JPH10249362A - Treatment of manganese-containing waste water - Google Patents

Treatment of manganese-containing waste water

Info

Publication number
JPH10249362A
JPH10249362A JP9055858A JP5585897A JPH10249362A JP H10249362 A JPH10249362 A JP H10249362A JP 9055858 A JP9055858 A JP 9055858A JP 5585897 A JP5585897 A JP 5585897A JP H10249362 A JPH10249362 A JP H10249362A
Authority
JP
Japan
Prior art keywords
manganese
ferric
ferrous
ion
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9055858A
Other languages
Japanese (ja)
Inventor
Mitsuru Sawada
満 澤田
Hiroichi Miyashita
博一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9055858A priority Critical patent/JPH10249362A/en
Publication of JPH10249362A publication Critical patent/JPH10249362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of inexpensively and conveniently and surely removing manganese from a waste water containing the manganese dissolved as ion or the manganese suspended as compd. particles or both. SOLUTION: In this waste water treating method, a ferric ion source is added so that an iron ion may be 50-200g per 1m<3> manganese-containing waste water, and pH is adjusted to 5.0-9.0, thereafter, a generated precipitated matter is subjected to a magnetic separation in 9-25kOe magnetic field strength. There are ferric chloride, ferric sulfate, ferric nitrate and ferric hydroxide as the ferric ion source to be added. There is no hindrance even if ferrous chloride, ferrous sulfate, ferrous nitrate and ferrous hydroxide are added, but in this case, it is necessary to convert the ferrous ion to the ferric ion by oxidation and to adjust pH to a prescribed value after adding the iron ion source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンガン含有廃水
からマンガンを除去する方法に関する。
[0001] The present invention relates to a method for removing manganese from manganese-containing wastewater.

【0002】[0002]

【従来の技術】鉱山からの坑廃水、製錬所やその他の工
場からの廃水にはマンガンが含まれていることが多々あ
り、これを除去することは環境保全および生活環境の安
全性の観点から極めて重要である。なお、溶解性マンガ
ンの排出基準は10ppmとなっている。
2. Description of the Related Art Mine wastewater from mines and smelters and other factories often contain manganese, and the removal of manganese is important from the viewpoint of environmental protection and safety of living environment. From is extremely important. The emission standard for soluble manganese is 10 ppm.

【0003】従来、これらの廃水からマンガンを除去す
る方法としては、水酸化物法、硫化物生成法、フェライ
ト生成・磁気分離法、イオン交換法・吸着法、鉄粉法等
があり、廃水の性質に合わせて適切な方法が選択され、
適用されてきた。
Conventionally, methods for removing manganese from these wastewaters include a hydroxide method, a sulfide formation method, a ferrite formation / magnetic separation method, an ion exchange method / adsorption method, and an iron powder method. The appropriate method is selected according to the nature,
Has been applied.

【0004】しかし、上記排出基準を守るためには、溶
解性マンガンを除去するだけでは処理が不十分になる場
合がある。例えば、マンガン鉱物を含む鉱石を採掘して
選鉱処理している鉱山、または脈石にマンガン鉱物を含
む鉱山の廃水には、溶解性マンガンの他に、非常に微細
な固体懸濁物中に固溶体としてマンガンを含む場合があ
る。なぜならば、天然に産出するマンガン鉱物は酸化鉱
物が多く粉化され易いからである。
[0004] However, in order to comply with the above emission standards, there is a case where the treatment is insufficient only by removing the soluble manganese. For example, wastewater from mines that process ore containing ore containing manganese minerals, or from mines that contain manganese minerals in gangue, include solid solution in very fine solid suspensions in addition to soluble manganese. May contain manganese. This is because naturally occurring manganese minerals contain a large amount of oxide minerals and are easily powdered.

【0005】このような排水に水酸化物法・共沈法を適
用してマンガンを除去しようとすると、共沈剤としての
鉄塩、中和剤、凝集剤を多量に必要とする上に、微細な
殿物が浮遊して漏洩しやすく、マンガンの除去が不十分
となることが多い。そして、このような場合、漏洩した
マンガン鉱物からマンガンが溶出し、一度は除去した溶
解性マンガンが排出基準を再び越える可能性が高い。こ
れを防ぐためには、大容量の沈降槽を使用して微細な殿
物の漏洩を防止するか、これに見合った濾過機を使用し
なければならず、廃水が多量になると経済的に処理する
ことが困難となる。
[0005] In order to remove manganese by applying the hydroxide method / coprecipitation method to such wastewater, an iron salt as a coprecipitant, a neutralizing agent, and a coagulant are required in a large amount. Fine artifacts float and leak easily, often resulting in insufficient manganese removal. In such a case, manganese is eluted from the leaked manganese mineral, and the once removed soluble manganese is likely to exceed the emission standard again. In order to prevent this, a large sedimentation tank must be used to prevent the leakage of fine artifacts, or a corresponding filter must be used. It becomes difficult.

【0006】なお、硫化物生成法も同様の問題を持ち、
イオン交換・吸着法は固体懸濁物として含まれるマンガ
ンを除去するには不適当である。マンガンが磁鉄鉱等の
鉄酸化物と結合して固体懸濁物になっている場合は、そ
のまま磁気分離することが可能であるが、溶存マンガン
も存在する場合はフェライトを生成する必要があり、試
薬を大量に必要とする。
[0006] The sulfide generation method has a similar problem.
The ion exchange / adsorption method is not suitable for removing manganese contained as a solid suspension. When manganese is combined with iron oxides such as magnetite to form a solid suspension, it can be magnetically separated as it is.However, when dissolved manganese is also present, it is necessary to generate ferrite. Need large quantities.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
の問題を解決し、イオンとして溶解しているマンガン、
あるいは、化合物粒子として懸濁しているマンガン、あ
るいはその両方を含む廃水から安価でかつ簡便・確実に
マンガンを除去しうる方法の提供である。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide manganese dissolved as ions.
Alternatively, it is an object of the present invention to provide a method capable of inexpensively, simply and reliably removing manganese from wastewater containing manganese suspended as compound particles or both.

【0008】[0008]

【課題を解決するための手段】本発明の方法は、上記の
目的を達成するために、含マンガン排水1m3に対し鉄
イオンが50〜200gとなるように第二鉄イオン源を
添加し、pHを5.0〜9.0に調整し、その後、発生
した殿物を磁場強度9〜25kOeで磁力選別すること
を特徴とする廃水処理方法である。添加する第二鉄イオ
ン源としては、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、
水酸化第二鉄などがある。塩化第一鉄、硫酸第一鉄、硝
酸第一鉄、水酸化第一鉄でも支障はないが、この場合は
鉄イオン源添加後、第一鉄イオンを酸化して第二鉄イオ
ンにし、その後pHを所定の値にする必要がある。
According to the method of the present invention, in order to achieve the above-mentioned object, a ferric ion source is added so that iron ion is 50 to 200 g per 1 m 3 of manganese-containing wastewater, This is a wastewater treatment method characterized in that the pH is adjusted to 5.0 to 9.0, and then the generated artifacts are magnetically separated at a magnetic field intensity of 9 to 25 kOe. As a ferric ion source to be added, ferric chloride, ferric sulfate, ferric nitrate,
Ferric hydroxide and the like. There is no problem with ferrous chloride, ferrous sulfate, ferrous nitrate, and ferrous hydroxide, but in this case, after adding the iron ion source, the ferrous ion is oxidized to ferric ion, and then It is necessary to adjust the pH to a predetermined value.

【0009】また、鉄イオンが始めから廃水に含まれて
いる場合はこれを利用することができる。ただし、含有
される鉄イオンが第一鉄イオンならば殿物を生成させる
前に酸化させて第二鉄イオンにしておかなければならな
い。
Further, when iron ions are contained in wastewater from the beginning, it can be used. However, if the iron ions contained are ferrous ions, they must be oxidized to ferric ions before the formation of artifacts.

【0010】[0010]

【発明の実施の形態】本発明において、まず、第二鉄イ
オンを添加する。これは、溶存しているマンガンを水酸
化鉄に共沈させるためであり、また、微細な固体懸濁物
として存在しているマンガンを凝集させるためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, ferric ion is added. This is for co-precipitating dissolved manganese in iron hydroxide and for aggregating manganese present as a fine solid suspension.

【0011】添加量は、排水の性状に応じて適宜調整す
るが、発明者らの検討によると含マンガン排水1m3
対し鉄イオンが50〜200gとなる量が適当である。
これよりも少ないと水酸化鉄の沈殿がコロイド状にな
り、磁着しがたくなるため、マンガン濃度を排水基準よ
り低くすることが困難になる。
The amount of addition is appropriately adjusted according to the properties of the waste water. According to the studies by the inventors, it is appropriate that the amount of iron ions be 50 to 200 g per 1 m 3 of the manganese-containing waste water.
If the amount is less than this, the precipitate of iron hydroxide becomes colloidal and magnetic adhesion becomes difficult, so that it is difficult to make the manganese concentration lower than the drainage standard.

【0012】また、逆に多くなると試薬コストが増大す
るとともに磁着する殿物量が多くなる。次に、水酸化第
二鉄の沈澱を生じさせるために消石灰などのアルカリ剤
でpHを調整する。このpHは水酸化第二鉄が沈殿する
程度であればよいが、処理水をそのまま放流するために
はpHは7前後にすることが好ましい。
On the other hand, when the amount increases, the reagent cost increases and the amount of magnetically deposited deposits increases. Next, the pH is adjusted with an alkaline agent such as slaked lime to cause precipitation of ferric hydroxide. The pH may be such that ferric hydroxide precipitates, but is preferably about 7 in order to discharge the treated water as it is.

【0013】生じた殿物は磁選により系外に払い出す。
すなわち、水酸化物第二鉄を磁着物として回収する。こ
の時、共沈した溶存マンガンや凝集した固形マンガン化
合物も同時に回収される。
[0013] The resulting artifact is discharged out of the system by magnetic separation.
That is, the ferric hydroxide is recovered as a magnetic substance. At this time, dissolved co-precipitated manganese and coagulated solid manganese compound are simultaneously recovered.

【0014】本発明の方法では、得られる鉄殿物がフェ
ライトとなるため磁選により殿物を除去する。
In the method of the present invention, since the obtained iron precipitate becomes ferrite, the precipitate is removed by magnetic separation.

【0015】[0015]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0016】(実施例1〜9)脈石にマンガン鉱物を含
み、坑水中に溶解性マンガンおよび微細な懸濁固形物
(全マンガン濃度14.7ppm)を用いて以下の条件
で処理した。第二鉄塩として塩化第二鉄を用い、鉄とし
て50ppmから200ppmになるように添加した。
次に、消石灰を添加してpH7に調整し、水酸化鉄の沈
澱を生じさせて磁選した。磁力選別装置として高勾配磁
力選鉱機を用い、磁場強度を9.9kOeから22kO
eの間で変化させた。処理水のマンガン濃度を表1に示
す。
(Examples 1 to 9) A manganese mineral was contained in gangue, and treatment was performed under the following conditions using soluble manganese and fine suspended solids (total manganese concentration: 14.7 ppm) in well water. Ferric chloride was used as a ferric salt, and iron was added so as to be 50 ppm to 200 ppm.
Next, slaked lime was added to adjust the pH to 7, and precipitation of iron hydroxide was caused to perform magnetic separation. Using a high gradient magnetic separation machine as a magnetic separation device, the magnetic field strength was changed from 9.9 kOe to 22 kOe.
e. Table 1 shows the manganese concentration of the treated water.

【0017】 (実施例10〜13)pHを表2のようにした以外は実施例
5と同様にして処理水を得た。処理水のマンガン濃度を
表2に示す。
[0017] (Examples 10 to 13) Treated water was obtained in the same manner as in Example 5 except that the pH was changed as shown in Table 2. Table 2 shows the manganese concentration of the treated water.

【0018】 (比較例1〜5)比較例として、実施例と同じ排水を用
いて第二鉄イオンと凝集剤だけで処理した場合の結果を
示す。処理条件は次の通りである。第二鉄塩として塩化
第二鉄を用い、鉄として50ppmから200ppmに
なるように添加した。消石灰でpH7に調整して殿物を
生じせしめた後、凝集剤としてアニオン系有機高分子凝
集剤2ppm添加した。薬剤を添加して攪拌後、1時間
静置した後、上澄液を採取してマンガンを分析した。表
3に上澄液(処理水)の分析結果を示す。
[0018] (Comparative Examples 1 to 5) As Comparative Examples, the results when the same wastewater as in the example was treated with only ferric ion and a coagulant are shown. The processing conditions are as follows. Ferric chloride was used as a ferric salt, and iron was added so as to be 50 ppm to 200 ppm. After adjusting the pH to 7 with slaked lime to generate a residue, 2 ppm of an anionic organic polymer flocculant was added as a flocculant. After adding the drug and stirring, the mixture was allowed to stand for 1 hour, and then the supernatant was collected and analyzed for manganese. Table 3 shows the analysis results of the supernatant (treated water).

【0019】 (比較例6〜9)pHと第二鉄イオン添加量を表3施例
5と同様にして処理水を得た。処理水のマンガン濃度を
表4に示す。
[0019] (Comparative Examples 6 to 9) Treated water was obtained in the same manner as in Example 5 in Table 3 except for the pH and the amount of ferric ion added. Table 4 shows the manganese concentration of the treated water.

【0020】 [0020]

【0021】[0021]

【発明の効果】本発明の方法を用いれば、比較例に対し
て非常に少ない試薬量で新排水基準をクリアする事がで
きる。また、試薬量が少ないので得られる殿物(磁着
物)も少なくなり、凝集沈澱法で得られる殿物より後処
理が容易である。このように、本発明による方法はマン
ガン含有排水に対して効果が大きい。
According to the method of the present invention, the new wastewater standard can be satisfied with a very small amount of reagent compared to the comparative example. In addition, since the amount of the reagent is small, the amount of deposits (magnetism) obtained is also small, and post-treatment is easier than the deposits obtained by the coagulation precipitation method. Thus, the method according to the present invention is highly effective for manganese-containing wastewater.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 含マンガン廃水1m3に対し鉄イオン
が50〜200gとなるように第二鉄イオン源を添加
し、pHを5.0〜9.0に調整し、その後、発生した
殿物を磁力選別することを特徴とする含マンガン廃水の
処理方法。
1. A ferric ion source is added to 1 m 3 of manganese-containing waste water so that the iron ion content is 50 to 200 g, the pH is adjusted to 5.0 to 9.0, and then, the generated residue is added. A method for treating manganese-containing wastewater, wherein the manganese-containing wastewater is subjected to magnetic separation.
【請求項2】 第二鉄イオン源が塩化第二鉄、硫酸第
二鉄、硝酸第二鉄、水酸化第二鉄などの少なくともいず
れか一つである請求項1記載の方法。
2. The method according to claim 1, wherein the ferric ion source is at least one of ferric chloride, ferric sulfate, ferric nitrate, and ferric hydroxide.
【請求項3】 含マンガン排水1m3に対し鉄イオン
が50〜200gとなるように第一鉄イオン源を添加
し、第一鉄イオンを第二鉄イオンに酸化し、pHを5.
0〜9.0に調整し、その後、発生した殿物を磁力選別
することを特徴とする含マンガン廃水の処理方法。
Wherein iron ions to manganese containing wastewater 1 m 3 is added ferrous ion source so that 50 to 200 g, to oxidize the ferrous ion to the ferric ion, the pH 5.
A method for treating manganese-containing wastewater, comprising adjusting to 0 to 9.0 and then magnetically separating the generated artifact.
【請求項4】 第一鉄イオン源が塩化第一鉄、硫酸第
一鉄、硝酸第一鉄、水酸化第一鉄などの少なくともいず
れか一つである請求項3記載の方法。
4. The method according to claim 3, wherein the ferrous ion source is at least one of ferrous chloride, ferrous sulfate, ferrous nitrate, and ferrous hydroxide.
【請求項5】 磁場強度が9〜25kOeで磁力選別
することを特徴とする請求項1〜4記載のいずれかの方
法。
5. The method according to claim 1, wherein the magnetic force is selected at a magnetic field intensity of 9 to 25 kOe.
JP9055858A 1997-03-11 1997-03-11 Treatment of manganese-containing waste water Pending JPH10249362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9055858A JPH10249362A (en) 1997-03-11 1997-03-11 Treatment of manganese-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9055858A JPH10249362A (en) 1997-03-11 1997-03-11 Treatment of manganese-containing waste water

Publications (1)

Publication Number Publication Date
JPH10249362A true JPH10249362A (en) 1998-09-22

Family

ID=13010769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9055858A Pending JPH10249362A (en) 1997-03-11 1997-03-11 Treatment of manganese-containing waste water

Country Status (1)

Country Link
JP (1) JPH10249362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
CN116332436A (en) * 2023-05-19 2023-06-27 赛恩斯环保股份有限公司 Manganese-containing wastewater treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
US7799232B2 (en) 2004-04-26 2010-09-21 Mitsubishi Materials Corporation Method of treating wastewater with reducing water purification material
US7892426B2 (en) 2004-04-26 2011-02-22 Mitsubishi Materials Corporation Wastewater treatment apparatus
CN116332436A (en) * 2023-05-19 2023-06-27 赛恩斯环保股份有限公司 Manganese-containing wastewater treatment method
CN116332436B (en) * 2023-05-19 2023-08-15 赛恩斯环保股份有限公司 Manganese-containing wastewater treatment method

Similar Documents

Publication Publication Date Title
US5698107A (en) Treatment for acid mine drainage
Jang et al. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines
US7033507B2 (en) Method for removing metals from acid mine drainage
JPH07973A (en) Method of removing heavy metal and radioactive contamination factor
US2232294A (en) Process for treating liquids
KR100387029B1 (en) Treatment of wastewater with heavy metals by used iron oxide catalyst
WO2008082961A1 (en) Method and apparatus for removing arsenic from a solution
US2232296A (en) Process for treating liquids
US9334180B2 (en) Process for treating acid mine drainage
Anderson et al. A method for chromate removal from cooling tower blowdown water
JPH10249362A (en) Treatment of manganese-containing waste water
US2232295A (en) Process for treating liquids
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
WO1989009192A1 (en) Hydrometallurgical effluent treatment
JPH09192676A (en) Treatment of lead-containing waste water
JPH10235375A (en) Treatment of manganese-containing wastewater
JPS58223798A (en) Method of processing concentrated salt liquid waste containing radioactive material
JP2001259657A (en) Treatment method or water containing phosphorus, heavy metals or the like
JP7259620B2 (en) Method for treating lead-containing outside water
JP7303430B2 (en) Collection method
JP7259619B2 (en) Method for treating lead-containing outside water
JPH08257553A (en) Waste water treatment method by zeolite
JPH03186393A (en) Treatment of waste water containing fluorine
JPH1110170A (en) Treatment process for antimony containing solution
Navratil Wastewater treatment technology based on iron oxides