JPS58223421A - Filter made of ceramic fiber - Google Patents

Filter made of ceramic fiber

Info

Publication number
JPS58223421A
JPS58223421A JP10721182A JP10721182A JPS58223421A JP S58223421 A JPS58223421 A JP S58223421A JP 10721182 A JP10721182 A JP 10721182A JP 10721182 A JP10721182 A JP 10721182A JP S58223421 A JPS58223421 A JP S58223421A
Authority
JP
Japan
Prior art keywords
ceramic
slurry
fiber
powdered
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10721182A
Other languages
Japanese (ja)
Inventor
Masaaki Yonemura
米村 正明
Toshihiro Mihara
三原 敏弘
Takao Kusuda
楠田 隆男
Satoru Kuwano
桑野 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10721182A priority Critical patent/JPS58223421A/en
Priority to AU11196/83A priority patent/AU540009B2/en
Priority to DE8383101241T priority patent/DE3366848D1/en
Priority to EP83101241A priority patent/EP0087067B1/en
Priority to CA000421705A priority patent/CA1186641A/en
Publication of JPS58223421A publication Critical patent/JPS58223421A/en
Priority to US06/695,423 priority patent/US4652286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control collecting efficiency and the life of a filter element, by mixing powdered ceramic having larger particle size to a composite of heat-resistant ceramic fibers and powdered ceramic, and forming the mixture by calcination to lower the packing density of a formed body. CONSTITUTION:Ceramic fibers having an average diameter of about 3mu are cut into 0.1-10mm. length, and are dispersed into water together with powdered ceramic of silica-aluminas to make a slurry. Powdered ceramic such as petalite, having 2-500mu particle size is mixed to the slurry, and a flocculant such as an aqueous solution of starch is also added to the admixed slurry to flocculate the powdered ceramic. The flocculated ceramic is formed by a prescribed mold and is dried to calcine the formed ceramic for bonding it at 900-1,300 deg.C. At this time, the bonded ceramic is manufactured into a paper-shaped sheet, and both are wrapped up into a honeycomb body.

Description

【発明の詳細な説明】 本発明は繊維セラミックフィルタにかかり、粒状の粉塵
を含むガス気流中におかれ、粒状の粉塵を除去するのに
適した。繊維セラミックフィルり素子を提供しようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applied to a fiber ceramic filter, which is placed in a gas stream containing particulate dust, and is suitable for removing particulate dust. It is an object of the present invention to provide a fiber ceramic fill element.

従来、粉塵のフィルタとして、耐熱金属la線やガラス
繊維、アスベスト繊維などを容器に充填したものがある
Oこれらは容器内への充填密度のばらつきを生じやすく
、また、通気抵抗の高いものであシ、そのため内燃機関
や燃焼炉の排気の負荷を高め、エネルギー効率を低下さ
せる結果となっていた。また、耐熱性においても100
0°C前後の2ページ 高温に耐えるものではない。
Conventionally, as a dust filter, there are containers filled with heat-resistant metal LA wire, glass fiber, asbestos fiber, etc. These tend to cause variations in the packing density inside the container, and also have high ventilation resistance. This has resulted in an increase in the exhaust load of internal combustion engines and combustion furnaces, resulting in a decrease in energy efficiency. In addition, the heat resistance is also 100%.
It cannot withstand high temperatures around 0°C (page 2).

一方、セラミック粉末を押出成形、焼成して得られるコ
ーディエライト組成などのハニカム構造体を用いている
ものや、セラミック粉末をシート状とし、それでコルゲ
ートを作製してハニカム構造を形成したものを用いるフ
ィルタなども見受けられる。これらはセラミックを用い
ているために耐熱性には優れているが、多孔性において
気孔率が大きくても40%前後であシ、平均孔径も1μ
m前後ときわめて小さい。したがって、初期から通気抵
抗が大きく戸別される粉塵もハニカム壁表面に堆積する
、いわゆる表面濾過であるため目づ捷りを生じやすい。
On the other hand, there are those that use a honeycomb structure such as cordierite composition obtained by extrusion molding and firing of ceramic powder, and those that form a honeycomb structure by forming a sheet of ceramic powder and making corrugates from it. Filters can also be seen. Since these are made of ceramic, they have excellent heat resistance, but the porosity is only around 40% even if the porosity is large, and the average pore size is 1 μm.
It is extremely small, around m. Therefore, the dust that is passed from door to door and has a large ventilation resistance from the beginning also accumulates on the honeycomb wall surface, which is so-called surface filtration, which tends to cause clogging.

また、多孔性を高め、平均孔径を増大させようとすると
機械的強度が極度に低下し、壁面にかかる圧力に抗しき
れずに破壊を招くことがある。
Furthermore, if an attempt is made to increase the porosity and the average pore diameter, the mechanical strength will be extremely reduced, and the wall surface may not be able to withstand the pressure, leading to destruction.

また、セラミック繊維をセラミック粉末で結合焼成した
場合、充分な強度を得ることができるものの、繊維セラ
ミックの充填密度が高くなり、通気抵抗が高く、高い圧
力損失を生じていた。一方、0へ一ン 捕集効率はきわめて良好で、排ガス中の粉塵をほぼ全て
除去することはできるが、表面付近の薄い層内ですでに
目づまりを生じており、フィルタ素子の寿命を短命にし
ていた。したがって、フィルタの交換、再生を頻繁に行
なわなければならず、内燃機関や燃焼炉のエネルギー効
率、運転効率を低下する結果を招いていた。
Furthermore, when ceramic fibers are bonded and fired with ceramic powder, sufficient strength can be obtained, but the packing density of the fiber ceramic becomes high, resulting in high ventilation resistance and high pressure loss. On the other hand, the collection efficiency is extremely good and almost all dust in the exhaust gas can be removed, but clogging has already occurred in the thin layer near the surface, shortening the life of the filter element. was. Therefore, the filter must be replaced and regenerated frequently, resulting in a decrease in the energy efficiency and operating efficiency of the internal combustion engine and combustion furnace.

本発明は上記の諸欠点を解消するもので、アルミナ繊維
やシリカ−アルミナ繊維などの耐熱性のセラミック繊維
をシリカ・アルミナ質系セラミック粉末の複合物に、さ
らに大きな粒径を有するセラミック粉末を混入して成形
焼成することで繊維セラミックの充填密度を下げ、捕集
効率、フィルタ素子寿命を制御することを目的とする。
The present invention solves the above-mentioned drawbacks by mixing heat-resistant ceramic fibers such as alumina fibers and silica-alumina fibers into a composite of silica-alumina ceramic powder, and ceramic powder having a larger particle size. The purpose is to lower the packing density of the fiber ceramic and control the collection efficiency and filter element life by molding and firing it.

本発明によって得られたフィルタの構造を顕微鏡観察し
たところ、これは、粒子径の大きなセラミック粉末を混
入して成雫焼成することで、大粒径セラミック粉末の周
辺には繊維セラミックの充填密度が粗になった箇所が生
成されやすいことが明らかになった。
Microscopic observation of the structure of the filter obtained by the present invention revealed that this is because ceramic powder with a large particle size is mixed in and fired, resulting in a packing density of fiber ceramic around the large ceramic powder. It has become clear that rough areas are more likely to be generated.

5ページ 特開昭58−223421(2) 本発明のフィルタの製造方法について述べるO平均繊維
径約3μmのセラミック繊維を0.1〜10M長に裁断
し、本節粘土や蛙目粘土、セリサイト粘土などのシリカ
・アルミナ質系セラミック粉末とともに水中に分散させ
て、スラリーを作製↓ する。このスラリーに約@=@〜600μmの粒径Cペ
タライト、スボジーメン、電融シリカなどのセラミック
粉末を適当量混入攪拌する。これに澱粉溶液などの凝集
剤を加えてセラミック繊維を中心にセラミック粉末を凝
集させ、所定の型により成形、乾燥する。このとき粒子
径が600μff+以上ではスラリー中に均一に懸濁さ
せることが困難となる。さらにフィルタ素子として適当
な構造に成形したのち、900〜1300’Cの範囲内
の温度で結合焼成を行なうことにより、繊維セラミック
フィルタ素子が得られる。スラリーを型で成形する際に
、長網抄紙機を用いると、所定の厚さの長尺のセラミッ
ク繊維ペーパを作製することができる。これをコルゲー
ト成型機により波形となし、平板状のヘーハーシートと
貼合せたものを巻取ってノ・ニカし・7 ム構造を作製し、焼成すると、繊維セラミックのハニカ
ムフィルタ素子を得ることも可能である。
5 pages JP-A-58-223421 (2) Describes the manufacturing method of the filter of the present invention Ceramic fibers with an average fiber diameter of about 3 μm are cut into lengths of 0.1 to 10 M and prepared using Honbushi clay, Frogme clay, or sericite clay. Disperse it in water with silica/alumina ceramic powder such as silica/alumina ceramic powder to create a slurry↓. An appropriate amount of ceramic powder such as C petalite, Subosiemen, or fused silica having a particle size of approximately 600 μm is mixed into this slurry and stirred. A flocculant such as a starch solution is added to this to agglomerate the ceramic powder around the ceramic fibers, which is then shaped into a predetermined mold and dried. At this time, if the particle size is 600 μff+ or more, it becomes difficult to uniformly suspend the particles in the slurry. Furthermore, after molding into a suitable structure as a filter element, a fiber ceramic filter element is obtained by performing bonding firing at a temperature within the range of 900 to 1300'C. If a Fourdrinier paper machine is used when forming the slurry with a mold, a long ceramic fiber paper with a predetermined thickness can be produced. This is made into a corrugated shape using a corrugate molding machine, and then laminated with a flat Heher sheet and rolled up to create a no-nickel structure.By firing, it is also possible to obtain a fiber ceramic honeycomb filter element. be.

得られた繊維セラミックフィルタ素子を走査形電子顕微
鏡を用いて観察すると、セラミック繊維が積層するなか
に、大粒径のセラミック粒子が取込まれており、その箇
所には、繊維セラミックの充填状態が疎となった空隙を
構成している状況が見出せる。この空隙は繊維径と同じ
3μm、l:9大きな粒径を有するセラミック粒子の周
辺に特に多く生じ得るものであった。したがって、この
空隙が多数の大粒径粒子周辺に存在する結果、通気抵抗
が低くなり、初期圧力損失が小さくなる。さらに、空隙
を通ってガスとともに粉塵も通9やすくなるので、フィ
ルタ素子の壁の内部においても粉塵の除去効果を発揮で
き、内部沖過作用を有効に働かすことができる。この内
部沖過作用によって粉塵の捕集容量が増大するため、寿
命も長くなり、燃焼pや内燃機関などにかかる負荷を軽
減することができ、その結果エネルギー効率も上昇する
When the obtained fiber ceramic filter element was observed using a scanning electron microscope, it was found that large ceramic particles were incorporated into the laminated ceramic fibers, and the filling state of the fiber ceramic was found to be at that location. A situation in which sparse voids are formed can be found. These voids were found to be particularly likely to occur around ceramic particles having a large particle size of 3 μm and 1:9, which is the same as the fiber diameter. Therefore, as a result of the existence of these voids around a large number of large particles, the ventilation resistance becomes low and the initial pressure loss becomes small. Furthermore, since dust as well as gas can easily pass through the gaps, the dust removal effect can be exerted even inside the wall of the filter element, and the internal permeation effect can be effectively utilized. Since the dust collection capacity increases due to this internal overloading, the service life becomes longer, and the load on the combustion engine and the internal combustion engine can be reduced, resulting in an increase in energy efficiency.

また、セラミック繊維を粘土成分とともにセラミック化
しているため耐圧性能、耐熱性能ともに優れた特性を示
す。たとえば曲げ強度では、嵩密度0.3〜O−5’f
An4のもので、粘土成分含有量等によって差を生じる
が、60〜10覗々dを得ることができ、1000〜1
300°Cの範囲内の高い温度にも充分耐える性能を有
するものである。
In addition, since the ceramic fiber is made into a ceramic along with the clay component, it exhibits excellent pressure resistance and heat resistance. For example, for bending strength, the bulk density is 0.3 to O-5'f
With An4, it is possible to obtain 60-10 Nozomi d, and 1000-1
It has the ability to sufficiently withstand high temperatures within the range of 300°C.

次に、本発明にかかるフィルタの一実施例を示し説明す
る。
Next, an embodiment of the filter according to the present invention will be shown and described.

シリカ−アルミナ系のセラミック繊維29重量部をカッ
ターで繊維長を0.1〜10Mとしたのち、少量の界面
活性剤とともに3000重量部の水に分散させた。一方
、セラミック粉末としてセリサイト系粘土を混合した本
節粘土を12重量部秤量分取する。大粒径粒子添加物と
して約100μmに粒径を調整したベタライト粉末4重
量部を上記の分取した粘土に混合し、これを水600重
量部に懸濁させた。これらのセラミック繊維分散液と混
合粘土懸濁液を攪拌混合してスラリーを作製した。
After cutting 29 parts by weight of silica-alumina ceramic fibers to a fiber length of 0.1 to 10 M using a cutter, the fibers were dispersed in 3000 parts by weight of water together with a small amount of surfactant. On the other hand, 12 parts by weight of Honbushi clay mixed with sericite clay as a ceramic powder was weighed out. As a large particle additive, 4 parts by weight of Betalite powder whose particle size was adjusted to about 100 μm was mixed with the above fractionated clay, and this was suspended in 600 parts by weight of water. These ceramic fiber dispersions and mixed clay suspensions were stirred and mixed to prepare a slurry.

さ′)らにバインダーとしてアクリルエマルジョン。Acrylic emulsion as a binder.

澱勺溶液を加え、ポリビニルアルコールを適量加7ベー
ソ えて粘度を調整したのち、30000重量部の水に稀釈
し、このスラリー稀釈液から長網抄紙機で常法により抄
紙して1肱厚のペーパーシートを作製した。この抄紙に
際して、大粒径粒子を含まない場合に比べて脱水乾燥に
要する時間が短縮されることが判明した。得られたペー
パーシートを二分し、一方をコルゲート成形機で波形に
成形したのち、他方のぺ〜バーシートを平板のま1貼合
せ一定量を巻き取る。次に、ペーパーシートと同じ材料
でハニカムのセル開口部を交互に閉塞し、一端が閉じら
れたセルが交互に多数集合したハニカムが構成される。
After adding the starch solution and adjusting the viscosity by adding an appropriate amount of polyvinyl alcohol, diluted with 30,000 parts by weight of water, and making paper from this diluted slurry using a Fourdrinier paper machine in a conventional manner to obtain paper with a thickness of 1 inch. A sheet was produced. It has been found that during paper making, the time required for dehydration and drying is shorter than when large particles are not included. The obtained paper sheet is divided into two parts, one of which is formed into a corrugated shape using a corrugated molding machine, and then the other paper sheet is laminated to a flat plate and a certain amount is rolled up. Next, the cell openings of the honeycomb are alternately closed with the same material as the paper sheet, forming a honeycomb in which a large number of cells with one end closed are assembled alternately.

このノ)ニカムを600″C空気雰囲気中で1時間加熱
し、次いで1250°Cで1.6時間加熱焼成すると、
ハニカム状の繊維セラミックフィルタ素子が得られた。
When this nicum was heated at 600"C in an air atmosphere for 1 hour, and then heated and calcined at 1250°C for 1.6 hours,
A honeycomb-shaped fiber ceramic filter element was obtained.

このハニカム状の繊維セラミックフィルタ素子の一例を
図に示す。図において、1は繊維セラミックにより構成
されたハニカム状のフィルタ素子で、一端が閉塞された
多数Qハニカムセルの集合体からなシ、フィルタ素子1
の一端にハニカムセルの閉塞部2と開口部3が本実施例
で得られた繊維セラミノタノイルク〃子を用いて一定時
間一定流滑の排ガス流中に設置して特性を測定した。そ
の結果を大粒径粒子の′:タライト粉末を混入しないで
作製した同様のンイルタ素子の特性と比べて下表に示す
An example of this honeycomb-shaped fiber ceramic filter element is shown in the figure. In the figure, reference numeral 1 denotes a honeycomb-shaped filter element made of fiber ceramic, which is an assembly of a large number of Q honeycomb cells with one end closed.
The closed part 2 and the opening part 3 of the honeycomb cell were placed at one end of the fiber ceramino silica obtained in this example in a constant flow of exhaust gas for a certain period of time, and the characteristics were measured. The results are shown in the table below in comparison with the characteristics of a similar Nirta element prepared without mixing large-sized particles of ':talite powder.

下表からも明らかなように、捕集層厚さ即ちSEMの観
察により粉塵が壁のどの深さ捷で進入しているかを測定
したものであるが、200〜6Q○μmの深さに粉塵が
観察されたことから、前述の内部沖過作用が効果的に働
いていることが裏付けられる。その他、初期圧力損失、
圧損上昇の特性に優れ捕集効率2曲げ強度においてもほ
ぼ同等の!rF性が得られた。
As is clear from the table below, the thickness of the collection layer, that is, the depth at which the dust enters the wall through SEM observation, is measured. , which was observed, confirms that the above-mentioned internal overflow effect is working effectively. Others, initial pressure loss,
Excellent pressure drop increase characteristics and almost the same collection efficiency 2 bending strength! rF property was obtained.

以下余白 9ページ 表 ペタライト粉末の有無による特性比較以上の結果か
ら、本発明による大粒径の粒子を含む繊維セラミックフ
、イルタ素子は特に初期圧カ損失、圧損上昇が低く、フ
ィルタとしてきわめて長寿命であり、高耐熱性であるこ
となどから燃焼炉、内燃機関への負荷軽減が達成されか
つ、エネルギー効率、運転効率の改善につながるなど優
れた波及効果を生み出すものである。
Table on page 9 with blank space Comparison of characteristics with and without petalite powder From the above results, the fiber ceramic filter element containing large-sized particles according to the present invention has particularly low initial pressure loss and pressure drop rise, and has an extremely long life as a filter. Because of its high heat resistance, it reduces the load on combustion furnaces and internal combustion engines, and produces excellent ripple effects such as improving energy efficiency and operational efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明による繊維セラミックフィルタの一実施例
の斜視図である。 10、−シ ト・・・・・フィルタ素子、2・・・・・・閉塞部、3
・曲・開口部。
The figure is a perspective view of one embodiment of a fiber ceramic filter according to the invention. 10, - Filter element, 2... Obstruction part, 3
-Curves/openings.

Claims (1)

【特許請求の範囲】[Claims] セラミック繊維と、前記セラミック繊維の平均繊維径よ
り大きな粒径のセラミック粉末との混合物を成形焼成し
てなることを特徴とする繊維セラミックフィルタ0
A fiber ceramic filter 0 characterized in that it is formed by molding and firing a mixture of ceramic fibers and ceramic powder having a particle size larger than the average fiber diameter of the ceramic fibers.
JP10721182A 1982-02-16 1982-06-21 Filter made of ceramic fiber Pending JPS58223421A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10721182A JPS58223421A (en) 1982-06-21 1982-06-21 Filter made of ceramic fiber
AU11196/83A AU540009B2 (en) 1982-02-16 1983-02-07 Exhaust gas filter
DE8383101241T DE3366848D1 (en) 1982-02-16 1983-02-09 Exhaust gas filter and method of making the same
EP83101241A EP0087067B1 (en) 1982-02-16 1983-02-09 Exhaust gas filter and method of making the same
CA000421705A CA1186641A (en) 1982-02-16 1983-02-16 Exhaust gas filter and method of making the same
US06/695,423 US4652286A (en) 1982-02-16 1985-01-28 Exhaust gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10721182A JPS58223421A (en) 1982-06-21 1982-06-21 Filter made of ceramic fiber

Publications (1)

Publication Number Publication Date
JPS58223421A true JPS58223421A (en) 1983-12-26

Family

ID=14453295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10721182A Pending JPS58223421A (en) 1982-02-16 1982-06-21 Filter made of ceramic fiber

Country Status (1)

Country Link
JP (1) JPS58223421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123219U (en) * 1986-01-27 1987-08-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123219U (en) * 1986-01-27 1987-08-05
JPH043609Y2 (en) * 1986-01-27 1992-02-04

Similar Documents

Publication Publication Date Title
US7141089B2 (en) Magnesium aluminum silicate structures for DPF applications
JP4516017B2 (en) Ceramic honeycomb structure
EP0087067B1 (en) Exhaust gas filter and method of making the same
US6942713B2 (en) Ceramic body based on aluminum titanate
EP1558545B1 (en) Aluminum titanate-based ceramic article
JP6294836B2 (en) Honeycomb structure comprising cement skin composition with crystalline inorganic fibrous material
JP4750343B2 (en) Method for manufacturing porous honeycomb structure, and honeycomb formed body
GB2302826A (en) Exhaust Gas Filter
US20080124516A1 (en) Method for Producing Porous Ceramic Structure
JPS6036364A (en) Aluminum titanate-mullite ceramic body, converter means and diesel microparticle filter for wood stove burning chamber therewith
WO2005030364A1 (en) Ceramic honeycomb filter and method for production thereof, and sealing material for ceramic honeycomb filter
US6576579B2 (en) Phosphate-based ceramic
JP4361449B2 (en) Method for producing cordierite honeycomb structure
JP6717196B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP2004535909A (en) Polcite-based ceramic with low CTE
JP6906468B2 (en) Ceramic porous body and its manufacturing method, and dust collection filter
JPS58223421A (en) Filter made of ceramic fiber
JPS62149316A (en) Exhaust gas filter
JP4571775B2 (en) Method for manufacturing porous honeycomb structure, and honeycomb formed body
JPH11114336A (en) Exhaust gas filter and its production
JP7180669B2 (en) ceramic honeycomb filter
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JPH0645510B2 (en) Inorganic oxide artificial fiber honeycomb structure and method for manufacturing the same
JPH03275110A (en) Exhaust gas filter
JPS58223420A (en) Manufacture of filter element made of ceramic fiber