JPS5822355A - Preparation of ferrochrome by rotary furnace - Google Patents

Preparation of ferrochrome by rotary furnace

Info

Publication number
JPS5822355A
JPS5822355A JP11929181A JP11929181A JPS5822355A JP S5822355 A JPS5822355 A JP S5822355A JP 11929181 A JP11929181 A JP 11929181A JP 11929181 A JP11929181 A JP 11929181A JP S5822355 A JPS5822355 A JP S5822355A
Authority
JP
Japan
Prior art keywords
reducing agent
rotary furnace
carbonaceous reducing
oxygen
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11929181A
Other languages
Japanese (ja)
Inventor
Tsutomu Fukushima
福島 勤
Kiyoshi Kawasaki
清 川崎
Sadayuki Sasaki
佐々木 貞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11929181A priority Critical patent/JPS5822355A/en
Priority to BR8204221A priority patent/BR8204221A/en
Priority to IN838/CAL/82A priority patent/IN158178B/en
Priority to US06/403,049 priority patent/US4414026A/en
Priority to PH27653A priority patent/PH21357A/en
Publication of JPS5822355A publication Critical patent/JPS5822355A/en
Priority to US06/519,901 priority patent/US4515352A/en
Priority to IN549/CAL/86A priority patent/IN160231B/en
Priority to PH34570A priority patent/PH25070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prepare ferrochrome without using an electric furnace using expensive electric power, by a method wherein chromium ore, a slag forming agent and a carbonaceous reducing agent of which the layer thickness is held to a specific thickness or more into a rotary furnace and the carbonaceous reducing agent is burnt by blowing oxygen to melt and reduce said ore. CONSTITUTION:As a rotary furnace, a horizontal type one or an inclined type one having an opening at both ends thereof or at one end thereof is used. Into this rotary furnace, chromium ore in a powder form, a lump form or a pellet. briquet form, a slag forming agent such as silicon or lime and a carbonaceous reducing agent such as coke or coal are charged. In this condition, oxygen is blown thereinto from an oxygen blowing lance to burn the carbonaceous reducing agent and said ore is melted and reduced to prepare ferrochrome. Over 70% or more during this total blowing time or at least over 15min or more directly before blowing is completed, the layer thickness of the carbonaceous reducing agent is held to 50mm. or more to increase a Cr reducing ratio (a Cr recovery ratio).

Description

【発明の詳細な説明】 本発明は、回転炉によるフェロクロムの製造法に関する
もので、従来の電気炉による製錬法のように高価な電力
を使用すること麦(、回転炉内でコークス又杖石炭尋の
炭素質還元剤を酸素で燃焼させ、この燃焼熱で、同回転
炉へ送入されたクロム鉱石を還元してフェロクロムを得
ゐ製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferrochrome using a rotary furnace. This relates to a method for producing ferrochrome by burning a carbonaceous reducing agent in coal fat with oxygen and using the combustion heat to reduce chromium ore fed into the same rotary furnace.

従来、フェロクロムを製造するにはクロム鉱石と造滓剤
とコークス岬の還元剤とを、サブマージドアーク型電気
炉へ連続的に装入して製錬している。この方法ではフェ
ロクロム1トン当如の電力消費型産業3.ooo〜へ7
0 OK、W、Hを必要とし、典型的な電力消費型産業
であるといえ石。省エネルギー技術が叫ばれている昨今
、貴重な液体燃料から電気エネルギーに変換する効率が
著しく低いので、電力を多量に使用することを避けゐ技
術の開発は急務を要する重要な課題である。
Conventionally, to produce ferrochrome, chromium ore, a slag-forming agent, and a coke cape reducing agent are continuously charged into a submerged arc electric furnace and smelted. With this method, 1 ton of ferrochrome can be used for power-consuming industries.3. ooo~to7
0 OK, W, H are required, and it can be said that it is a typical power-consuming industry. These days, when energy-saving technology is being called for, the efficiency of converting valuable liquid fuel into electrical energy is extremely low, so the development of technology that avoids the use of large amounts of electricity is an urgent and important issue.

一方、回転炉による鉄製錬に関しては特公昭4゜−15
045号の提案があ)、鉄合金製錬に関しては特公昭4
4−25751号の提案がある。然し、これらの提案の
製錬法においては、還元剤として石炭、コークス、黒鉛
を使用し、スラグ表面の還元剤の層厚を50〜50■と
じているため還元雰四気が弱く、製品歩留シが悪い。例
えば、フェロクロム製造時では約75%のCr歩留シで
ある。
On the other hand, regarding iron smelting using rotary furnaces,
045), and regarding iron alloy smelting,
There is a proposal for No. 4-25751. However, in these proposed smelting methods, coal, coke, and graphite are used as reducing agents, and the layer thickness of the reducing agent on the slag surface is limited to 50 to 50 cm, resulting in a weak reducing atmosphere and poor product quality. The holder is bad. For example, when manufacturing ferrochrome, the Cr yield is about 75%.

また、前記の各提案は何れも酸素吹錬ランスの向きは上
向き又は水平向きであって、耐火物に近い所で燃焼が行
われ輻射熱や耐火物からの伝導熱の割合を多くしている
。そのため極めて熱効率が悪いにかりか、一定のスラグ
温度にスラグを保持する必要のある製錬においては、耐
火物は非常な高温にさらされておル、その損耗量が大き
い。さらに、排出した還元剤の表面には微細な粒子状の
メタルが付着しているが、その再利用がなされてぃない
ことも前述の製品歩*bの低い一因をなしている等の諸
問題がある。
Furthermore, in each of the above proposals, the oxygen blowing lance is oriented upward or horizontally, and combustion occurs near the refractory, increasing the proportion of radiant heat and conductive heat from the refractory. As a result, not only is the thermal efficiency extremely low, but also in smelting where it is necessary to maintain slag at a constant slag temperature, refractories are exposed to extremely high temperatures and are subject to significant wear and tear. Furthermore, fine metal particles adhere to the surface of the discharged reducing agent, but this is not reused, which is one of the reasons for the low product quality*b mentioned above. There's a problem.

本発明は、上記の諸問題に艦み、従来の電気炉製錬に代
るフェロクロムの製造法を提供すると共に、併せて従来
の回転式炉使用製錬における上記の諸問題−倉改善する
ために創案されたものである。
The present invention addresses the above-mentioned problems and provides a method for producing ferrochrome as an alternative to the conventional electric furnace smelting process. It was invented by.

即ち、本発明の要旨とするところは、回転式炉にクロム
鉱石、造滓剤、炭素質還元剤を送入し、これに酸素を吹
き込んで前記炭素質還元剤を燃焼させて溶融、還元を行
うに際し、上記炭素質還元剤の層厚を50■以上に保持
することをIVIIlとする回転炉によるフェロクロム
の製造法である。
That is, the gist of the present invention is to feed chromium ore, a slag-forming agent, and a carbonaceous reducing agent into a rotary furnace, and blow oxygen into the furnace to burn the carbonaceous reducing agent and melt and reduce it. This is a method for producing ferrochrome using a rotary furnace, in which the layer thickness of the carbonaceous reducing agent is maintained at 50 cm or more.

然して、上記の炭素質還元剤の層の厚さを50−以上に
保持する時間を全吹錬時間の70−以上とするか、もし
くは少くとも吹錬終了前15分以上とすることは、本発
明の効果を高めるために必要である。
However, it is essential to keep the thickness of the carbonaceous reducing agent layer at 50 or more for at least 70 or more of the total blowing time, or at least 15 minutes or more before the end of blowing. It is necessary to enhance the effectiveness of the invention.

又、上記回転式炉の湯口にスキンマーを取付けることに
よシ炭素質還元剤の循環使用を行うことは、本発明の効
果を高めるために必要である。
Furthermore, it is necessary to recirculate the carbonaceous reducing agent by attaching a skinmer to the sprue of the rotary furnace in order to enhance the effects of the present invention.

更に、上記回転式炉に酸素嗟錬ランスを下向きに取付け
、これから酸素を吹き込んで炭素質還元剤を燃焼させ、
この燃焼熱を直接湯面へ与えることは、本発明の効果を
高めるために必要である。
Furthermore, an oxygen tempering lance is attached to the rotary furnace in a downward direction, and oxygen is blown into the rotary furnace to burn the carbonaceous reducing agent.
Applying this combustion heat directly to the hot water surface is necessary to enhance the effects of the present invention.

次に、本発明の回転炉によるフェロクロムの製造法につ
いて詳細に説明する。
Next, a method for producing ferrochrome using a rotary furnace according to the present invention will be explained in detail.

本発明の製造法に使用する回転式炉は、両日屯しく祉片
口の横型もしくは傾斜II(傾斜角度#irmx55°
が好ましい)の回転炉である。そして、ここには発明者
らの研究の結果で扛予熱又は予備還元された原料クロム
鉱石、造滓剤が炭素質還元剤と共に装入されることが好
ましいことが確認されている。次に、本発明に用いられ
るクロム鉱石は粉鉱、塊鉱、ペレット・プリテン)(m
威・未焼底側れでもよく、炭材内装をも含む)の何れで
もよい。造滓剤社通常用いられている珪素、石灰革でよ
い。又、炭素質還元剤はコークス、石炭のいずれか又は
混合−1もしくはこれらと微粉炭或いは微粉炭水スラリ
ー、例えば発明者らのグループが特願昭56−4614
9号、特願昭56−46150号、特願昭56 、+ 
46151号で提案した石炭エマルジョンとを併せて利
用することが省エネルギー資源上好ましい。第1図紘コ
ークス面上への0雪吹錬率と耐火物損耗量との関係を示
したグラフであシ、第2図は還元剤の層厚とCr還元率
(金属回収率)との関係を示したグツ7であシ、第5図
は過剰コークスの循環使用率と金属回収率との関係を示
したグラフである。第2図よシ耐火物の損耗量が少なく
、かつCr還元率(金属回収率)の高いのは還元剤の層
厚が5(1m以上必要表ことを知ることができる。また
、第5図よシ過剰コークスの循3jI使用率が金属回収
率が高い点で層厚50−以上が好ましいことを知ること
ができ石。さらに、W、1図よシ酸素吹錬ランスを下向
きに取付け、これから酸素を吹き込んで炭素質還元剤を
燃焼させ、この燃焼熱を直接湯面へ与えるようにすれば
、耐火物損耗量が極めて少くなることを知ることができ
る。
The rotary furnace used in the production method of the present invention is generally a horizontal type with a single opening or an inclined type II (inclination angle #irm x 55°
(preferably) rotary furnace. As a result of research conducted by the inventors, it has been confirmed that it is preferable to charge the preheated or prereduced raw material chromium ore and the slag forming agent together with the carbonaceous reducing agent. Next, the chromium ore used in the present invention is fine ore, lump ore, pellets/platen) (m
It may be either the heat or unfired bottom side, or it may have a charcoal interior. Silicone and lime leather commonly used by Slag Makers may be used. The carbonaceous reducing agent may be coke, coal, a mixture thereof, pulverized coal or pulverized coal water slurry, for example, as disclosed in Japanese Patent Application No. 56-4614 by the group of the inventors.
No. 9, Japanese Patent Application No. 1984-46150, Special Application No. 1983, +
It is preferable to use it together with the coal emulsion proposed in No. 46151 in terms of energy conservation and resource conservation. Figure 1 is a graph showing the relationship between the zero snow blowing rate on the surface of Hiro coke and the amount of refractory loss, and Figure 2 is the relationship between the layer thickness of the reducing agent and the Cr reduction rate (metal recovery rate). Fig. 5 is a graph showing the relationship between the recycling rate of excess coke and the metal recovery rate. As shown in Figure 2, it can be seen that the reduction agent layer thickness is required to be at least 5 m (1 m or more) in order to reduce the amount of wear on the refractory and to achieve a high Cr reduction rate (metal recovery rate). It can be seen that a layer thickness of 50 mm or more is preferable in terms of the circulation of excess coke and the high metal recovery rate.Furthermore, as shown in Figure 1, the oxygen blowing lance is installed downward, and from now on. It can be seen that if oxygen is blown in to combust the carbonaceous reducing agent and the combustion heat is directly applied to the hot water surface, the amount of loss of refractories can be extremely reduced.

このように、酸素吹錬ランスを下向きにし、スラグ面上
の還元剤を燃焼しスラグへ直接伝達する燃焼熱の割合を
高くすることによ)、熱効率の向上が図られる。また、
耐火物表面温度は還元剤方向への酸素流量割合によって
異表るから、全酸素吹錬量の40〜909Iが下向きに
なるよう下向きの二股ランスを使用して吹錬を行えば耐
火物表面温度はそれ糧上昇せずに、スラグ温度を175
0℃前後に維持可能である。耐火物表面4高温加熱を受
けないため損耗量の低下が図られた。
In this way, thermal efficiency can be improved by directing the oxygen blowing lance downward and increasing the proportion of combustion heat that burns the reducing agent on the slag surface and directly transfers to the slag. Also,
The refractory surface temperature varies depending on the oxygen flow rate toward the reducing agent, so if blowing is performed using a downward-facing two-pronged lance so that the total oxygen blowing amount of 40 to 909 I is directed downward, the refractory surface temperature can be adjusted. The slag temperature was increased to 175 without increasing the temperature.
It is possible to maintain the temperature around 0°C. Since the refractory surface 4 is not subjected to high-temperature heating, the amount of wear and tear is reduced.

又、酸素吹錬ランスを下向きにした時に、還元剤層が薄
いと弱還元雰囲気となシ、#!品歩留りが低下するので
耐火物損耗量が最も少く抑えられる範i!I(全酸素量
の40〜90−が下向き)で紘還元剤層厚を50−以上
とすることによル86−以上の金属回収率が可能である
Also, when the oxygen blowing lance is facing downward, if the reducing agent layer is thin, it will create a weak reducing atmosphere.#! This is the range in which the amount of refractory loss can be minimized as the product yield decreases! A metal recovery rate of 86 or more is possible by setting the thickness of the reducing agent layer to 50 or more in I (40 to 90 of the total oxygen amount is downward).

さらに、製錬終了時多量の還元剤が炉内に残シ、その還
元剤表面には多量の微細粒子状メタルが付着している。
Furthermore, a large amount of reducing agent remains in the furnace at the end of smelting, and a large amount of fine particulate metal adheres to the surface of the reducing agent.

そこで、出湯時湯口にスキンマーを設けて、過剰還元剤
の80−以上を循lI使用すれば、金属回収率は約6−
向上し、929にとなることがii+gされた。
Therefore, if a skinmer is provided at the sprue during tapping and an excess reducing agent of 80 or more is used, the metal recovery rate will be approximately 6.
It was ii+g that it improved and became 929.

次に、本発明の爽紬例を示す。Next, examples of the pongee of the present invention will be shown.

1!施例−1 本1i!總例は、高炭素フエロクDJ−製造の1例で、
以下の様にして製造した。
1! Example-1 Book 1i! An example is an example of high carbon Ferroc DJ-manufacturing.
It was manufactured as follows.

使用した回転炉社、内径α42惧、外径α76惰、長さ
1.4sのものでマグクロレンガを内張ルし、炉体紘水
平に対して20°傾動し、8r−p−mで回転する。炉
体の片側に原料の装入口と酸素吹込み用水冷ランスを有
している。
The rotary furnace used was made by the rotary furnace company, with an inner diameter of α42mm, an outer diameter of α76mm, and a length of 1.4s, lined with maguro bricks, tilted 20 degrees with respect to the horizontal direction of the furnace body, and rotated at 8 rpm. . One side of the furnace body has a raw material charging port and a water-cooled lance for oxygen injection.

原料、72ツクス及びコークスを次の様な割合で混合し
、炉内に装入した。各原料サイズは5〜15%使用した
Raw materials, 72 coke and coke were mixed in the following proportions and charged into the furnace. 5 to 15% of each raw material size was used.

Cr鉱石: 5011.@石灰18k 、:y−/x:
 204炉体回転軸上にセットした水冷ランスから炉内
に酸素を吹込み、コークスの燃−熱によって原料を溶解
し、還元を行った。吹込み酸素量は、1.41JWI/
winで開始し、2.・0分後に1.1 NII//w
in 、 55分後にα8 Ndl win 、 50
分後にα6Nd1m%nとした。
Cr ore: 5011. @Lime18k, :y-/x:
Oxygen was blown into the furnace from a water-cooled lance set on the rotating shaft of the 204 furnace body, and the raw material was melted and reduced by the combustion heat of the coke. The amount of oxygen blown is 1.41JWI/
Start with win, 2.・1.1 NII after 0 minutes //w
in, 55 minutes later α8 Ndl win, 50
After 1 minute, α6Nd was adjusted to 1 m%n.

また、追鋏コークスとして、酸素吹込み開始20分後に
1000 gr/minの装入速度で連続装入し、コー
クス、ベット層厚を約105に維持した。
In addition, additional coke was continuously charged at a charging rate of 1000 gr/min 20 minutes after the start of oxygen blowing, and the coke and bed layer thickness were maintained at about 10.

酸素吹込み開始後、70分で出湯した。出湯時、湯口に
ライスラグとの間隔が5exのスキンマーを設け、スラ
グ、メタルを出湯し、過剰コークス及びスラグの一部を
炉内に残留し、循環使用した。
The hot water was turned on 70 minutes after oxygen injection started. At the time of tapping, a skinmer with a spacing of 5ex from the rice lag was provided at the sprue to tap out the slag and metal, and excess coke and a portion of the slag remained in the furnace and were recycled.

次回以降の、初期義人コークス量を10Icfとし、同
様の操業を10回連続的に行った。その緒果、次の様な
重量、組成のメタル、スラグが得られ、金属回収率は9
2%であった。
From the next time onwards, the initial coke amount was set to 10 Icf, and the same operation was performed 10 times in succession. As a result, metal and slag with the following weight and composition are obtained, and the metal recovery rate is 9.
It was 2%.

第4図はこの実施例10吹錬時間と製造諸条件の関係を
グラフに示したものである。
FIG. 4 is a graph showing the relationship between blowing time and manufacturing conditions in Example 10.

11LIF12 本1N!總例は、高炭素フエロクロム製造の1911で
以下の様にして製造した。
11LIF12 books 1N! A complete example is 1911 manufactured using high carbon ferrochrome as follows.

実施例1と同様の装置を使用し、予備還元した還元Cr
ペレット鉱石、焼石灰、及びコークスを次の様な割合で
、混合し、炉内に装入した。
Using the same apparatus as in Example 1, pre-reduced reduced Cr
Pellet ore, burnt lime, and coke were mixed in the following proportions and charged into a furnace.

・還元ペレット鉱:504.焼石灰:5.84.コーク
ス:204また還元ベレット鉱の化学組成社次のとお〕
であ&5%810m −15% Mg0 、15% A
ll0I炉体回転軸上にセットした水冷ランスから炉内
に酸素を吹込み原料の溶解、還元を行った。吹込み酸素
量B 、1.4 Nm”/11111で開始し、20分
後に原料は溶解した。スラグ温度は1.650℃に達し
た。20分から50分まで1.1 NII/11n 、
 50分から40分才でa 8 Ns//m1m 、 
40分から50分まで06翼た1nで行った。また、通
値コークスは、20分から1.000 gr/mln 
の装入速度で連続装入し、コークスペット層厚を約10
amに維持した。
・Reduced pellet ore: 504. Burnt lime: 5.84. Coke: 204 Chemical composition of reduced beret ore
De&5%810m -15% Mg0, 15% A
Oxygen was blown into the furnace from a water-cooled lance set on the rotating shaft of the ll0I furnace body to melt and reduce the raw materials. Starting with blown oxygen amount B, 1.4 Nm"/11111, the raw material melted after 20 minutes. The slag temperature reached 1.650 °C. From 20 minutes to 50 minutes, 1.1 NII/11n,
From 50 to 40 minutes old, a 8 Ns//m1m,
I went from 40 minutes to 50 minutes with 06 wing 1n. In addition, the regular price of coke is 1.000 gr/mln from 20 minutes.
Continuous charging at a charging speed of approximately 10
It was maintained at am.

酸素吹込み開始後、50分でスラグ温度祉、1750℃
に達し、出湯した。出湯口にライ二ングとの間隔が5a
11のスヤンマーを設け、スラグ、メタルを出湯し過剰
コークス及びスラグの一部を炉内に残留し、循ll使用
した。
Slag temperature reached 1750℃ 50 minutes after oxygen injection started.
The water reached the bath. The distance between the tap hole and the lining is 5a.
No. 11 syanmer was installed, slag and metal were tapped, and excess coke and a portion of the slag remained in the furnace and were recycled.

次回以降の初期装入コークス量を10〜とし、同様の操
業を10回連続的に行った。その結果、次の様な重量、
組成のメタル、スラグが得られ金属回収率95%であっ
た。
The same operation was repeated 10 times, with the amount of coke initially charged from next time onwards being set to 10 or more. As a result, the following weight,
Metal and slag having the same composition were obtained, and the metal recovery rate was 95%.

10回の 平均重量 CrF@C ・メタル IA95Kt  53.5% 56.5  
a1チCr、0. 5IOI  CaOAll01 M
gO−1り24.50− α5%  17.51 29
.0 50%  28%上記実施ipH1およびl!總
例2から明らかなように、本発明のフェロクロムの製造
法によれば、高価な電力を用いることなく、供給が安定
でかつ比較的安価な石灰によ〕フェロクロムを製造する
ことが可能てあシ、しかも熱効率が高く、金属回収率も
極めて高いなどの緒効呆を奏することが確認された。
Average weight of 10 times CrF@C ・Metal IA95Kt 53.5% 56.5
a1 Cr, 0. 5IOI CaOAll01 M
gO-1 24.50- α5% 17.51 29
.. 0 50% 28% above implementation ipH1 and l! As is clear from Example 2, according to the method for producing ferrochrome of the present invention, it is possible to produce ferrochrome using lime, which is stably supplied and relatively inexpensive, without using expensive electricity. Moreover, it was confirmed that the thermal efficiency is high, and the metal recovery rate is also extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法による場合のコークス面上への
0麿吹錬量比率と耐火物損耗量Oa係を示すグラフであ
り、第2図は同じ(還元剤層厚とCr還元率、金属回収
率の関係を示すグラフであシ、第5図は同じ〈過剰コー
クスの循m使用率と金属回収率の関係を示すグラフであ
シ、第4図は第1実施例の吹錬時間と諸条件の関係を示
すグラフである。 代理人 弁理士 佐 藤 正午 同 同 木村三朗 同  同 佐々木宗 治 第2図 1%) 二m) 一部か1萼ユ 第3図 −な」屯ゴークス0槁・劇六ノり季
Fig. 1 is a graph showing the relationship between the ratio of the amount of molten metal blown onto the coke surface and the amount of refractory wear Oa when using the production method of the present invention, and Fig. 2 shows the same (reducing agent layer thickness and Cr reduction rate). , is a graph showing the relationship between the metal recovery rate, and Figure 5 is a graph showing the relationship between the circulating m usage rate of excess coke and the metal recovery rate. This is a graph showing the relationship between time and various conditions. Agents Patent Attorneys: Jun Sato, Samuro Kimura, Souji Sasaki (Fig. 2 1%) 2m) Part of the calyx (Fig. 3) Gokus 0/Gekiroku no Riki

Claims (4)

【特許請求の範囲】[Claims] (1)回転式炉にクロム鉱石、造滓剤、炭素質還元剤を
送入し、これに酸素を吹−き込んで前記炭素質還元剤を
燃焼させて溶融、還元を゛行うに際し、前記炭素質還元
剤の層厚を50−以上に保持することを4I黴とする回
転炉によるフェロクロムの製造法。
(1) When chromium ore, a slag-forming agent, and a carbonaceous reducing agent are fed into a rotary furnace, oxygen is blown into the furnace, and the carbonaceous reducing agent is combusted to melt and reduce. A method for producing ferrochrome using a rotary furnace, in which the layer thickness of a carbonaceous reducing agent is maintained at 50 mm or more.
(2)上記炭素質還元剤の層厚を50mm以上に保持す
る時間を、全吹錬時間の70%以上とするかもしく祉少
(と4吹錬終了前15分以上とする特許請求の範囲第1
項記載の回転炉によるフェロクロムの製造法。
(2) The time for maintaining the layer thickness of the carbonaceous reducing agent at 50 mm or more may be 70% or more of the total blowing time (and 4) The scope of the patent claim is that it is 15 minutes or more before the end of blowing. 1st
A method for producing ferrochrome using a rotary furnace as described in Section 1.
(3)上記回転式炉の湯口にスキンマーを取付けること
によ)炭素質還元剤の循環使用を行う特許請求の範囲第
1項記載の回転炉によるフェロクロムの製造法。
(3) A method for producing ferrochrome using a rotary furnace according to claim 1, wherein the carbonaceous reducing agent is recycled (by attaching a skinmer to the sprue of the rotary furnace).
(4)  上記回転式炉に酸素吹錬ランスを下向きに取
付け、全吹き込み酸素量の40〜100sが直接湯面上
の炭素質還元剤を燃焼させこの燃焼熱を直接湯面へ与え
るようにした特許請求の範囲第1項記載の回転炉による
フェロクロムの製造法。
(4) The oxygen blowing lance was attached to the above rotary furnace in a downward direction so that the total amount of blown oxygen of 40 to 100 seconds directly burns the carbonaceous reducing agent on the hot water surface and gives this combustion heat directly to the hot water surface. A method for producing ferrochrome using a rotary furnace according to claim 1.
JP11929181A 1981-07-21 1981-07-31 Preparation of ferrochrome by rotary furnace Pending JPS5822355A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP11929181A JPS5822355A (en) 1981-07-31 1981-07-31 Preparation of ferrochrome by rotary furnace
BR8204221A BR8204221A (en) 1981-07-21 1982-07-20 PROCESS FOR THE PRODUCTION OF FERROCROME AND ROTARY OVEN USED FOR THE SAME
IN838/CAL/82A IN158178B (en) 1981-07-21 1982-07-21
US06/403,049 US4414026A (en) 1981-07-30 1982-07-29 Method for the production of ferrochromium
PH27653A PH21357A (en) 1981-07-30 1982-07-30 Method for the production of ferrochromium
US06/519,901 US4515352A (en) 1981-07-30 1983-08-03 Rotary furnace used for the production of ferrochromium
IN549/CAL/86A IN160231B (en) 1981-07-21 1986-07-21
PH34570A PH25070A (en) 1981-07-30 1986-12-09 Rotary furnace used for the production of ferrochromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11929181A JPS5822355A (en) 1981-07-31 1981-07-31 Preparation of ferrochrome by rotary furnace

Publications (1)

Publication Number Publication Date
JPS5822355A true JPS5822355A (en) 1983-02-09

Family

ID=14757765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11929181A Pending JPS5822355A (en) 1981-07-21 1981-07-31 Preparation of ferrochrome by rotary furnace

Country Status (1)

Country Link
JP (1) JPS5822355A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591905A (en) * 1978-12-29 1980-07-11 Nippon Kokan Kk <Nkk> Using method for reducing agent in rotary kiln

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591905A (en) * 1978-12-29 1980-07-11 Nippon Kokan Kk <Nkk> Using method for reducing agent in rotary kiln

Similar Documents

Publication Publication Date Title
JPH10195513A (en) Production of metallic iron
US3033673A (en) Process of reducing iron oxides
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
US4753677A (en) Process and apparatus for producing steel from scrap
JP2002517607A (en) Sustained iron production and solid waste minimization by enhanced direct reduction of iron oxide
US4414026A (en) Method for the production of ferrochromium
US4156102A (en) Method for producing ferro-alloys
WO2009030064A1 (en) A process for non-coke smelting iron and steel
JPH079015B2 (en) Smelting reduction method for iron ore
JPS5822355A (en) Preparation of ferrochrome by rotary furnace
US3471283A (en) Reduction of iron ore
US4412862A (en) Method for the production of ferrochromium
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JPH01162711A (en) Smelting reduction method
JPS6143406B2 (en)
JPH1121607A (en) Operation of arc furnace
JPH0826378B2 (en) Method for producing molten iron containing chromium
RU2280704C1 (en) Method of processing nickel-containing iron ore material
JPH032933B2 (en)
JPS5816036A (en) Manufacture of high chromium alloy
JPS6242020B2 (en)
JPS62227020A (en) Reforming and heating method for reducing gas generated in melt reduction furnace
CN115354147A (en) Smelting method for comprehensively utilizing vanadium titano-magnetite
JP2560668B2 (en) Smelting and refining method