JPS58223798A - Method of processing concentrated salt liquid waste containing radioactive material - Google Patents

Method of processing concentrated salt liquid waste containing radioactive material

Info

Publication number
JPS58223798A
JPS58223798A JP10683682A JP10683682A JPS58223798A JP S58223798 A JPS58223798 A JP S58223798A JP 10683682 A JP10683682 A JP 10683682A JP 10683682 A JP10683682 A JP 10683682A JP S58223798 A JPS58223798 A JP S58223798A
Authority
JP
Japan
Prior art keywords
waste liquid
ions
concentrated salt
precipitate
salt waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10683682A
Other languages
Japanese (ja)
Other versions
JPS642918B2 (en
Inventor
要 松本
潤 吉川
邦義 根本
秀司 関
石崎 昌之
健 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP10683682A priority Critical patent/JPS58223798A/en
Publication of JPS58223798A publication Critical patent/JPS58223798A/en
Publication of JPS642918B2 publication Critical patent/JPS642918B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力施設から排出される放射性物質を君む濃
厚塩廃液の処理方法■1関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method (1) for treating concentrated salt waste liquid containing radioactive materials discharged from nuclear facilities.

〔発明の技術的背景〕[Technical background of the invention]

一般1−放射性物質を取扱う施設から排出される放躬性
廃液中には、184Cs、187Cs、60Co、54
Mn、110mAg、51cr、95Zr−95Nb等
の放射性核種が含まれているため、適当な手段で廃液を
濃縮させた後、セメント、アスファルト、プラスチック
郷により固化して保管することが行なわれている。
General 1 - Radioactive waste liquid discharged from facilities handling radioactive materials contains 184Cs, 187Cs, 60Co, 54
Since it contains radioactive nuclides such as Mn, 110mAg, 51cr, and 95Zr-95Nb, the waste liquid is concentrated by appropriate means and then solidified and stored in cement, asphalt, or plastic.

ところが廃液中には非放射性の塩が多量(−含まれてい
るので、このように濃縮物を同化する方法では多量の同
化体が生成し、例えば使用した海水1m3/あたり1本
のセメント固化体(200l)が生成してしまうという
ように減容性の点で多くの間題がある。
However, since the waste liquid contains a large amount of non-radioactive salts, this method of assimilating the concentrate produces a large amount of assimilates, for example, one solidified cement per m3 of seawater used. There are many problems in terms of volume reduction, such as the formation of (200 l).

また凝集托澱法な用いて放射性物質を分離する方法も広
く行なわれているが、184Cs、187Cs、110
mAg、51Cr、65Zn、95Zr−95Nbのよ
うな共沈しにくい核種は除去できない欠点があった。
In addition, methods of separating radioactive substances using agglomeration and sedimentation methods are widely used, such as 184Cs, 187Cs, 110
There is a drawback that nuclides that are difficult to coprecipitate, such as mAg, 51Cr, 65Zn, and 95Zr-95Nb, cannot be removed.

本発明名°らはいきにこれらの従来法の欠点を解消して
減容性よくかつ有効に放射性物質を除去する廃液の処理
方法を研究した結果、廃液8;、(a)Ni++、Co
++、Mn++またはZn++、(b)フェロシアン酸
イオン、(c)Fe+++、(d)OH−、(e)S−
−、および(f)S−−と反応して沈澱を生成する金属
イオンを順次伶加して放射性物質およびクロム酸等の公
害物質を晶析共沈させ廃液から回収除去する方法を開発
した。
Name of the present invention: As a result of our research into a method for treating waste liquid that eliminates the drawbacks of these conventional methods and effectively removes radioactive substances with good volume reduction, we found that waste liquid 8; (a) Ni++, Co
++, Mn++ or Zn++, (b) ferrocyanate ion, (c) Fe+++, (d) OH-, (e) S-
We have developed a method in which radioactive substances and pollutants such as chromic acid are co-precipitated by crystallization by successively adding metal ions that react with S--, and (f) S-- to form a precipitate, and are recovered and removed from the waste liquid.

(特願昭57−65126号参照) 上記方法は廃液中の184Cs、187Cs、60Co
、58Co、54Mn、59Fe、55Fe、65Zn
、95Zr−95Nb、51Cr、110mAg等の放
射性核種およびクロム酸等の公害物質を分離性よく回収
し、残りの多量の非放射性塩を含む廃液を放出するもの
であって、回収する同化体は従来の蒸発、濃縮セメント
同化の場合に比較して1/1000に減容され、一方放
出する廃液中の放射性物質およびクロム酸は検出限界以
下になるという優れた効果を有するものである。
(Refer to Japanese Patent Application No. 57-65126) The above method uses 184Cs, 187Cs, and 60Co in the waste liquid.
, 58Co, 54Mn, 59Fe, 55Fe, 65Zn
, 95Zr-95Nb, 51Cr, 110mAg, etc. and pollutants such as chromic acid are recovered with good separation, and the remaining waste liquid containing a large amount of non-radioactive salts is discharged. This has an excellent effect in that the volume is reduced to 1/1000 compared to the case of evaporation and concentrated cement assimilation, while radioactive substances and chromic acid in the discharged waste liquid are below the detection limit.

しかるに、処理すべき廃液中にキレート化剤が存在する
と、これらの核種のいくつかはiスキングされて沈澱生
成が不十分S二なり、スカベンジャーを用いても除去で
きない。したがってキレート化剤の存在した廃液に対し
ては上記晶析共沈法も満足すべき結果が得られないとい
う縫点があった。
However, if a chelating agent is present in the waste liquid to be treated, some of these nuclides will be skimmed and insufficient precipitate will be formed, which cannot be removed even with scavengers. Therefore, the above-mentioned crystallization coprecipitation method does not give satisfactory results for waste liquids containing chelating agents.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を解消すべくなされたもので、キレ
ート化剤が混入している廃液C二対しても適用して満足
すべき結果の得られる、放射性物質を含む濃厚塩加液の
処理方法を提供するものである0 〔発明の概要〕 本発明は、放射性物質をもむ峡厚塩廃液に対して、(A
)前記した晶析共沈による処理と、(B)活性炭による
吸着処理とを適宜組合わせて該廃液の処理を行なうもの
である。
The present invention has been made to solve the above-mentioned drawbacks, and is a treatment for concentrated salt solution containing radioactive substances that can be applied to waste liquid C2 containing a chelating agent and obtain satisfactory results. [Summary of the Invention] The present invention provides a method for isolating salt waste liquid containing radioactive substances.
) The waste liquid is treated by appropriately combining the treatment by crystallization coprecipitation described above and (B) the adsorption treatment by activated carbon.

さらC1詳しく述べると、本発明は、放射性物質を貧む
渉厚塩廃液に対して、 (A)(a)Ni++、Co++、Mn++およびZn
++からなる群から選ばれた2価金属イオンを伶加する
工程 (b)  前記21曲金属イオンに対して当量以上のフ
ェロシアン酸イオンを添加する工程 (c)  前記したフェロシアン酸イオンの過剰量に対
して当量以上の第二鉄イオンを添加する工程 (d) アルカリを添加してPHを8.5〜11に調整
する工程 (e)  硫化イオンを徐加する工程 および(f) 
 硫化イメンと反応して沈澱を生成しうる金属イオンを
添加する工程 を順次行なった後、生成した沈澱と残りの廃液とを分離
して沈澱を回収する工程 および (B)  活性炭C二吸滝せしめる工程の(A)、 (
B)両工程を適宜組み合わせて行なうものである。
C1 To be more specific, the present invention provides a solution to (A) (a) Ni++, Co++, Mn++, and Zn for waste water containing radioactive substances.
Step (b) of adding divalent metal ions selected from the group consisting of ++; Step (c) of adding ferrocyanate ions in an amount equivalent to or more than the 21 metal ions; and (c) adding excess of the ferrocyanate ions. Step (d) of adding ferric ions in an amount equivalent to or more; Step (e) of adding alkali to adjust the pH to 8.5 to 11; Step of gradually adding sulfide ions; and (f)
After sequentially performing the steps of adding metal ions that can react with sulfurized rice to form a precipitate, the step of separating the formed precipitate from the remaining waste liquid and recovering the precipitate; and (B) activating carbon C Nisutaki. Step (A), (
B) Both steps are carried out in an appropriate combination.

廃液中1−存在して晶析を妨害するキレート化剤は止冒
二有機キレート化剤であって、これらは多くの金属元素
と錯体な形成する。特にKDTAおよびその線導体は多
種類の金属元素と錯体を形成し、その安定PH域が広い
ので問題である。その他にも1−ニトロン−2−ナフト
ール、2−ニトロン−1ナフトール、コンゴーレッド、
ジメチルグリオキシム等が特定元素と錯体を形成して晶
析を妨害する。
The chelating agents present in the waste liquid and interfering with crystallization are organic chelating agents which form complexes with many metal elements. This is particularly problematic because KDTA and its wire conductors form complexes with many types of metal elements and have a wide stable PH range. In addition, 1-nitrone-2-naphthol, 2-nitrone-1-naphthol, Congo red,
Dimethylglyoxime etc. form complexes with specific elements and interfere with crystallization.

そこで本発明ではこれらのキレート化剤を活性炭に吸着
させて除去し、晶析共沈を有効に行なわしめるようにし
た。
Therefore, in the present invention, these chelating agents are removed by being adsorbed on activated carbon to effectively carry out crystallization coprecipitation.

活性炭処理は最初に行なってもよいし、晶析共沈のあと
に行なってもよい。活性炭処理のあと晶析共沈を行なう
と放射性物質の除去が完全になされる。最初に活性炭処
理を行なう場合は、予め廃液を濾過または遠心分離して
浮遊懸濁物を除去しておくと良好な結果が得られる。
Activated carbon treatment may be performed first or after crystallization and coprecipitation. If crystallization coprecipitation is performed after activated carbon treatment, radioactive substances can be completely removed. When performing activated carbon treatment first, good results can be obtained if the waste liquid is filtered or centrifuged in advance to remove suspended solids.

廃液中のキレート化剤は数ppm以下であるので、活性
炭の使用量は少量でよい。活性炭吸着塔に活性炭を充填
し、該塔に被処理液を流すことによって活性炭処理を行
なうことができる。
Since the amount of the chelating agent in the waste liquid is several ppm or less, the amount of activated carbon used may be small. Activated carbon treatment can be carried out by filling an activated carbon adsorption tower with activated carbon and flowing the liquid to be treated through the tower.

(A)の晶析共沈工程における放射性核種の沈澱生成は
次のようにしてなされるものと考えられる。
Precipitation of radionuclides in the crystallization coprecipitation step (A) is thought to be performed as follows.

まず(a)と(b)の工程によりベルリン酸塩の沈澱結
晶が生成し、この沈澱結晶に廃液中の184Cs、18
7Csが取込まれる。この時の(a)の2価金属塩の添
加量は数ppm〜数100ppmであり、好ましくはN
iSo4・7H2Oで70ppmである。また(b)の
添加量は(a)の塩に対して1.1〜1.5当量であり
、フェロシアン化カリ3水和塩を用いる場合は170p
pm程度が適当である。続いて(c)の工程で添加され
た第二鉄イオンと残存するフェロシアン酸イオンとが反
応してベルリン青の沈澱を生成し、この沈澱生成の際に
本184Csおよび187Csが取込まれ、また60C
oの一部も取込まれる。泥二鉄イオンの添加量は過剰の
フェロシアン酸イオンに対して1.1〜1.5当量が適
当であり、好ましくは硫酸舘二鉄を220ppm程度と
なるように用いる。さらに(d)の工程によりアルカリ
な添加して過剰の第二鉄イオンを水酸化第二鉄として沈
澱させる。この時54Mn、59Fe、95Zr−95
Nb、51Cr、60Coの各核種が取込まれるアルカ
リとしては水酸化ナトリウムtたは水酸化カリウムを用
いる。pHは好ましくは9.5〜10.3とする。この
アルカリ性のまま(e)の工程で硫化イオンS−−を数
ppmから数100ppmになるように加える。好まし
くは硫化ナトリウムを30ppmになるよう加える。次
に(f)の工程でS−−と反応して硫化物の沈澱を生成
する金属イオン、例えばNi++、Co++、Fe++
、Cu++、Zn++等を加えるとこれらの金属の硫化
物の沈澱が生成し、この時110mAg、65Zn等残
余の核種が取込まれる。(f)で加える金輌イオンは硫
化イオンの1.1〜1,5当墓が適当であり、例えばN
iSO4・7H2Oの水溶液を用いる。
First, in steps (a) and (b), precipitated crystals of berlinate are formed, and these precipitated crystals contain 184Cs and 18
7Cs is incorporated. The amount of the divalent metal salt (a) added at this time is several ppm to several hundred ppm, preferably N
It is 70 ppm for iSo4.7H2O. In addition, the amount of (b) added is 1.1 to 1.5 equivalents to the salt of (a), and when using potassium ferrocyanide trihydrate salt, it is 170 p.
Approximately pm is appropriate. Subsequently, the ferric ions added in step (c) and the remaining ferrocyanate ions react to form a Berlin blue precipitate, and during the formation of this precipitate, the present 184Cs and 187Cs are incorporated, Also 60C
A part of o is also taken in. The appropriate amount of diiron sulfate to be added is 1.1 to 1.5 equivalents relative to the excess ferrocyanate ion, and preferably diiron sulfate is used in an amount of about 220 ppm. Furthermore, in step (d), an alkali is added to precipitate excess ferric ions as ferric hydroxide. At this time, 54Mn, 59Fe, 95Zr-95
Sodium hydroxide or potassium hydroxide is used as the alkali into which the Nb, 51Cr, and 60Co nuclides are taken. The pH is preferably 9.5 to 10.3. In step (e), sulfide ions S-- are added to the alkaline solution in an amount ranging from several ppm to several 100 ppm. Preferably, sodium sulfide is added to 30 ppm. Next, in step (f), metal ions such as Ni++, Co++, Fe++ react with S-- to form a sulfide precipitate.
, Cu++, Zn++, etc., precipitates of sulfides of these metals are formed, and at this time, residual nuclides such as 110mAg and 65Zn are incorporated. The metal ions added in (f) are suitably 1.1 to 1.5 equivalents of sulfide ions, for example, N
An aqueous solution of iSO4.7H2O is used.

以上の各工程で生成した沈澱は長時間放置すると再溶解
するので注意しなければならない0例えば水酸化第二鉄
の沈澱生成後長時間放置すると前に沈澱したベルリン酸
塩およびベルリン青が分解するので遅くとも6時間以内
に次の(θ)工程5二進まなければならない。また、硫
化イオンを添加した後長時間放置するとベルリン酸塩、
ベルリン青を分解し再溶解してしまうので手早く次の(
f)工程に進まなければならない。
The precipitates formed in each of the above steps will redissolve if left for a long time, so care must be taken.For example, if left for a long time after the ferric hydroxide precipitate is formed, the previously precipitated berric acid salt and Berlin blue will decompose. Therefore, it is necessary to proceed to the next (θ) step 5 within 6 hours at the latest. In addition, if left for a long time after adding sulfide ions, berlinate,
Since Berlin Blue will be decomposed and redissolved, quickly proceed to the next step (
f) must proceed to the process.

以上の如く順次各工程を行なうことによって順次沈澱を
析出させ、すべて沈澱させてからクラッドセパレータま
たは濾過器で沈澱を分離する。
By performing each step in sequence as described above, the precipitates are deposited one after another, and after all the precipitates have been precipitated, the precipitates are separated using a clad separator or a filter.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

廃液5m3を濾過または遠心分離して浮遊懸濁物を除去
する。次にこの廃液を活性炭吸着塔に通す。
5 m3 of waste liquid is filtered or centrifuged to remove floating suspensions. Next, this waste liquid is passed through an activated carbon adsorption tower.

該吸着塔は直径500mm高さ800mmの円筒形で2
塔が直列C1並んでいる。2塔のうち前段の1塔が破過
したら、後段の塔を前段にし、後段に新たな吸着塔をつ
けるようにする。
The adsorption tower has a cylindrical shape with a diameter of 500 mm and a height of 800 mm.
The towers are arranged in series C1. When one of the two towers breaks through, the latter tower becomes the first stage, and a new adsorption tower is installed at the latter stage.

活性炭吸着塔を通った廃液を、晶析共沈処理にかける。The waste liquid that has passed through the activated carbon adsorption tower is subjected to crystallization and coprecipitation treatment.

この晶析共沈は次のようにして行なう。This crystallization coprecipitation is carried out as follows.

上記活性炭処理済廃液にNiSO4・7H2O 330
gを約用チ水溶液にしてよく攪拌し、つつ5〜20分間
にわたり添加する。次にフエロシアン化カリK4〔Fe
(CN)6〕・3H2O 850gを約10%水溶液に
してよく攪拌しつつ5〜IO分間にわたって加える。こ
こでベルリン酸塩のコロイドが生ずる。次にFe2(S
o4)B 1100gを約10%水溶液にして攪拌しつ
つ5〜10分間にわたり加える。つづいてNaOH12
00g程度加えて、pHを8.5〜11、望ましくは9
.5に調整する。約5〜20分で調整を終り次にNa2
S・9H2O 400gを約10%水溶液にして加える
。よく攪拌しつつ5〜10分、で除加を完了する。次に
NiSO4・7H2O 600gを10%水溶液にして
よく攪拌しつつ加える。これら全工程は6時間を越えて
はならない。生成した沈澱はクラッドセパレータまたは
濾過器で分離する。
NiSO4・7H2O 330 to the above activated carbon treated waste liquid
Add about 10 g to an aqueous solution over 5 to 20 minutes while stirring well. Next, potassium ferrocyanide K4 [Fe
850 g of (CN)6].3H2O is made into an approximately 10% aqueous solution and is added over 5 to IO minutes while stirring well. A colloid of berlinate is formed here. Next, Fe2(S
o4) Make 1100 g of B into an approximately 10% aqueous solution and add over 5-10 minutes with stirring. Next, NaOH12
00g and adjust the pH to 8.5-11, preferably 9.
.. Adjust to 5. Finish the adjustment in about 5 to 20 minutes and then add Na2
Add 400 g of S.9H2O as an approximately 10% aqueous solution. Complete the addition in 5 to 10 minutes while stirring well. Next, 600 g of NiSO4.7H2O was made into a 10% aqueous solution and added while stirring well. The entire process should not exceed 6 hours. The generated precipitate is separated using a clad separator or filter.

以上で晶析共沈工程を終り、処理した廃液は再ひ濾過ま
たは遠心分離し、さらに活性炭吸看塔を通し、再び晶析
共沈をくり返し、次にまた濾過または遠心分離し、中和
する。このようにして処理された廃液は放射能検出限界
以下まで精製され放出される。
This completes the crystallization coprecipitation process, and the treated waste liquid is filtered or centrifuged again, passed through an activated carbon absorption tower, repeats the crystallization coprecipitation process, and then filtered or centrifuged again to neutralize it. . The waste liquid treated in this way is purified to below the detection limit of radioactivity and released.

別の実施例として、廃液→晶析共沈→濾過または遠心分
離→活性炭吸着→晶析共沈→濾過または遠心分離→活性
炭吸着→中和→放出 の順で同様に処理してもよい。
As another example, the same treatment may be performed in the order of waste liquid → crystallization coprecipitation → filtration or centrifugation → activated carbon adsorption → crystallization coprecipitation → filtration or centrifugation → activated carbon adsorption → neutralization → release.

なお処理すべき廃液中に110mAgが存在しない場合
は、晶析共沈処理Cおいて(e)および(f)の工程ヲ
省略す石ことができ、また、184Cs、187Csが
存在しない場合は(a)の工程を省略できる場合かある
。後者の場合、(c)工程のFe+++の添加戴は(a
)のイオンが添加されない分だけ多くなる。
Note that if 110mAg is not present in the waste liquid to be treated, steps (e) and (f) can be omitted in crystallization coprecipitation treatment C, and if 184Cs and 187Cs are not present ( In some cases, step a) can be omitted. In the latter case, the addition of Fe+++ in step (c) is equivalent to (a
) increases by the amount of ions not added.

〔発明の効果〕〔Effect of the invention〕

以上祝明したように、本発明によれば以下に述べる裡々
の効果を借ることができる。
As congratulated above, according to the present invention, the following effects can be obtained.

(1)廃液中Cニキレート化剤が存在していても晶析共
沈法を通用することができる。すなわち本発明方法で処
理するとキレート化剤が存在していても分離性能よくク
ロム酸および放射性物質を廃液から除去することができ
、また廃液から分離されたスラッジは従来の濃縮法のよ
うに非放射性の塩を多量に含むことがないので容積が極
めて少ない。
(1) Even if a C nickelating agent is present in the waste liquid, the crystallization coprecipitation method can be used. In other words, when treated with the method of the present invention, chromic acid and radioactive substances can be removed from the waste liquid with good separation performance even in the presence of a chelating agent, and the sludge separated from the waste liquid is non-radioactive unlike the conventional concentration method. Since it does not contain large amounts of salt, its volume is extremely small.

スラッジは原廃液の1/200以下であり、セメント固
化体等の同化体の晃を著しく減少させることができる。
The sludge is 1/200 or less of the original waste liquid, and can significantly reduce the susceptibility of assimilated products such as cement solidified products.

(従来の濃縮法に比較して固形分重量で約1/1000
の減容に相当する。) (2)通常廃液中のキレート化剤は数ppm以下である
から、活性炭の量は極く少負でよい。またキレートを吸
着した活性炭は焼却することによってさらに減容できる
(About 1/1000 of the solid weight compared to the conventional concentration method)
This corresponds to a volume reduction of . (2) Since the amount of the chelating agent in the waste liquid is usually several ppm or less, the amount of activated carbon may be extremely small. Furthermore, the volume of activated carbon that has adsorbed chelate can be further reduced by incineration.

(3)  設備および操作が簡単である。(3) Equipment and operation are simple.

Claims (1)

【特許請求の範囲】 (1)放射性物質を含む濃厚塩廃液に対して、(A)(
a)Ni++、Co++、Mn++およびZn++から
なる群から選ばれた2価金属イオンを添 加する工程 (b)  前記2価金属イオンに対して尚値以上の7エ
ロシアン酸イオンを添加する工 程 (c)  前記フェロシアン酸イオンの過剰知舊一対し
て当量以上の第二鉄イオンを添加 する工程 (d)  アルカリを添加してPHを8.5〜11に調
整する工程 (e)  硫化イオンを添加する工程 および(f) 
 Mu化イオンと反応して沈澱を生成しうる金属イオン
を添加する工程 を1瞭次行なった後、生成した沈澱と残りの廃液とを分
離して沈澱を回収する工程 および (B)  活性戻に吸着せしめる工程 の(A)および(B)両工程を適宜組み合わせて行なう
ことを特徴とする放射性物質を含む濃厚塩廃液の処理方
法。 (2)  (A)工程を6時間以内に行なう特許請求の
範囲第1項記載の放射性物質を含む濃厚塩廃液の処理方
法。 (81(B)工程の前に廃液中の浮遊懸濁物なr過また
は遠心分離(−より除去しておく特許請求の範囲第1項
記載の放射性物質を自むφ′略厚塩廃液の処理方法。 (4)110mAgが存在しない濃厚塩廃液に対しては
。 (A)工程の(θ)および(f)を省略する特許請求の
範囲第1項記載の放射性物質を含む濃厚塩廃液の処理方
法。 (5)184Csおよび187Csが存在しない濃厚塩
廃液に対しては(A)工程の(a)を省略する特許請求
の範囲第1項記載の放射性物質を含む濃厚塩廃液の処埋
方法。
[Claims] (1) For concentrated salt waste liquid containing radioactive substances, (A) (
a) Step of adding divalent metal ions selected from the group consisting of Ni++, Co++, Mn++ and Zn++ (b) Step of adding 7-erocyanate ions in an amount greater than the above value to the divalent metal ions (c) Step (d) of adding ferric ions in an amount equivalent to or more than the excess amount of ferrocyanate ions; Step (e) of adding an alkali to adjust the pH to 8.5 to 11; and (e) adding sulfide ions. process and (f)
After carrying out one step of adding a metal ion that can react with the Mu ion to form a precipitate, a step of separating the formed precipitate from the remaining waste liquid and recovering the precipitate; and (B) for reactivation. A method for treating concentrated salt waste liquid containing radioactive substances, characterized in that both steps (A) and (B) of the adsorption step are carried out in an appropriate combination. (2) A method for treating a concentrated salt waste liquid containing a radioactive substance according to claim 1, wherein step (A) is carried out within 6 hours. (Before step 81(B), suspended matter in the waste liquid is removed by filtration or centrifugation.) Treatment method. (4) For concentrated salt waste liquids that do not contain 110 mAg. (A) Processes (θ) and (f) of steps (θ) and (f) are omitted. Processing method. (5) For concentrated salt waste liquids in which 184Cs and 187Cs are not present, step (a) of step (A) is omitted. .
JP10683682A 1982-06-23 1982-06-23 Method of processing concentrated salt liquid waste containing radioactive material Granted JPS58223798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10683682A JPS58223798A (en) 1982-06-23 1982-06-23 Method of processing concentrated salt liquid waste containing radioactive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10683682A JPS58223798A (en) 1982-06-23 1982-06-23 Method of processing concentrated salt liquid waste containing radioactive material

Publications (2)

Publication Number Publication Date
JPS58223798A true JPS58223798A (en) 1983-12-26
JPS642918B2 JPS642918B2 (en) 1989-01-19

Family

ID=14443792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10683682A Granted JPS58223798A (en) 1982-06-23 1982-06-23 Method of processing concentrated salt liquid waste containing radioactive material

Country Status (1)

Country Link
JP (1) JPS58223798A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286525A (en) * 2007-05-15 2008-11-27 Toshiba Corp Method and device for solidifying radioactive waste
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2014021030A (en) * 2012-07-23 2014-02-03 Biryo Genso Kaihatsu Co Ltd Removal method of cesium and mineral water generator with cesium removal function
JP2014048164A (en) * 2012-08-31 2014-03-17 Japan Atomic Energy Agency Method for decontaminating cesium and transition metal by ferrocyanide ion
JP2014064991A (en) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd Method for treating effluent including cesium
JP5497226B1 (en) * 2013-05-07 2014-05-21 住友大阪セメント株式会社 Method and apparatus for treating desalted dust containing cesium
JPWO2013012081A1 (en) * 2011-07-21 2015-02-23 Jnc株式会社 Method and apparatus for removing cesium ions in water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286525A (en) * 2007-05-15 2008-11-27 Toshiba Corp Method and device for solidifying radioactive waste
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JPWO2013012081A1 (en) * 2011-07-21 2015-02-23 Jnc株式会社 Method and apparatus for removing cesium ions in water
JP2014021030A (en) * 2012-07-23 2014-02-03 Biryo Genso Kaihatsu Co Ltd Removal method of cesium and mineral water generator with cesium removal function
JP2014048164A (en) * 2012-08-31 2014-03-17 Japan Atomic Energy Agency Method for decontaminating cesium and transition metal by ferrocyanide ion
JP2014064991A (en) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd Method for treating effluent including cesium
JP5497226B1 (en) * 2013-05-07 2014-05-21 住友大阪セメント株式会社 Method and apparatus for treating desalted dust containing cesium

Also Published As

Publication number Publication date
JPS642918B2 (en) 1989-01-19

Similar Documents

Publication Publication Date Title
Ritter et al. Removal of mercury from waste water: large-scale performance of an ion exchange process
Rona et al. ACTIVATION ANALYSIS OF MANGANESE AND ZINC IN SEA WATER 1
RU2082680C1 (en) Method for purification of sewage against ions of metals
JPS58223798A (en) Method of processing concentrated salt liquid waste containing radioactive material
Bowers et al. Role of Fe (III) in metal complex adsorption by hydrous solids
JPS62266499A (en) Method of processing radioactive waste liquor
Anderson et al. A method for chromate removal from cooling tower blowdown water
US4340499A (en) Method for treating radioactive solutions
JPS6119958B2 (en)
JP4225659B2 (en) Decontamination method of radioactive liquid waste
JPS60214299A (en) Method of removing radioactivity in radioactive waste liquor
JPS642917B2 (en)
JPS5845992B2 (en) Method for removing heavy metals from aqueous solution using iron dialkyldithiocarbamate
JP2001259657A (en) Treatment method or water containing phosphorus, heavy metals or the like
RU2608968C1 (en) Method of processing liquid radioactive wastes
GB2073477A (en) Waste treatment
JP3748649B2 (en) Treatment of cacodylic acid or cacodylate-containing effluent
JP3144160B2 (en) How to remove radioactive materials in water
JPS62176913A (en) Process for separation and recovery of cesium from treating liquid containing sodium salt
GB2091135A (en) Method of and apparatus for treating liquors by magnetic filtration
JP2002126758A (en) Method for treating water
JPH1194993A (en) Method for treating radioactive material containing waste liquid
Navratil Trace metal recovery and concentration using ferrites
JPS5814270B2 (en) Tambakushitsu Shiboubungan Yuuodakuhaisuino Shiyorihouhou
JPH10249362A (en) Treatment of manganese-containing waste water