JPS58223751A - Electromagnetic ultrasonic probe - Google Patents

Electromagnetic ultrasonic probe

Info

Publication number
JPS58223751A
JPS58223751A JP57106866A JP10686682A JPS58223751A JP S58223751 A JPS58223751 A JP S58223751A JP 57106866 A JP57106866 A JP 57106866A JP 10686682 A JP10686682 A JP 10686682A JP S58223751 A JPS58223751 A JP S58223751A
Authority
JP
Japan
Prior art keywords
iron core
center leg
ultrasonic wave
core
tip part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57106866A
Other languages
Japanese (ja)
Inventor
Akihiro Tanaka
昭裕 田中
Minoru Fujimoto
実 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57106866A priority Critical patent/JPS58223751A/en
Publication of JPS58223751A publication Critical patent/JPS58223751A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]

Abstract

PURPOSE:To improve detection performance greatly by flattening the surface of the center leg of an electromagnet iron core facing oppositely to a transmitting and receiving coil. CONSTITUTION:A step for improving magnetic flux density at the tip of the center leg 9 of the iron core is eliminated to constitute draw the surface to retain neither ruggedness nor steps extending from the root 11 of the center leg 9 of the iron core to the tip part 10. Consequently, surface area is drawn from the root 11 of the iron core center leg 9 to the tip part 10 to eliminate ruggedness and step so necessary magnetic flux density is obtained by the same magnetomotive force as before; and an ultrasonic wave generated at the iron core center leg 9 itself is only an ultrasonic wave 24 returning after being reflected by the top surface of the iron core and no ultrasonic wave returns from the tip part 10. Consequently, the detection performance is improved greatly.

Description

【発明の詳細な説明】 本発明は、欠陥と誤判断をする可能性のあるノイズを除
去するのに好適な電磁超音波探触子中央脚構造に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a center leg structure of an electromagnetic ultrasound probe suitable for removing noise that may be misjudged as a defect.

被検体に磁界と渦電流とにより電磁的に超音波を発生さ
せ、探傷を行なう電磁超音波探傷装置は第1図に示すも
のが一般的である。図において、lは電磁石鉄心で、そ
の内部には励磁コイル2及び送受信コイル3が設けられ
る。また、励磁コイル2は励磁電源4へ、送受信コイル
3はパルス発生器5へ接続される。6は増幅器でその入
力は検出コイルとパルス発生器へ、出力は波形観測器7
(例工ばシンクロスコープ)へ接続される。
An electromagnetic ultrasonic flaw detection apparatus that detects flaws by electromagnetically generating ultrasonic waves in a test object using a magnetic field and an eddy current is generally shown in FIG. In the figure, l is an electromagnetic core, and an excitation coil 2 and a transmitting/receiving coil 3 are provided inside the core. Further, the excitation coil 2 is connected to an excitation power source 4, and the transmitting/receiving coil 3 is connected to a pulse generator 5. 6 is an amplifier whose input goes to the detection coil and pulse generator, and its output goes to the waveform observer 7
(For example, it is connected to a synchronoscope).

コイル2を励磁することによシ被検材8に磁界が与えら
れる。この磁界と、送受信コイル3をパルス電流で励磁
することにより、被検材に発生する渦電流とによって、
被検材にフレミングの左手の法則に基づく力が働らき、
超音波41が発生する。この超音波41は被検材表面か
ら、はげ垂直に裏面へ向かって伝播し、欠陥31や裏面
等で反射して表面へ戻る。ここで欠陥から反射されて表
面へ戻る超音波を欠陥波21、裏面で反射されて表面へ
戻る超音波を裏面波22と呼ぶ。欠陥波21と裏面波2
2は前記直流磁界との相互作用でフレミングの法則に従
った逆変換を受け、送受信コイル3に起′醒力として現
われる。
By exciting the coil 2, a magnetic field is applied to the specimen 8. Due to this magnetic field and the eddy current generated in the test material by exciting the transmitter/receiver coil 3 with a pulse current,
A force based on Fleming's left hand rule acts on the material under test,
Ultrasonic waves 41 are generated. This ultrasonic wave 41 propagates from the surface of the material to be inspected perpendicularly to the back surface, is reflected by the defect 31, the back surface, etc., and returns to the front surface. Here, the ultrasonic waves that are reflected from the defect and return to the front surface are called defect waves 21, and the ultrasonic waves that are reflected from the back surface and return to the front surface are called back waves 22. Defect wave 21 and backside wave 2
2 undergoes inverse transformation according to Fleming's law due to the interaction with the DC magnetic field, and appears as an energizing force in the transmitter/receiver coil 3.

欠陥波21と裏面波22は増幅器6で増幅され、波形観
測器7によって第2図に示すように、送信パルス20と
共に表示される。
The defective wave 21 and the backside wave 22 are amplified by the amplifier 6 and displayed together with the transmitted pulse 20 by the waveform observer 7 as shown in FIG.

同、鉄心中央脚9の先端を絞るのは極力高い直流磁場を
得るためである。
Similarly, the reason why the tip of the central leg 9 of the iron core is narrowed is to obtain a DC magnetic field as high as possible.

上記のような従来装置にはμ下に説明するような欠点が
ある。すなわち、第1図、第2図に示したように送受信
コイル3をパルス励磁した場合、電磁石鉄心中央脚9は
鉄等の導電性材料で作られているため、鉄心中央脚9に
も渦電流が発生し、磁界との相互作用にニジ電磁力が動
く。それ故、鉄心自体にも超音波が発生する。ところで
近距離音場限界距離(”xo とする]と呼ばれ振動面
(電磁超音波探傷装置においては被検材表面ンから下記
式で表わされる距離X。内では、音波の複雑な干渉帯が
存在し、指向時a(fが一定方向に強く放射される特性
)が悪い。
Conventional devices such as those described above have drawbacks as explained below. That is, when the transmitter/receiver coil 3 is pulse-excited as shown in FIGS. 1 and 2, the electromagnet core center leg 9 is made of a conductive material such as iron, so eddy currents also occur in the core center leg 9. is generated, and a rainbow electromagnetic force moves due to the interaction with the magnetic field. Therefore, ultrasonic waves are also generated in the iron core itself. By the way, it is called the near-field sound field limit distance (referred to as "xo"), and is the distance X from the vibration plane (in electromagnetic ultrasonic flaw detection equipment, the surface of the material to be inspected) expressed by the following formula. exists, and the directivity a (characteristic that f is strongly radiated in a certain direction) is bad.

x、二a2/λ ここに、Xo=近距離音場限界距離 a =振動子半径 λ =波長 このため、従来の探触子では、磁束密度向上のため絞っ
た鉄心中央脚9の先端部10で、鉄lL?自()   
  体に発生した超音波23が反射し戻ってくる。また
、超音波24も、鉄心上面で反射し戻ってくる。
x, 2a2/λ Here, Xo = Near field limit distance a = Transducer radius λ = Wavelength Therefore, in conventional probes, the tip 10 of the central leg 9 of the core is narrowed to improve magnetic flux density. So, iron lL? Self ()
Ultrasonic waves 23 generated in the body are reflected and returned. Further, the ultrasonic wave 24 is also reflected from the upper surface of the iron core and returns.

また、もれ磁束の増加を防ぐため、鉄心中央脚先端部1
0の長さt、は被検材の最大厚さt3に比して短い。一
方、鉄Iしの高さ1.は自由に設定できるので、例えば
、被検材8の最大厚さをt9とし、 lv>ts となるように鉄心lの高さを決めれば、その時の波形観
測器7の出力波形は第2図のようになる。
In addition, in order to prevent an increase in leakage magnetic flux, the tip of the central leg of the core
The length t of 0 is shorter than the maximum thickness t3 of the test material. On the other hand, the height of iron I is 1. can be set freely, so for example, if the maximum thickness of the material 8 to be inspected is t9 and the height of the iron core l is determined so that lv>ts, the output waveform of the waveform observation device 7 at that time will be as shown in Figure 2. become that way.

つまυ、超音波24は、探傷中、欠陥31と誤判断され
ない【、の位置に表示される。しかし、超音波23は、
欠陥31と誤判断される可能性があるt、の位置に表示
され、ノイズとなり、性能上大きな障害になっていた。
The ultrasonic wave 24 is displayed at a position where it is not mistakenly determined to be a defect 31 during flaw detection. However, the ultrasound 23
It was displayed at the position t, where there is a possibility that it could be mistakenly determined as defect 31, resulting in noise, which was a major problem in terms of performance.

第2図中、欠陥波はt、の位置、底面波はt、の位置に
表示される。
In FIG. 2, the defective wave is displayed at the position t, and the bottom wave is displayed at the position t.

本発明の目的は、検出性能を大巾に向上させる電磁超音
波探触子を提供するにある。
An object of the present invention is to provide an electromagnetic ultrasonic probe that greatly improves detection performance.

本発明者らは導電性材料の鉄心を用いるときにさけられ
ない。鉄心自体に発生して反射してくる超音波も、探傷
に必要な時間外に検出されるならば、欠陥によって反射
される欠陥波と誤判断されず、探傷にはなんら影響を与
えないということに着目した。
We cannot avoid this when using an iron core of conductive material. If the ultrasonic waves generated and reflected from the core itself are detected outside the time required for flaw detection, they will not be mistakenly judged as defective waves reflected by defects, and will not have any effect on flaw detection. We focused on

本発明の要点は鉄心中央脚部表面凹凸、内部貫通穴等を
なくシ、鉄心に発生し反射されてくる超音波は探傷に必
要な時間外に検出されるような鉄心中央脚構造としたこ
とにある。
The key point of the present invention is to eliminate surface irregularities and internal through-holes in the core center leg, and to create a core center leg structure that allows ultrasonic waves generated and reflected from the core to be detected outside of the time required for flaw detection. It is in.

以下、第3図を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using FIG. 3.

第3図で従来技術と異なる点は、鉄心中央脚9の先端の
磁束密度を向上させるための段差をなくし、第3図に示
すよ゛うに、鉄心中央脚9の根本゛11から先端部10
へ向けて、表面の凹凸や、段差なく絞った構造にした点
である。このような構成の装置の動作を説明する。超音
波の発生並びに検出は従来技術と全く同じである。とこ
ろが本発明の場合、鉄心中央脚9の根本11から先端部
10に向けて表面の凹凸や段差なく絞った構造としたた
め、従来の探触子と同じ起磁力で所要の磁束密度が得ら
れ、かつ、鉄心中央脚9自体に発生した超音波は、鉄心
上面から反射して戻ってくる超音波24のみとなp1鉄
心中央脚先端部10から超音波は戻ってこない。そこで
鉄心lの高、さt、と被検材8の最大厚さ1sとを t t > t n となるように、鉄心1の高さt!を決めれば、その時の
波形観測器7の出力波形は第4図のようになり、鉄心上
面から反射して戻ってくる超音波24が、探傷中、欠陥
31と誤判断されないt。
What is different from the prior art in FIG. 3 is that the step for improving the magnetic flux density at the tip of the core central leg 9 is eliminated, and as shown in FIG.
The point is that it has a narrow structure with no unevenness or steps on the surface. The operation of the device having such a configuration will be explained. The generation and detection of ultrasound waves are exactly the same as in the prior art. However, in the case of the present invention, since the iron core central leg 9 is narrowed from the root 11 to the tip 10 without surface irregularities or steps, the required magnetic flux density can be obtained with the same magnetomotive force as the conventional probe. Moreover, the ultrasonic waves generated in the core central leg 9 itself are only the ultrasonic waves 24 that are reflected from the upper surface of the core and return, and no ultrasonic waves return from the p1 core central leg tip 10. Therefore, the height t of the iron core 1 is adjusted so that the height of the iron core 1, s t, and the maximum thickness 1s of the test material 8 satisfy t t > t n ! If this is determined, the output waveform of the waveform observation device 7 at that time will be as shown in FIG. 4, and the ultrasonic wave 24 reflected from the top surface of the iron core and returned will not be mistakenly judged as a defect 31 during flaw detection.

の位置に表示されるだけとなり、探傷に必要な時間軸上
、0〜t3の間には、欠陥31からの欠陥波21による
信号以外なにも表示されない。
, and nothing other than the signal from the defect wave 21 from the defect 31 is displayed between 0 and t3 on the time axis necessary for flaw detection.

本発明により鉄心中央脚先端部10近辺からの反射エコ
ーの問題が解決し、大巾に検出能力が向上する。
The present invention solves the problem of reflected echoes from the vicinity of the tip 10 of the central leg of the core, and greatly improves the detection ability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来技術の構成図および説明図、第3
図、第4図は本発明の構成図および説明図である。
Figures 1 and 2 are configuration diagrams and explanatory diagrams of the prior art;
FIG. 4 is a configuration diagram and an explanatory diagram of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、ffl界と渦電流とにより電磁的に超音波を発生さ
せ探傷する装置において、送受信コイルに対向する電磁
石鉄心中央脚の面を平面としたことを特徴とする電磁超
音波探触子。
1. An electromagnetic ultrasonic probe for flaw detection by electromagnetically generating ultrasonic waves using an ffl field and an eddy current, characterized in that the surface of the central leg of the electromagnetic core facing the transmitting/receiving coil is flat.
JP57106866A 1982-06-23 1982-06-23 Electromagnetic ultrasonic probe Pending JPS58223751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106866A JPS58223751A (en) 1982-06-23 1982-06-23 Electromagnetic ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106866A JPS58223751A (en) 1982-06-23 1982-06-23 Electromagnetic ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS58223751A true JPS58223751A (en) 1983-12-26

Family

ID=14444464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106866A Pending JPS58223751A (en) 1982-06-23 1982-06-23 Electromagnetic ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS58223751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597979A1 (en) * 1986-04-24 1987-10-30 Mannesmann Ag DEVICE FOR THE NON-DESTRUCTIVE TESTING OF ELECTRICALLY CONDUCTIVE MATERIALS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752856A (en) * 1980-09-16 1982-03-29 Hitachi Ltd Electromagnetic ultrasonic flaw detecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752856A (en) * 1980-09-16 1982-03-29 Hitachi Ltd Electromagnetic ultrasonic flaw detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597979A1 (en) * 1986-04-24 1987-10-30 Mannesmann Ag DEVICE FOR THE NON-DESTRUCTIVE TESTING OF ELECTRICALLY CONDUCTIVE MATERIALS

Similar Documents

Publication Publication Date Title
US4248092A (en) Method and apparatus for efficiently generating elastic waves with a transducer
Isla et al. Optimization of the bias magnetic field of shear wave EMATs
US7426867B2 (en) Electromagnetic acoustic transducers for use in ultrasound inspection systems
CN109444270B (en) Electromagnetic ultrasonic and pulse eddy current composite detection sensor
US3453872A (en) Eddy sonic inspection method
JPS58223751A (en) Electromagnetic ultrasonic probe
CA2510799C (en) Electromagnetic ultrasound probe
JP3608423B2 (en) Electromagnetic ultrasonic measurement method and apparatus
JP2000146923A (en) Ultrasonic measurement method for steel material
Aliouane et al. Electromagnetic acoustic transducers (EMATs) design evaluation of their performances
Legg et al. Flaw detection in metals using electromagnetic sound generation
CN101231269A (en) Electromagnetic ultrasonic transducer capable of charging or discharging magnetism for build-in permanent magnet as well as use method
Van den Berg et al. Development of an electromagnetic acoustic transducer for inspecting the wall thickness of offshore risers from the inside
JPS6333440Y2 (en)
CA1189947A (en) Non-destructive, non-contact ultrasonic material testing method and apparatus
Tenoudji et al. Non-contact ultrasonic defect imaging in composites
JPS636678Y2 (en)
JPH0543062B2 (en)
JP2961061B2 (en) Electromagnetic ultrasonic flaw detector
JP2002090349A (en) Flaw detection method based on electromagnetic ultrasonic wave and electromagnetic ultrasonic flaw detector
JPS62277556A (en) Electromagnetic ultrasonic probe
Li Impact of Magnetostriction Mechanism on Frequency Manipulation Ultrasonic Steering in EMAT
JP3058626B2 (en) Non-destructive inspection method for metal
JPS6133139B2 (en)
JPH10253596A (en) Electromagnetic ultrasonic probe and ultrasonic flaw detector employing it