JPS58223926A - Synchronous detecting receiver - Google Patents

Synchronous detecting receiver

Info

Publication number
JPS58223926A
JPS58223926A JP10665282A JP10665282A JPS58223926A JP S58223926 A JPS58223926 A JP S58223926A JP 10665282 A JP10665282 A JP 10665282A JP 10665282 A JP10665282 A JP 10665282A JP S58223926 A JPS58223926 A JP S58223926A
Authority
JP
Japan
Prior art keywords
signal
component
amplitude
gain control
automatic gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10665282A
Other languages
Japanese (ja)
Other versions
JPH0229247B2 (en
Inventor
Mitsuo Ohara
大原 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP10665282A priority Critical patent/JPH0229247B2/en
Publication of JPS58223926A publication Critical patent/JPS58223926A/en
Publication of JPH0229247B2 publication Critical patent/JPH0229247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

PURPOSE:To exerise smooth automatic gain control without being affected by the presence or absence of a modulation signal, by extracting a signal proportional to the amplitude of a carrier signal for exercising automatic gain control. CONSTITUTION:An output of a synchronous detector 7 is applied to a low pass filter 10 for DC component extraction. The filter 10 can extract a low frequency component from a DC to 50-100Hz, extracts the DC component proportional to the amplitude of the carrier signal, and the automatic gain control is exercisid by feeding back the DC component to a high frequency amplifier 1, an intermediate frequency amplifier 4 or a mixer 3. As a result, the control is exercised in response to the carrier signal amplitude without being affected by the modulation signal.

Description

【発明の詳細な説明】 本発明は、同期検波受信機に関し、特にその自動利得制
御方式を改良し、例えば、搬送波低減の単側波帯振幅変
調電波の受信にあたり、無変調状態がしばらく続いた状
態から変調が再び開始される時に増幅利得が大きくなり
過ぎ、その結果、信号が受信機内で過大となって発生す
るひずみを防止することを意図してなめらかな利得制御
を行うことができるようにしたものである。
[Detailed Description of the Invention] The present invention relates to a synchronous detection receiver, and in particular improves its automatic gain control method. Smooth gain control is intended to prevent distortion that occurs when the amplification gain becomes too large when modulation starts again from the state, resulting in the signal becoming too large in the receiver. This is what I did.

近年、無線通信の広範な利用に伴って、使用周波数が高
い方へ広がりつつあるが、その傾向と相俟って、現在使
用中の帯域をより有効に使用すること、換言すると、占
有周波数帯幅の可及的小さい通信方式を採用していく傾
向が顕著である。特に、短波放送帯などでは、混信が増
加する傾向にあるため、従来の両側波帯通信方式に代え
て低減搬送波の単側波帯通信方式を導入する傾向にある
In recent years, with the widespread use of wireless communications, the frequency range in use has been expanding towards higher frequencies, but this trend has led to the need to use the currently used bands more effectively, or in other words, to increase the frequency band occupied. There is a noticeable tendency to adopt communication methods with as small a width as possible. In particular, in shortwave broadcast bands, etc., interference tends to increase, so there is a tendency to introduce a single sideband communication system with a reduced carrier wave in place of the conventional double sideband communication system.

その場合、特殊な業務用は別にして、一般の受信機とし
ては、従来の両側波帯方式用のものに比べて、さほど複
雑にならず、しかも価格も高くならないことが要望され
る。
In that case, apart from special business use, it is desired that the general receiver is not so complicated and expensive as compared to the conventional double-sideband type receiver.

低減搬送波単側波帯振幅変調方式は、従来、主として業
務用の固定通信などにおいて、かなり大がかりな設備を
用いて行なわれてきたもので、かかる設備を、一般の放
送受信用等の家庭用にそのままの形態で導入することは
費用の点からいってもかなり困難である。
Reduced-carrier single-sideband amplitude modulation has traditionally been implemented using fairly large-scale equipment, mainly in fixed-line communications for commercial use, but such equipment has been used for home use such as general broadcast reception. Introducing it in its original form would be quite difficult from a cost standpoint.

そこで、IC化が容易なPLLを用いて受信機のコスト
ダウンを図ることが考えられるが、その場合には、後述
するように自動利得制御を行う上での問題点があり、か
かる問題点を解決しなければ、低減搬送波単側波帯振幅
変調方式を放送などに適用して広く受信機の”普及を図
り実用に供することは極めて難しい。
Therefore, it is possible to reduce the cost of the receiver by using a PLL that can be easily integrated into an IC, but in that case, there is a problem in performing automatic gain control as described later. Unless this problem is solved, it will be extremely difficult to apply the reduced carrier single sideband amplitude modulation method to broadcasting, etc., and to spread the use of receivers widely and put it into practical use.

そこで、本発明の目的は、上述の諸点に鑑みて、低減搬
送波単側波帯振幅変調方式を実用に供する際の、上述し
た自動利得制御を行うにあたっての問題点を適切に解決
することのできる同期検波受信機を提供することにある
SUMMARY OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to appropriately solve the problems in performing the above-mentioned automatic gain control when a reduced carrier single sideband amplitude modulation method is put into practical use. An object of the present invention is to provide a synchronous detection receiver.

かかる目的を達成するために、本発明では、入力振幅変
調波を受信する受信手段と、その受信入力振幅変調波か
ら搬送波成分を再生するフエイ)、   : o 7 
l k −7’手段2・1該ゞ生gh″′″搬2波成分
に基づいて前記受信入力振幅変調波を同期検波して同期
検波出力信号を取り出す同期検波手段と、前記同期検波
出力信号から主として直流分を含むを 低域成分を取り出し、該主として直流分唾む低域成分を
前記受信手段に帰還して、当該受信手段の利荷を自動制
御する手段とを具備したことを特徴とする。
In order to achieve such an object, the present invention includes a receiving means for receiving an input amplitude modulated wave, and a receiver for regenerating a carrier wave component from the received input amplitude modulated wave.
l k -7' Means 2.1 A synchronous detection means for synchronously detecting the received input amplitude modulated wave based on the generated gh'''' carrier 2 wave component and extracting a synchronous detection output signal, and the synchronous detection output signal. It is characterized by comprising means for extracting a low frequency component mainly including a direct current component from the receiver, and returning the low frequency component containing mainly a direct current component to the receiving means to automatically control the profit of the receiving means. do.

以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

まず、従来用いられている低減搬送波単側波帯振幅変調
波の受信機の構成の概略とその自動利得制御にあたって
の問題点について述べる。
First, we will outline the configuration of a conventionally used reduced carrier single sideband amplitude modulated wave receiver and discuss the problems associated with its automatic gain control.

第1図は、かかる従来の同期検波受信機の構成の一例を
示し、搬送波低減の単側波帯振幅変調電波をアンテナ(
図示せず)で受信した後に高周波増幅器lに供給して増
幅し、その増幅出力を局部発振器コからの局部発振出力
と共に混合器Jに供給する。混合器3の混合出力を中間
周波増幅器グに供給して中間周波信号を得る。以上の構
成の受信手段により得たかかる中間周波信号を狭帯域水
晶ろ波器!に供給して復調に必要な搬送波を抽出し・そ
の搬送波信号をリミッタ増幅器6で所定し  、。
FIG. 1 shows an example of the configuration of such a conventional synchronous detection receiver, in which carrier-reduced single sideband amplitude modulated radio waves are transmitted to the antenna (
After receiving the signal at a high frequency amplifier (not shown), it is supplied to a high frequency amplifier l for amplification, and its amplified output is supplied to a mixer J together with a local oscillation output from a local oscillator. The mixed output of the mixer 3 is supplied to an intermediate frequency amplifier to obtain an intermediate frequency signal. The intermediate frequency signal obtained by the receiving means with the above configuration is filtered through a narrowband crystal filter! A carrier wave necessary for demodulation is extracted by supplying the carrier wave signal to a limiter amplifier 6.

ベルに増幅して一定振幅の同期検波用搬送波とし、上述
の中間周波信号と共に同期検波器りに供給して原信号の
復調を行う。
The signal is amplified to a constant amplitude as a carrier wave for synchronous detection, and is supplied to a synchronous detector together with the above-mentioned intermediate frequency signal to demodulate the original signal.

それと共に、狭帯域水晶ろ波器3から抽出した搬送波信
号を整流器lにも供給し、得られる整流電圧を高周波増
幅器lおよび中間周波増幅器ダあるいは混合器3に帰還
してそれらの自動利得制御を行う。これは、得られた整
流電圧が搬送波信号の大きさに比例していることを利用
したものであるが、このように狭帯域水晶ろ波器jを用
いる方式は、局部発振器コの発振周波数が高安定でなけ
ればならず、しかも狭帯域水晶ろ波器jも高価であるか
ら、従来は固定通信など業務用の限られた同期検波受信
機に用いられてきた。
At the same time, the carrier signal extracted from the narrowband crystal filter 3 is also supplied to the rectifier 1, and the resulting rectified voltage is fed back to the high frequency amplifier 1 and intermediate frequency amplifier DA or mixer 3 to perform their automatic gain control. conduct. This takes advantage of the fact that the obtained rectified voltage is proportional to the magnitude of the carrier wave signal, but in this method using a narrowband crystal filter, the oscillation frequency of the local oscillator is Since it must be highly stable and the narrowband crystal filter is also expensive, it has conventionally been used in a limited number of synchronous detection receivers for commercial use such as fixed communications.

しかし、放送用など一般の人が受信するためには、上記
のように狭帯域水晶ろ波器jを用いるような高価な受信
機ではなく、低価格の受信機である必要がある。そのた
めには、第2図に示すように、狭帯域水晶ろ波器!の代
わりに7工イズ四ツクループ回路(PLL) qを用い
て搬送波信号を再生して同期検波器7に供給することが
考えられている。PLL 9を用いれば、狭帯域水晶ろ
波器よりも安価であり、しかもPLL ?の自己発振周
波数は中間周波信号中の搬送波信号にロックしたまま追
随して変化するので局部発振周波数が第1図の受信機の
場合はど高安定である必要がないため、安価に構成でき
る。これがため、PLL方式は放送用の同期検波受信機
に広く用いられつつある。
However, in order for the general public to receive broadcast signals, it is necessary to use a low-cost receiver, rather than an expensive receiver that uses a narrowband crystal filter j as described above. For that purpose, as shown in Figure 2, a narrowband crystal filter is needed! Instead, it has been considered to use a 7-factor loop circuit (PLL) q to regenerate the carrier signal and supply it to the synchronous detector 7. PLL 9 is cheaper than a narrowband crystal filter, and PLL 9 is cheaper than a narrowband crystal filter. Since the self-oscillation frequency of changes to follow the carrier signal in the intermediate frequency signal while being locked, the local oscillation frequency does not need to be highly stable in the case of the receiver of FIG. 1, so it can be constructed at low cost. For this reason, the PLL system is becoming widely used in coherent detection receivers for broadcasting.

ただし、PLLを用いた場合、PLLは中間周波信号中
の搬送波信号周波数の位相にロックするが、搬送波信号
の振幅とは無関係な自己の振幅を有するため、PLL出
力からは、自動利得制御のために必要な搬送波信号の振
幅に比例した整流電圧を得ることはできなかった。そこ
で、この場合の自動利得制御にあたっては、第2図に示
すように、搬送波信号と変調信号の含まれた中間周波信
号全体を整流器lに供給し、その整流電圧を自動利得制
御のために帰還することが考えられていた。
However, when using a PLL, although the PLL locks to the phase of the carrier signal frequency in the intermediate frequency signal, it has its own amplitude that is unrelated to the amplitude of the carrier signal. It was not possible to obtain a rectified voltage proportional to the amplitude of the carrier signal required for this purpose. Therefore, for automatic gain control in this case, as shown in Figure 2, the entire intermediate frequency signal including the carrier signal and modulation signal is supplied to rectifier l, and the rectified voltage is fed back for automatic gain control. It was thought to do.

この方法では、無変調状態がしばらく続いた後に再び変
調が加わった瞬間に不都合が生ずる。つまり、無変調が
続いていることにより、再び変調が加わるまでは、自動
利得制御用整流電圧は小さい値であり、従って、高周波
増幅器/および中間周波増幅器りあるいは混合器3への
帰還量は少く、これらの受信手段/、4/あるいは3の
利得は高い状態にある。そして、高周波入力信号が、例
えば第3図(A)に示すような波形のときは、時点aに
おいて変調が再び始まると第3図(B)に示すように自
動利得制御用整流電圧が時点aから後に上昇していく。
With this method, a problem occurs the moment modulation is applied again after a non-modulated state has continued for a while. In other words, since no modulation continues, the rectified voltage for automatic gain control is a small value until modulation is applied again, and therefore the amount of feedback to the high frequency amplifier/intermediate frequency amplifier or mixer 3 is small. , the gain of these receiving means/, 4/ or 3 is in a high state. When the high frequency input signal has a waveform as shown in FIG. 3(A), for example, when modulation starts again at time a, the rectified voltage for automatic gain control changes at time a as shown in FIG. 3(B). It rises after that.

しかし、受信手段1.グあるいは3の利得を低下させる
までに整流電圧が上昇するのには時間を要し、時点aと
時点すとの間の時間においては依然として利得が高く、
従って、受信機内で過大信号となって、第3図(C)に
示すように検波出力がクリップされるなど、検波出力に
大きなひずみが発生する。
However, receiving means 1. It takes time for the rectified voltage to rise before the gain of 3 or 3 is reduced, and the gain is still high during the time between point a and point a.
Therefore, an excessive signal is generated in the receiver, and a large distortion occurs in the detected output, such as clipping of the detected output as shown in FIG. 3(C).

さらに加えて、搬送波信号と変調信号とが合成された信
号の合成振幅をもとに自動利得制御を行うから、PLL
りへの入力信号中の搬送波振幅が常に変調信号の影響を
受けて変動する。従って、受I   信機への信号入力
が低い場合や選択性フェーディングにより変調信号成分
のみが相対的に増大した場合には、PLL9への入力信
号中の搬送波信号成分が低下してしまうため、PLLワ
のロックはずれの原因にもなる。
In addition, since automatic gain control is performed based on the combined amplitude of the signal obtained by combining the carrier signal and the modulation signal, the PLL
The carrier wave amplitude in the input signal to the receiver always fluctuates under the influence of the modulation signal. Therefore, if the signal input to the receiver is low or if only the modulated signal component increases relatively due to selective fading, the carrier signal component in the input signal to the PLL 9 will decrease. This can also cause the PLL to become unlocked.

また、この方法では、単側波帯振幅変W1”1電波の搬
送波の低減を大きくするほど、上記のひずみの発生量は
大きくなるため、搬送波低減を充分に行う上での障害に
なる。
Furthermore, in this method, the greater the reduction in the carrier wave of the single sideband amplitude variation W1''1 radio wave, the greater the amount of the above-mentioned distortion, which becomes an obstacle to sufficiently reducing the carrier wave.

従って、以上の理由から、PLI、を用いる同期検波受
信機において、適切な自動利得制御を実現することは低
減搬送波単側波帯振幅変ルjj方式を一般の放送などに
適用し広く普及を図る上で必須不可欠のことであり、そ
の実現が切望されていた。
Therefore, for the above reasons, in order to realize appropriate automatic gain control in a coherent detection receiver using PLI, it is necessary to apply the reduced carrier single sideband amplitude variable method to general broadcasting and to spread it widely. This was essential, and its realization was eagerly awaited.

以上の点に鑑み、本発明では、PLLを用いるIN期検
波受信機においても、搬送波信号の振幅に比例した信号
を抽出して自動利得制御を行なえば、変調信号の有無に
影響されることなく、なめらがな自動利得制御を行うこ
とができる点に着目する。
In view of the above points, in the present invention, even in an IN period detection receiver using a PLL, if a signal proportional to the amplitude of the carrier signal is extracted and automatic gain control is performed, it is not affected by the presence or absence of a modulation signal. , we focus on the fact that automatic gain control can be performed.

第グ図は本発明受信機の基本的構成例を示し、ここで、
第1図または第2図と同様の個所には同   ′−符号
を何すことにする。本発明では、同期検波器7の同期検
波出力を直流成分抽出用の低域ろ波器/θに供給する。
Figure 3 shows an example of the basic configuration of the receiver of the present invention, where:
The same parts as in FIG. 1 or 2 will be designated by the same reference numerals. In the present invention, the synchronous detection output of the synchronous detector 7 is supplied to the low-pass filter /θ for extracting the DC component.

この低域ろ波器10は主として直流分を取り出すための
もので、例えば直流分から5θ〜100Hz程度までの
低い周波数成分を抽出できるものとする。この低域ろ波
器IOでは次のようにして搬送波信号の振幅に比例した
直流成分を取り出し、この直流成分により、上述した受
信手段としての高周波増幅器°lおよび中間周波増幅器
lあるいは混合器3に帰還して自動利得制御を行う。
This low-pass filter 10 is mainly used to extract a DC component, and is capable of extracting, for example, a low frequency component of about 5θ to 100 Hz from the DC component. This low-pass filter IO extracts a DC component proportional to the amplitude of the carrier signal in the following manner, and uses this DC component to transmit the signal to the high frequency amplifier l and intermediate frequency amplifier l or mixer 3 as the receiving means described above. Returns and performs automatic gain control.

なお、同期検波器7の出力を音声増幅器/Iに供給して
、通常のように原信号を再生する。なお、かかる音声増
幅器1/においては同期検波器出力中の音声周波数帯域
の信号が増幅されることは慣例の通りである。
Note that the output of the synchronous detector 7 is supplied to the audio amplifier /I to reproduce the original signal as usual. Incidentally, in the audio amplifier 1/, it is customary that the signal in the audio frequency band output from the synchronous detector is amplified.

いま、中間周波増幅器lの出力における中間周波信号e
(t)は、上側波帯を用いた搬送波低減の単価波帯振幅
変調では、次の(1)式のように表わされる。
Now, the intermediate frequency signal e at the output of the intermediate frequency amplifier l
(t) is expressed as the following equation (1) in the unit cost waveband amplitude modulation of carrier reduction using the upper sideband.

e(t) −EcCO3a+c t + E+rllJ
]S(Ole +c++m)t         (1
)ここで、Ec−搬送波信号の振幅 ωC−搬送波信号の角周波数 Em−変調信号の振幅 ωm−変調信号の角周波数 PLL 9からは搬送波信号の周波数と位相とにロック
した信号ep(t)が出力として現われる0この信号e
 (t)は、振幅をE、として、 e (t) −Epcosa+e t        
   G2)と表わされる。同期検波器7の出力8o(
t)は、e(t)とe (t)との積であるから、 eo(t)−e(t)×ep(t) −凶h+乃。、コ。at +2     2 この(3)式中、第1項は直流成分で、E、はPLL 
9の一定の振幅値であるから、搬送波信号の振幅Eeに
比例した成分が得られる。従って、この直流成分を取り
出せば、変調信号振幅の影響を除くことができる。
e(t) −EcCO3a+c t + E+rllJ
]S(Ole +c++m)t (1
) Here, Ec - the amplitude of the carrier signal ωC - the angular frequency of the carrier signal Em - the amplitude of the modulation signal ωm - the angular frequency of the modulation signal PLL From 9, a signal ep(t) locked to the frequency and phase of the carrier signal is obtained. 0 this signal appears as output e
(t), where the amplitude is E, e (t) −Epcosa+e t
G2). Output 8o of synchronous detector 7 (
Since t) is the product of e(t) and e (t), eo(t) - e(t) x ep(t) - evil h+no. ,Ko. at +2 2 In this equation (3), the first term is the DC component, and E is the PLL
Since the amplitude value is a constant value of 9, a component proportional to the amplitude Ee of the carrier signal is obtained. Therefore, by extracting this DC component, the influence of the modulation signal amplitude can be removed.

本発明では、低域ろ波器10によってかかる直流成分を
抽出し、以って搬送波信号の振幅に比例した電圧を得て
、これを高周波増幅器lや中間周波増幅器lなどの受信
手段に帰還することにより、無変調時でも変調時でも変
調に関係なく搬送波信号振幅にのみ対応した自動利得制
御が行われ、上述したような従来の不都合が解消される
In the present invention, such a DC component is extracted by the low-pass filter 10, thereby obtaining a voltage proportional to the amplitude of the carrier signal, which is fed back to receiving means such as a high frequency amplifier l or an intermediate frequency amplifier l. As a result, automatic gain control corresponding only to the carrier wave signal amplitude is performed regardless of modulation, whether during non-modulation or modulation, and the above-mentioned conventional disadvantages are resolved.

第3図は搬送波低減の単側波帯振幅変調による音声放送
を受信する同期検波受信機に適用した重相する。中間周
波増幅器ヶからの中間周波信号を第2の同期検波器/3
にも供給し、この同期検波器13ては90度移相器/2
からの90度移相した搬送波信号に基づいて同期検波を
行う。両同期検波器7および13の検波出力を畜声周波
90度移相器iyから更にマトリックス回路Bに供給し
て和と差の信号を作り、このマトリックス回路15から
被変調信号の上側波帯および下側波帯を取り出すことが
でき、そのいずれか一方をスイッチl乙により選択して
出力することができる。
FIG. 3 shows a multiphase system applied to a coherent detection receiver that receives audio broadcasting using single sideband amplitude modulation with carrier reduction. The intermediate frequency signal from the intermediate frequency amplifier is transferred to the second synchronous detector/3.
This synchronous detector 13 is also supplied with a 90 degree phase shifter/2.
Coherent detection is performed based on a carrier wave signal whose phase is shifted by 90 degrees from . The detection outputs of both synchronous detectors 7 and 13 are further supplied from the voice frequency 90 degree phase shifter iy to the matrix circuit B to produce sum and difference signals, and from this matrix circuit 15, the upper sideband and the modulated signal are The lower sideband can be taken out, and either one of them can be selected and output using the switch lB.

このような本例の放送用同期検波受信機においても、同
期検波器7から主として直流成分を低域ろ波器/θによ
り取りだして、搬送波信号のみを対象として自動利得制
御を行うことができる。
In the broadcasting synchronous detection receiver of this example as well, the direct current component is mainly extracted from the synchronous detector 7 by the low-pass filter /θ, and automatic gain control can be performed only on the carrier signal.

なお、取りだした自動利得制御用電圧は、第1図および
第3図では高周波増幅器lと中間周波増幅器ダに帰還し
ているが、混合器3にも帰還してもよいこと勿論である
。あるいはまた、かかる直流成分を特定の増幅器のみに
帰還してもよい。更にまた、レベル調整用の増幅器は、
適宜、必要な個所に加えてもよい。
Although the extracted automatic gain control voltage is fed back to the high frequency amplifier l and the intermediate frequency amplifier da in FIGS. 1 and 3, it is of course possible to feed it back to the mixer 3 as well. Alternatively, such DC component may be fed back only to a specific amplifier. Furthermore, the level adjustment amplifier is
It may be added where necessary.

なお、両側波帯振幅変調波に対しても第4図の構成によ
る受信は可能であり、第3図の例によって両側波帯振幅
変調波の片側の側波帯のみを受信することも可能である
。すなわち、本発明によれば、両側波帯振幅変調方式お
よび単側波帯変調方式の双方に両立性のある同期検波受
信機を提供できる。
Note that it is also possible to receive double-sided band amplitude modulated waves using the configuration shown in Figure 4, and it is also possible to receive only one sideband of the double-sided band amplitude modulated waves using the example shown in Figure 3. be. That is, according to the present invention, it is possible to provide a synchronous detection receiver that is compatible with both the double sideband amplitude modulation method and the single sideband modulation method.

以上から明らかなように、本発明によれば、搬送波低減
の単側波帯振幅変調電波を受信する場合  かに、搬送
波信号に四ツクするPLLを用いる同期検波受信機の自
動利得制御を、変調信号の影響を受けることなく搬送波
信号振幅に応動して行うことができる。従って、無変調
状態が続いたあとに変調が再び開始された瞬間に信号が
過大とならず、かかる信号過大に起因するひずみを解消
できる効果がある。また、本発明によれば、受信機への
信号入力レベルが低い場合や選択性7エーデイングによ
り変調信号成分が相対的に増大した場合にPLiLのロ
ックはずれを防止できる効果もある。以上の肚点から、
本発明によれば、送信電波の搬送波を大きく低減させる
ことができ、したがって送信電力の節減や他に与える混
信の軽減など、送信および周波数利用上の利点もある。
As is clear from the above, according to the present invention, when receiving a single-sideband amplitude modulated radio wave with a reduced carrier wave, automatic gain control of a synchronous detection receiver using a PLL applied to the carrier wave signal can be applied to the modulation. This can be done in response to the carrier signal amplitude without being affected by the signal. Therefore, the signal does not become excessive at the moment when modulation is restarted after a non-modulated state continues, and distortion caused by such an excessive signal can be eliminated. Further, according to the present invention, it is possible to prevent the PLiL from losing lock when the signal input level to the receiver is low or when the modulated signal component increases relatively due to selective aging. From the above points,
According to the present invention, the carrier wave of the transmitted radio wave can be significantly reduced, and therefore there are advantages in terms of transmission and frequency utilization, such as saving transmission power and reducing interference caused to others.

更に加えて、本発明は、両側波帯および単側波帯のいず
れの振幅変調方式にも適用できる両立性をも有する。
Additionally, the present invention is compatible with both double-sideband and single-sideband amplitude modulation schemes.

なおまた、以上では本発明を主として音声帯域の信号を
扱う場合を例にとって説明してきたが、本発明は音声帯
域の信号のみならず、任意所望の周波数帯域に適用して
有効なものであること勿論である。
Furthermore, although the present invention has been explained above with reference to the case where signals in the voice band are mainly handled, the present invention is effective when applied not only to signals in the voice band but also to any desired frequency band. Of course.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の同期検波受信機の2形態例
を示すブロック線図、第3図(4)〜(C)はその自動
利得制御により検波出力中にひずみが発生することを説
明するための各線信号波形図、第4図は本発明の基本的
構成例を示すブロック線図、第3図は本発明の他の実施
例を示すブロック線図である。 /・・・高周波増幅器、  コ・・・局部発振器、3・
・・混合器、     ダ・・・中間・周波増幅器、j
・・・狭帯域水晶ろ波器、 t・・・リミッタ増幅器、 7・・・同期検波器、l・
・・整流器、     9・・・PLL/θ・・・主と
して直流分を含む低域成分を取り出す低域ろ波器、//
・・・音声増幅器、   12・・・搬送波90度移相
器、/3・・・同期検波器、   /41・・・音声周
波90度移相器、15・・・マトリックス回路、 /6・・・スイッチ。
Figures 1 and 2 are block diagrams showing two examples of conventional synchronous detection receivers, and Figures 3 (4) to (C) show that distortion occurs in the detection output due to automatic gain control. FIG. 4 is a block diagram showing a basic configuration example of the present invention, and FIG. 3 is a block diagram showing another embodiment of the present invention. /...High frequency amplifier, Co...Local oscillator, 3.
...mixer, da...intermediate frequency amplifier, j
...Narrowband crystal filter, t...Limiter amplifier, 7...Synchronous detector, l...
... Rectifier, 9...PLL/θ...Low-pass filter that extracts low-frequency components mainly including DC components, //
...Audio amplifier, 12...Carrier wave 90 degree phase shifter, /3...Synchronized detector, /41...Audio frequency 90 degree phase shifter, 15...Matrix circuit, /6... ·switch.

Claims (1)

【特許請求の範囲】[Claims] 入力振幅変調波を受信する受信手段と、その受信入力振
幅変調波から搬送波成分を再生するフェイズロックルー
プ手段と、当該再生された搬送波成分に基づいて前記受
信入力振幅変調波を同期検波して同期検波出力信号を取
り出す同期検波平段と、前記同期検波出力信号から主と
して直流分を含む低域成分を取り出し、該主として直流
分を含む低域成分を前記受信手段に帰還して、当該受信
手段の利得を自動制御する手段とを具備したことを特徴
とする同期検波受信機。
a receiving means for receiving an input amplitude modulated wave; a phase-locked loop means for regenerating a carrier wave component from the received input amplitude modulated wave; and synchronous detection and synchronization of the received input amplitude modulated wave based on the reproduced carrier wave component. a synchronous detection flat stage for extracting a detection output signal; a synchronous detection stage for extracting a low-frequency component mainly including a DC component from the synchronous detection output signal; and feeding back the low-frequency component mainly containing a DC component to the receiving means; 1. A synchronous detection receiver comprising means for automatically controlling gain.
JP10665282A 1982-06-23 1982-06-23 DOKIKENPAJUSHINKI Expired - Lifetime JPH0229247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10665282A JPH0229247B2 (en) 1982-06-23 1982-06-23 DOKIKENPAJUSHINKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10665282A JPH0229247B2 (en) 1982-06-23 1982-06-23 DOKIKENPAJUSHINKI

Publications (2)

Publication Number Publication Date
JPS58223926A true JPS58223926A (en) 1983-12-26
JPH0229247B2 JPH0229247B2 (en) 1990-06-28

Family

ID=14439038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10665282A Expired - Lifetime JPH0229247B2 (en) 1982-06-23 1982-06-23 DOKIKENPAJUSHINKI

Country Status (1)

Country Link
JP (1) JPH0229247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034551A1 (en) * 2005-09-22 2007-03-29 Taiyo Nippon Sanso Corporation Spheroidizig system and its operating method

Also Published As

Publication number Publication date
JPH0229247B2 (en) 1990-06-28

Similar Documents

Publication Publication Date Title
US4941150A (en) Spread spectrum communication system
KR940000703B1 (en) Satellite receiver
US4078245A (en) System for multiplexing information channels adjacent to a video spectrum
JPH0628338B2 (en) Phase locked loop and direct mixed sync AM receiver using the same
US5710993A (en) Combined TV/FM receiver
JP3174155B2 (en) Receiving machine
JP3020526B2 (en) Direct mixed synchronous AM receiver
JP3169690B2 (en) Receiver
KR840007342A (en) Wireless communication system
JP2000092142A (en) Data transmission system
JPS58223926A (en) Synchronous detecting receiver
JP3287015B2 (en) Auxiliary signal transmission method
US3643165A (en) Modulated carrier wave communication apparatus
JP3100994B2 (en) Receiving level display circuit in satellite broadcasting receiver
JP2890992B2 (en) Satellite receiver
JPH0464217B2 (en)
JPH0255978B2 (en)
KR820001333B1 (en) Receiver for compatible am stereo signals
JPS6089155A (en) Phase locked loop system
JPH04345328A (en) Line changeover control circuit
KR820001531B1 (en) Radio broadcasting system reciever
JPS5818821B2 (en) PSK signal carrier synchronization method
JPH02246538A (en) Cross polarization type radio system
JPH033455A (en) Microwave reception equipment
JPH05328359A (en) Bs/cs judging device