示したところから明らかなように生石灰の脱P
消賛効率を向上させるためにはほたる石は添加生石灰量
の80〜50%が望ましい。
M-f, (Δo, ΔSi, ΔIn, ΔP + W/im
8+ T□+ Tf) ---(7) Vo @ ==x
+ y --- (8) where ΔO= f7 (V
OB+ T□ )Δ" = f8 "'011 '"l
ime +ΔSi, 'I'. )Δp-(%P].-[%
P) f In addition, the slag produced by the pretreatment must have fluidity, and for this purpose it is necessary to mix a substance that lowers the slag melting point, such as fluorite, as a solvent.
As shown in Figure 4, the dephosphorization of quicklime
In order to improve the publicity efficiency, it is desirable that the amount of fluorite be 80 to 50% of the amount of quicklime added.

以上から目標P、Sおよび温度にするために必要な精錬
7ラツクス各成分の量および酸素ガス量が決定される。
From the above, the amount of each component of the refining 7 lux and the amount of oxygen gas required to achieve the target P, S and temperature are determined.

そしてこの決定された量の各成分を予備処理前に混合し
て、必要量の酸素ガス量を有したキャリヤガスとともに
溶銑中へ吹込むのである。
The determined amounts of each component are then mixed before pretreatment and blown into the hot metal together with a carrier gas containing the required amount of oxygen gas.

以下この発明の実施例について説明する。Examples of the present invention will be described below.

・予備処理前の溶銑の成分2m度 [%Si]。−0,010%、〔%P〕。= 0.18
0%。
・The composition of hot metal before pretreatment is 2m degrees [%Si]. -0,010%, [%P]. = 0.18
0%.

〔%s )。= o、oao%t  To = 185
0℃イ    ・予備処理後の目標成分、温度〔%P)
f≦0 、080%、〔%S)f≦0.015%Tf=
 1800℃ (〔%P)。−C%P)f)/〔%P)。−0,29F
Vo、+ 0.411−8ΔS土〔%P)。−C%P〕
f= 0.0012 (Wlige” 24.1Δ5i
)(%P)〔%S)。−C%S:)f−0,0012(
Wlime+24.1Δ51)(%S)T −T =1
.4W74z6+5.9W□r6−844Δ5i−18
4ΔOf ΔS土=o、gz(%5ill。vofAΔc −0,
075(vofA−sΔ5i)Vo、 = Vg+ 0
.207 Worev9;気体酸素量(Nm/1) Wore ”鉄鉱石量 (kg/l ”)上記の演算式
によって求めた精錬フラ゛ソクスの各成分量および酸素
ガス量は表工に示したとおりであり、かような配合比に
なる精錬フラックスを必要量の酸素ガスを含むキャリヤ
ガスによって、混銑車内に装入した溶銑中に吹込んだ。
[%s). = o, oao%t To = 185
0℃a ・Target components and temperature after pretreatment [%P]
f≦0, 080%, [%S) f≦0.015%Tf=
1800℃ ([%P). -C%P)f)/[%P). -0,29F
Vo, + 0.411-8ΔS soil [%P]. -C%P]
f = 0.0012 (Wlige” 24.1Δ5i
) (%P) [%S). -C%S:)f-0,0012(
Wlime+24.1Δ51)(%S)T −T =1
.. 4W74z6+5.9W□r6-844Δ5i-18
4ΔOf ΔS soil=o, gz(%5ill. vofAΔc −0,
075(vofA-sΔ5i)Vo, = Vg+ 0
.. 207 Worev9; Amount of gaseous oxygen (Nm/1) Wore "Amount of iron ore (kg/l") The amount of each component and the amount of oxygen gas in the smelting flask obtained by the above calculation formula are as shown in the table. The refining flux having such a mixing ratio was blown into the hot metal charged into the pig iron mixing car using a carrier gas containing the required amount of oxygen gas.

処理後のPおよび8711度は表工に示したとおりであ
った。
P and 8711 degrees after treatment were as shown in the table.

なお比較のため、以下に示す従来法A、Hに従って予備
処理を行った場合の脱P1脱Sについても鯛べ、その結
果を表工に併せ示した。
For comparison, the results are also shown for the sea bream and the surface treatment for P1 and S removal when preliminary treatments were performed according to conventional methods A and H shown below.

A法 鉄鉱石40%−生石灰40%−はたる石20%の配合組
成になる精錬フラックスを酸素20%−窒素80%組成
のキャリヤガス6 Nm8/minとともに吠込んだ。
Method A iron ore 40% - quicklime 40% - smelting flux having a blending composition of 20% barrel was injected together with a carrier gas having a composition of 20% oxygen - 80% nitrogen at 6 Nm8/min.

B法 鉄鉱石65%−生石灰25%−はたる石10%の配合組
成になる精錬フラックスを酸素20%−窒素80%組成
のキャリヤガス6 Nm’/minとともに吹込んだ。
Method B iron ore 65% - quicklime 25% - smelting flux having a composition of 10% barrel was blown together with a carrier gas of 20% oxygen - 80% nitrogen at 6 Nm'/min.

表工から明らかなように、この発明法に従ってインジェ
クション操業を行った場合には、従来法に較べて少ない
精錬フラックス量で、目標Pおよ4  びS値を達成で
きたのに対し、A法では生石灰の原単位が大きく必要以
上にSを下げ、またB法では鉄鉱石原単位が大きく必要
以上にPを下げていて、ともに温度降下が大きい。
As is clear from the surface treatment, when the injection operation was performed according to the method of this invention, the target P and S values were achieved with a smaller amount of refining flux compared to the conventional method, whereas method A In Method B, the basic unit of quicklime is large and S is lowered more than necessary, and in Method B, the basic unit of iron ore is large and P is lowered more than necessary, both of which result in a large temperature drop.

以上述べたようにこの発明によれば、溶銑の予備処理に
おいて、該処理後に目標とする溶銑の成分、温度を、処
理前溶銑の成分や温度の如何にかかわらず、必要最少限
のM錬フラックス使用量で実現できるので、従来に比べ
精錬フラックスの原単位を著しく低減することができ、
コストダウンならひに予備処理操業における作業能率の
向上が達成できる。
As described above, according to the present invention, in the preliminary treatment of hot metal, the target composition and temperature of the hot metal after the treatment can be adjusted to the minimum necessary M flux, regardless of the composition and temperature of the hot metal before treatment. Since it can be achieved by reducing the amount used, the basic unit of refining flux can be significantly reduced compared to conventional methods.
By reducing costs, it is possible to improve work efficiency in pre-treatment operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは脱Pに及はす供給酸素量および生石灰鰍
の影響をそれぞれ示したグラフ、第2図a、bはそれぞ
れP分配およびS分配に及はす生石灰量/酸素量のv蕾
を示したグラフ、第8図は予備処理後の〔%P〕、〔%
S〕と生石灰原単位との関係を供@酸素量をパラメータ
として示したグラフ、 第4図はCaOの脱P消費効率と、はたる石/生石灰と
の関係を示したグラフである。 第1図 (a) akfjH素1−BXr’15i)0 (Nm3/l) 第114 (1)) 砿奈際生万尽量−3?、fXC%Sλ〕0(Kf/l) (a) 0         2.0        4,04
                    住り足置/
酸素量 (K*/Nrn−’)第2図 (h) 生り灰量/−(量(Kt/Nm3) 第33図 第4図 は7:3石Ay=灰
Figures 1a and b are graphs showing the amount of oxygen supplied and the influence of quicklime on P removal, and Figures 2a and b are graphs showing the amount of quicklime/oxygen on P and S distribution, respectively. Graph showing v buds, Figure 8 shows [%P] and [%
Figure 4 is a graph showing the relationship between CaO deP consumption efficiency and limestone/quicklime. Figure 1 (a) akfjH element 1-BXr'15i) 0 (Nm3/l) No. 114 (1)) Konajai life quantity -3? , fXC%Sλ]0 (Kf/l) (a) 0 2.0 4,04
Place of residence/
Oxygen amount (K*/Nrn-') Figure 2 (h) Ash amount/- (Amount (Kt/Nm3) Figure 33 Figure 4 shows 7:3 stones Ay = ash

Claims (1)

【特許請求の範囲】 L 溶銑浴中に生石灰系の精錬フラックスを、キャリヤ
ガスによりインジェクションをして溶銑の予備処理を行
うに際し、該インジェクション前の溶銑の成分および温
度を、該予備処理の目標とする処理後の溶銑の成分、温
度と比較して、該目標達成に必要とする最少限の精錬7
ラツクスの成分量ならびにキャリヤガスの組成および量
を演算し、この演算結果に基いてインジェクション操業
を行うことを特徴とする溶銑の予備処理方法。 九 精錬フラックスが、生石灰を主体とする醗滓剤と、
はたる石、氷晶石、コレマナイトのうちから選んだ少く
とも一種の媒溶剤ならびに必要により混合する固体酸素
源の配合物である特許請求の範囲第1項記載の方法。 & キャリヤガスが、酸素もしくはこれを成分元素とす
る酸化性ガス、窒素ガスおよびその他年活性ガスのうち
から選んだ一種または二1種以上の気体である特許請求
の範囲第1または2項記載の方法。
[Scope of Claims] L When pre-treating the hot metal by injecting a quicklime-based refining flux into the hot metal bath using a carrier gas, the components and temperature of the hot metal before the injection should be adjusted according to the target of the pre-treatment. The minimum amount of refining required to achieve the target is determined by comparing the composition and temperature of the hot metal after treatment.
A hot metal pretreatment method characterized by calculating the component amount of lux and the composition and amount of carrier gas, and performing an injection operation based on the calculation results. 9. Refined flux is mixed with quicklime-based slag agent,
2. A method according to claim 1, which is a formulation of at least one solvent selected from the group consisting of abalite, cryolite and colemanite, and optionally mixed solid oxygen source. & The carrier gas according to claim 1 or 2, wherein the carrier gas is one or more gases selected from oxygen or an oxidizing gas containing oxygen as a component element, nitrogen gas, and other active gases. Method.
JP10546282A 1982-06-21 1982-06-21 Preliminary treatment of molten iron Granted JPS58224105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10546282A JPS58224105A (en) 1982-06-21 1982-06-21 Preliminary treatment of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10546282A JPS58224105A (en) 1982-06-21 1982-06-21 Preliminary treatment of molten iron

Publications (2)

Publication Number Publication Date
JPS58224105A true JPS58224105A (en) 1983-12-26
JPS6225725B2 JPS6225725B2 (en) 1987-06-04

Family

ID=14408243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10546282A Granted JPS58224105A (en) 1982-06-21 1982-06-21 Preliminary treatment of molten iron

Country Status (1)

Country Link
JP (1) JPS58224105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361309A (en) * 1989-07-28 1991-03-18 Nippon Steel Corp Method for controlling end point in molten iron pre-treating process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629611A (en) * 1979-08-20 1981-03-25 Nippon Steel Corp Simultaneous dephosphorizing desulfurization of blast furnace molten pig iron
JPS5655511A (en) * 1979-10-06 1981-05-16 Nippon Steel Corp Desiliconization method of molten iron
JPS5715646A (en) * 1980-06-30 1982-01-27 Nitto Seiko Co Ltd Feeding of and feeder for nut in automatic nut fastener
JPS5747807A (en) * 1980-09-01 1982-03-18 Nippon Steel Corp Simultaneous dephosphorization and desulfurization method for molten iron
JPS58123810A (en) * 1982-01-19 1983-07-23 Nippon Steel Corp Pretreatment of molten iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629611A (en) * 1979-08-20 1981-03-25 Nippon Steel Corp Simultaneous dephosphorizing desulfurization of blast furnace molten pig iron
JPS5655511A (en) * 1979-10-06 1981-05-16 Nippon Steel Corp Desiliconization method of molten iron
JPS5715646A (en) * 1980-06-30 1982-01-27 Nitto Seiko Co Ltd Feeding of and feeder for nut in automatic nut fastener
JPS5747807A (en) * 1980-09-01 1982-03-18 Nippon Steel Corp Simultaneous dephosphorization and desulfurization method for molten iron
JPS58123810A (en) * 1982-01-19 1983-07-23 Nippon Steel Corp Pretreatment of molten iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361309A (en) * 1989-07-28 1991-03-18 Nippon Steel Corp Method for controlling end point in molten iron pre-treating process

Also Published As

Publication number Publication date
JPS6225725B2 (en) 1987-06-04

Similar Documents

Publication Publication Date Title
JP5332651B2 (en) Method for recovering iron and phosphorus from steelmaking slag
US3809547A (en) Electric furnace steelmaking process using oxide of boron additive
RU2002123053A (en) METHOD FOR PROCESSING SLAGS OR SLAG MIXTURES
KR101252644B1 (en) Flux and Method for refining molten steel by Converter
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
US4165234A (en) Process for producing ferrovanadium alloys
JP5915711B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JPS58224105A (en) Preliminary treatment of molten iron
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JPS58147506A (en) Preliminary treatment of molten iron
JP6011556B2 (en) Method for producing phosphate fertilizer raw material
JPH05156338A (en) Method for reusing low phosphorus converter slag
US1691274A (en) Method of producing dense iron and iron alloys directly out of oxide ores
JP4854933B2 (en) Refining method with high reaction efficiency
JPH0512405B2 (en)
JPS6212301B2 (en)
JPS6121285B2 (en)
SU652234A1 (en) Method of obtaining vanadiun alloys
SU799905A1 (en) Composition for treating molten steel
SU885283A1 (en) Method of steel smelting
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
KR100536305B1 (en) Method of decreasing fluoride elution in steel-making slag
SU1339158A1 (en) Method of melting manganese-containing steel in open-hearth furnace
GB2052563A (en) Process for the Treatment of Molten Iron with Increased Scrap Content
JPS62120435A (en) Lead smelting method by flow smelting