JPS62149316A - Exhaust gas filter - Google Patents

Exhaust gas filter

Info

Publication number
JPS62149316A
JPS62149316A JP29161085A JP29161085A JPS62149316A JP S62149316 A JPS62149316 A JP S62149316A JP 29161085 A JP29161085 A JP 29161085A JP 29161085 A JP29161085 A JP 29161085A JP S62149316 A JPS62149316 A JP S62149316A
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
density
outlet
gas filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29161085A
Other languages
Japanese (ja)
Inventor
Takashi Fukunaga
福永 隆
Satoru Kuwano
桑野 哲
Toshihiro Mihara
三原 敏弘
Takao Kusuda
楠田 隆男
Masuo Takigawa
瀧川 益生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29161085A priority Critical patent/JPS62149316A/en
Publication of JPS62149316A publication Critical patent/JPS62149316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled filter having high mechanical strength by making density of a material in a rear part of a closed part of an outlet for exhaust gas of a ceramic honeycomb-shaped filter higher density in comparison with the part excepted from this rear part. CONSTITUTION:The titled filter is constituted by closing alternately the end parts of the cells 5 of a porous ceramic honeycomb structural body in an inlet part and an outlet part. An outlet reinforced part 15 is formed by constituting the filter so that density of a material in a rear part of a closed part of an outlet for exhaust gas of the filter is made to higher density in comparison with the other part. Therefore when burning the collected grains, resistance to cracking properties sufficient in practical use is exhibited and also cracking properties sufficient in practical use is exhibited and also sufficient strength is obtained for shear fracture or the like due to the pressure of the exhaust gas. Also similarly breakage of the inlet part due to the collision of the fine grains contained in exhaust gas can be prevented by increasing density of the material of the inlet part of exhaust gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえばディーゼルエンジンから排出される
微粒子を捕集し、かつその捕集した微粒子を燃焼させる
ことにより排気ガスを浄化する排ガスフィルターに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an exhaust gas filter that collects particulates emitted from, for example, a diesel engine and purifies exhaust gas by burning the collected particulates. be.

従来の技術 ディーゼルエンジンの排出する微粒子(パティキュレー
ト)は、力〒ボッ粒子(す\)と重質炭化水素化合物類
(可溶性有機物質)から成る。
BACKGROUND OF THE INVENTION Particulates emitted by diesel engines consist of particulates and heavy hydrocarbon compounds (soluble organic substances).

近年、大気および環境を保護するために、この微粒子の
排出の抑制に関する関心が高まっており、特にアメリカ
合衆国では、ディーゼル自動車を対象として、近々極め
て厳しい法規制を行なうことが予定されている〔)−−
r”うiレーレジス5’ (−’AehJKeyi此6
>−りVo1.49  A16 Jan、*4゜198
4]。
In recent years, there has been increasing interest in controlling the emission of particulates in order to protect the atmosphere and the environment, and in the United States in particular, very strict regulations are scheduled to be implemented soon for diesel vehicles. −
r"UiRegis5'(-'AehJKeyiKono 6
>-ri Vo1.49 A16 Jan, *4゜198
4].

この法規制においては、微粒子と同時にNOxをも低減
させることが要請されている0燃焼におけるNOxの生
成と微粒子の発生とはトレードオフの関係にあり、No
、の低減対策は一般に微粒子の排出を増加させる傾向に
ある。このためエンジン本体の改善のみによってこの法
規制に適合することは極めて困難と考えられ、微粒子に
関しては排気系に設けたフィルタ一部材で物理的に捕集
し、成る分量堆積させた後これを燃焼させて前記フィル
ターを再生する方法が最も有望な方法の一つとして様々
な検討が行なわれている〔例えばSAE  Paper
 xスx−イーペーパー810118゜830085な
ど〕。
In this regulation, there is a trade-off relationship between the generation of NOx and the generation of fine particles during zero combustion, which requires reducing NOx as well as fine particles.
, reduction measures generally tend to increase particulate emissions. For this reason, it is considered extremely difficult to comply with this regulation by simply improving the engine itself, and fine particles are physically collected using a filter installed in the exhaust system, deposited in a certain amount, and then combusted. As one of the most promising methods, various studies are being conducted on the method of regenerating the filter by using SAE Paper.
xsu x e-paper 810118゜830085 etc.].

発明が解決しようとする問題点 微粒子を捕集するためのフィルタとしては種々のものが
提案されているが、多孔質のコージライトを用いた押出
製法によるノ・ニカム形状のセラミックモノリスフィル
ターが最も広く検討されている。このコージライト製モ
ノリスフィルターは微粒子の捕集効率に優れ、又、圧力
損失も低いなど優れた特性を持つものであるが、捕集し
た微粒子をフィルター内で燃焼させ、フィルターの再生
を行なうに際し、局部的な高温にさらされて部材にクラ
ックが入ったり、又は溶融したりして破損する場合があ
る。
Problems to be Solved by the Invention Various types of filters have been proposed for collecting fine particles, but the most widely used is a ceramic monolith filter in the shape of a no-nicum made by extrusion using porous cordierite. It is being considered. This cordierite monolith filter has excellent properties such as high particle collection efficiency and low pressure loss, but when regenerating the filter by burning the captured particles within the filter, Exposure to localized high temperatures may cause cracks or melting of the component, resulting in damage.

これに対し、本発明者らはコージライトよりも一段と耐
熱性に優れたムライト繊維セラミックスの焼結体を用い
たフィルターを開発した(特開昭58−174212号
公報)。しかしながら、該フィルターにおいてもなお、
この燃焼時にクラックが発生する場合があることが認め
られた。本発明はこのクラック問題を解決し、実用的に
優れたディーゼルエンジン排気ガス浄化用フィルターを
提供することを目的とするものである。
In response to this problem, the present inventors have developed a filter using a sintered body of mullite fiber ceramics, which has better heat resistance than cordierite (Japanese Patent Application Laid-Open No. 174212/1982). However, even in this filter,
It was recognized that cracks may occur during this combustion. The object of the present invention is to solve this crack problem and provide a practically excellent filter for purifying diesel engine exhaust gas.

問題点を解決するための手段 本発明は極く高密度の低いムライト繊維等の多孔質セラ
ミックスの焼結体を用いることにより、耐クラツク性の
向上を図るとともに、排ガス出口閉塞部の後部の材料の
高密度を高くすることにより機械的強度の不足を補って
、効果的に前述の問題を解決するものである。
Means for Solving the Problems The present invention aims to improve crack resistance by using a sintered body of porous ceramics such as extremely low-density mullite fibers, and also improves the material at the rear of the exhaust gas outlet blocking part. By increasing the density of the material, the lack of mechanical strength is compensated for and the above-mentioned problem is effectively solved.

作用 ムライト繊維セラミックスの空隙率は約70〜80%と
極めて高い。したがって成る温度分布条件下において、
ある一点に過大な熱応力が加わって微細なき裂が発生し
ても、このき裂周辺に空隙スペースが豊富に存在するた
めにこのき裂が伝播しにくいという性質を持つ。この耐
クラツク性は繊維セラミックの空隙率が高いほど、すな
わち高密度が低いほど向上することが確認された。とこ
ろが高密度が低くなるにともなって機械的強度は低下す
る。実用上十分な耐クラツク性と十分な機械的強度を兼
ね備えた。f、%:密度の師団を見出すことは極めて難
しい。そこで前述のように極く高密度の低い繊維セラミ
ック焼結体を用い、排ガス出口閉塞部の後部の材料の高
密度を高くするという構成が考案された。すなわち、排
ガス出口閉塞部の後部にはディーゼル排ガス中の微粒子
は堆積しないので、この後部が堆積された微粒子の燃焼
による高温に直接さらされることはなく、高密度が比較
的高くともクラックが発生することはない。又、微粒子
の堆積する低高密度部分の機械的強度は弱いが、問題と
なる排ガス圧力によるせん断破壊は後部に位置する高雷
;密度部分によって効果的に防止される。
Working Mullite fiber ceramics have a very high porosity of about 70-80%. Therefore, under the temperature distribution conditions,
Even if a minute crack occurs due to excessive thermal stress being applied to one point, the crack is difficult to propagate because of the abundance of void space around the crack. It has been confirmed that this crack resistance improves as the porosity of the fiber ceramic increases, that is, as the density decreases. However, as the density decreases, the mechanical strength decreases. It has both practical crack resistance and sufficient mechanical strength. f, %: It is extremely difficult to find divisions of density. Therefore, as mentioned above, a configuration was devised in which a fiber ceramic sintered body with extremely low density was used to increase the density of the material at the rear of the exhaust gas outlet closing portion. In other words, since particulates in the diesel exhaust gas do not accumulate at the rear of the exhaust gas outlet blockage, this rear part is not directly exposed to high temperatures caused by combustion of the deposited particulates, and cracks occur even if the density is relatively high. Never. In addition, although the mechanical strength of the low-density part where fine particles accumulate is weak, shear failure due to exhaust gas pressure, which is a problem, is effectively prevented by the high-density part located at the rear.

実施例 本発明のムライト繊維セラミックス焼結体フィルターの
入口端面、及び断面図の一部を第1図に示す。このフィ
ルターの作成は以下の様に行なう。
EXAMPLE FIG. 1 shows an inlet end face and a part of a sectional view of the mullite fiber ceramic sintered filter of the present invention. This filter is created as follows.

まず最初に裁断されたシリカアルミナ繊維と、セラミッ
ク原料粉末の混合物を水に懸濁させ、この混合スラリー
にポリ酢酸ビニル等のバインダを添加した後、凝集剤で
凝集させ、長網式抄紙機で抄造しシートを作成する。シ
ート密度は、混合物の重量比によって可変である。得ら
れたシートを段ボール製造と同様の方法で波板状シート
1と平板状シート2を接着してなるコルゲートを作成し
次にこれを芯の周囲に接着しつつ、シートと同様な成分
を持つペースト状材料でセル端部に交互に閉塞部3を設
けながら巻き付け、ノ・ニカム形状を形成する。つまり
、上記波板状シート1と平板状シート2からなるフィル
ター壁4によってセル6を構成する。フィルターの形状
は、シートの巻き付は方法により円形、楕円形が作成可
能である。乾燥後、1000℃〜14oO℃で焼成させ
て目的とするフィルターを得る。円形に成形したフィル
ターの概観を第2図に示す。
First, a mixture of cut silica alumina fibers and ceramic raw material powder is suspended in water, and after adding a binder such as polyvinyl acetate to this mixed slurry, it is agglomerated with a flocculant, and then processed using a fourdrinier paper machine. Create a paper sheet. Sheet density is variable depending on the weight ratio of the mixture. Using the obtained sheet, a corrugated sheet 1 and a flat sheet 2 are bonded together in the same manner as in the production of corrugated board to create a corrugate, which is then bonded around the core and has the same components as the sheet. A pasty material is wound around the ends of the cells while providing closing parts 3 alternately to form a no-nikum shape. That is, the cell 6 is constituted by the filter wall 4 made up of the corrugated sheet 1 and the flat sheet 2. The shape of the filter can be circular or oval depending on the method of winding the sheet. After drying, it is fired at 1000° C. to 140° C. to obtain the desired filter. Figure 2 shows an overview of the circularly shaped filter.

このフィルターに用いているムライH3lt維セラミッ
クス焼結体は次の2つの特徴を持っている。
The Murai H3lt fiber ceramic sintered body used in this filter has the following two characteristics.

第一にコージライトと比較して溶融温度が高い。First, it has a higher melting temperature compared to cordierite.

従ってフィルターに堆積した微粒子を燃焼させ、フィル
ターの再生を行なう際に問題となるフィルターの溶融破
損が生じにくい。
Therefore, the particulates deposited on the filter are burned and the filter is less likely to be melted and damaged, which is a problem when the filter is regenerated.

第2に空隙率が70〜80%と極めて小さい。Secondly, the porosity is extremely small at 70-80%.

一般に多孔質セラミックにおいて空隙率を大きくすると
フィルター効率は低下する。しかしながら、該材料はセ
ラミック繊維が不規則に互に絡まり合った構造を持って
いるために実用上優れたフィルター効率を持つとともに
通気抵抗も低い。ムライトはコージライトに比較して熱
膨張係数が大きいので、部材内部に成る温度勾配が生じ
た場合クラックが入り易い。しかし、材料の空隙率が7
0〜80%と極めて大きくなって来ると、成る一点に過
大な熱応力が加わって微細なりラックが発生しても、該
部周辺に空隙スペースが豊富に存在するために、このク
ラックが伝帳しにくい。このような耐クラツク性は、繊
維セラミックスの空隙率を高くするほど、すなわち1(
1;密度を低くするほど向上することを確認した。
Generally, when the porosity of porous ceramics is increased, the filter efficiency decreases. However, since this material has a structure in which ceramic fibers are irregularly intertwined with each other, it has practically excellent filter efficiency and low ventilation resistance. Since mullite has a larger coefficient of thermal expansion than cordierite, it is more likely to crack if a temperature gradient occurs inside the member. However, the porosity of the material is 7
When the cracks become extremely large (from 0 to 80%), even if excessive thermal stress is applied to a single point and a minute crack occurs, this crack will not propagate because there are plenty of void spaces around that part. It's hard to do. Such crack resistance increases as the porosity of the fiber ceramic increases, that is, 1(
1; It was confirmed that the lower the density, the better the performance.

ところが第3図に示すように、材料の1(1;密度を低
下させるとその機械的強度が低下する。実用上十分な耐
クラツク性と十分な機械的強度を兼ね備えたtl;密度
の範囲を選定することは極めて難しい。
However, as shown in Figure 3, when the density of a material is reduced, its mechanical strength is reduced. It is extremely difficult to choose.

機械的強度の低い材料で炸裂したファイバーセラミック
フィルターを用いた場合にまず発生する破壊は、第4図
に示すように、排気ガスの圧力によってフィルターの眉
間接合部が剪断破壊されて、周辺部を残して中央部を含
む部分が後部方向に突出する破壊である。第6図は波板
状シートと平板状シートの接合部の拡大図である。フィ
ルター内に微粒子が堆積し、かつ排血ガス流量が増加し
てフィルター人口、出口間にかかる圧力差が大きくなる
とフィルターに加わるせん断力が大きくなり第6図に示
すように、波板状シート1と平板状シート2の接合部1
3の近傍にシートの剥離部13が生じる。この剥離が除
々に広がり遂には第4図に示す突出破壊に至る。第6図
はこの時の層間破壊の状況を示す斜視図である。
When using a fiber ceramic filter bursting from a material with low mechanical strength, the first fracture that occurs is as shown in Figure 4, the glabella joint of the filter is sheared and fractured by the pressure of the exhaust gas, causing the surrounding area to break. The only remaining part, including the central part, protrudes toward the rear. FIG. 6 is an enlarged view of the joint between the corrugated sheet and the flat sheet. When particulates accumulate in the filter and the flow rate of exhaust gas increases, and the pressure difference between the filter population and the outlet increases, the shear force applied to the filter increases, and as shown in FIG. 6, the corrugated sheet 1 and the joint part 1 of the flat sheet 2
A peeled portion 13 of the sheet is generated in the vicinity of 3. This peeling gradually spreads and finally leads to the protruding fracture shown in FIG. FIG. 6 is a perspective view showing the state of interlayer failure at this time.

本発明の排ガスフィルターにおいては、第1図において
排ガス出口側閉塞部の後部の材料の密度を該部以外の部
分より高密度を有するように構成されている。
In the exhaust gas filter of the present invention, the density of the material at the rear of the exhaust gas outlet side closing part in FIG. 1 is higher than that of the other parts.

第7図にフィルターに微粒子が堆積した状態を示す。図
に示すように排ガス出口側閉塞部の後部には微粒子は堆
積しないので、該部が微粒子燃焼による高温に直接さら
されることなく、薔密度が比較的高密度であってもクラ
ックが発生することはない。又、微粒子の堆積する低密
度部分の機械的強度は低いが、先述のような排気ガスの
圧力によるせん断破壊は、後部に位置する機械的強度の
高い嵩密度部分によって効果的に防止される。
FIG. 7 shows the state in which fine particles are deposited on the filter. As shown in the figure, since particulates do not accumulate at the rear of the exhaust gas outlet side blocking part, this part is not directly exposed to the high temperature caused by particulate combustion, and cracks can occur even if the density of the particles is relatively high. There isn't. Furthermore, although the mechanical strength of the low-density portion where the particles are deposited is low, shear failure due to the pressure of exhaust gas as described above is effectively prevented by the bulk-density portion with high mechanical strength located at the rear.

第8図は本発明の他の実施例の排ガスフィルターの構成
を示すものである。前述の排ガス出口側閉塞部の後部の
材料15とともに、排ガス入口部16の材料の密度も高
くされている。このように入口部の強度を高めることに
より、排ガス中に含まれる微粒子が入口部に繰シ返し衝
突して入口部の部材が欠落するというような問題を防ぐ
ことができる。この入口部は微粒子が堆積する部分であ
るが、その燃焼時に到達する温度は比較的低い温度にと
どまるので、この部分でクラックが生じる懸念は少ない
FIG. 8 shows the structure of an exhaust gas filter according to another embodiment of the present invention. In addition to the material 15 at the rear of the exhaust gas outlet side closing portion described above, the density of the material at the exhaust gas inlet portion 16 is also increased. By increasing the strength of the inlet in this way, it is possible to prevent problems such as parts of the inlet being broken due to repeated collisions of particulates contained in the exhaust gas with the inlet. This inlet part is a part where fine particles accumulate, but since the temperature reached during combustion remains relatively low, there is little concern that cracks will occur in this part.

このように排ガスフィルター材料の高密度を部分的に高
密度にする方法としては(1)抄紙機で抄造されたシー
トの一部にセラミック原料粉末を塗布した後、コルゲー
ト機によりハニカム形状を形成し焼成する方法。(2)
ハニカム形状を形成した後、出口端、又は入口端をセラ
ミック原料粉末を懸濁した液中に浸した後焼成する方法
。(3)焼成後のフィルターの出口端、又は入口端にコ
ロイド状シリカを含浸させる方法などを用いることがで
きる。
In this way, the method of partially increasing the density of the exhaust gas filter material is (1) applying ceramic raw material powder to a part of the sheet made by a paper machine, and then forming a honeycomb shape using a corrugating machine. How to bake. (2)
A method in which after forming a honeycomb shape, the outlet end or inlet end is immersed in a liquid in which ceramic raw material powder is suspended, and then fired. (3) A method may be used in which the outlet end or inlet end of the filter after firing is impregnated with colloidal silica.

+11 、 f2!の方法は高い機械的強度を得るのに
好適な方法であるが、セラミック原料粉末の量が多過ぎ
ると捕集した微粒子を燃焼させる時、燃焼の伝播性を悪
くする場合がある。そこで出口端の強化はセラミック原
料粉末を焼成前に塗布あるいは含浸させて行ない、入口
端の強化は焼成後にコロイド状シリカを含浸させて行な
う方法が実用上好ましい場合がある。
+11, f2! The method described above is a suitable method for obtaining high mechanical strength, but if the amount of ceramic raw material powder is too large, the propagation of combustion may be deteriorated when the collected fine particles are combusted. Therefore, it may be practically preferable to strengthen the outlet end by coating or impregnating it with ceramic raw material powder before firing, and to strengthen the inlet end by impregnating it with colloidal silica after firing.

発明の効果 以上述べたように本発明によれば、1!’!:密度の低
い多孔質セラミック材料で構成されたフィルターの出口
端、あるいは入口端と出口端を部分的に強化することに
より、捕集した微粒子を燃焼させる時に実用上十分な耐
クラツク性を有するとともに、排ガスの圧力によるせん
断破壊等に対しても実用上十分な機械的強度を有する優
れた排ガスフィルターを得ることができる。
Effects of the Invention As described above, according to the present invention, 1! '! : By partially reinforcing the outlet end, or the inlet and outlet ends of a filter made of low-density porous ceramic material, it has sufficient crack resistance for practical use when burning the collected particulates. , an excellent exhaust gas filter having practically sufficient mechanical strength against shear failure due to exhaust gas pressure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図α、bは本発明の一実施例における排ガスフィル
ターの断面図、第2図は同排ガスフィルターの概観図、
第3図は同排ガスフィルターのセラミック密度と機械的
強度の関係を示す特性図、第4図、第5図、第6図は同
排ガスフィルターの破壊状態を説明するだめの図、第7
図、第8図は同強化トラップの断面図である。 1・・・・・・波板状シート、2・・団・平板状ソート
、3・・・・・・閉塞部、4・・・・・・フィルター壁
、6・・・・・・セル、6・・・・・・入口端、7・・
川・出口端、8・・印・排ガス、9・・・・・・合端ケ
ース、1o・・団・断熱材、11・・・・・・フィルタ
ー、12・・・・・・排ガス流、13・・・・・・接合
部、14・・・・・・剥離部、16・・・・・・出口強
化部、16・・・・・・入口強化部。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 第3図 乞2ミヮク婁第1,7 第4図 第5図 第7図
Figures 1 α and b are cross-sectional views of an exhaust gas filter according to an embodiment of the present invention, and Figure 2 is an overview of the same exhaust gas filter.
Figure 3 is a characteristic diagram showing the relationship between ceramic density and mechanical strength of the exhaust gas filter, Figures 4, 5, and 6 are diagrams illustrating the state of destruction of the exhaust gas filter, and Figure 7
8 are cross-sectional views of the reinforced trap. DESCRIPTION OF SYMBOLS 1... Corrugated sheet, 2... Group/flat sorting, 3... Obstruction part, 4... Filter wall, 6... Cell, 6... Entrance end, 7...
River/outlet end, 8...mark/exhaust gas, 9...joint case, 1o...group/insulation material, 11...filter, 12...exhaust gas flow, 13...Joint part, 14...Peeling part, 16...Outlet reinforcement part, 16...Inlet reinforcement part. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Figure 3 Figure 2 Figure 1, 7 Figure 4 Figure 5 Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1)多孔質セラミックスハニカム構造体のセル孔の端
部を入口部と出口部で交互に閉塞してフィルターを構成
し、このフィルターの排ガス出口閉塞部の後部の材料の
嵩密度をこの後部以外の部分より高密度を有するように
構成したことを特徴とした排ガスフィルター。
(1) A filter is constructed by alternately closing the ends of the cell pores of the porous ceramic honeycomb structure at the inlet and outlet, and the bulk density of the material at the rear of the exhaust gas outlet closing section of this filter is adjusted to the area other than this rear. An exhaust gas filter characterized in that the exhaust gas filter is configured to have a higher density than the part of the exhaust gas filter.
(2)多孔質セラミックスが繊維セラミックス焼結体で
ある特許請求の範囲第1項記載の排ガスフィルター。
(2) The exhaust gas filter according to claim 1, wherein the porous ceramic is a sintered fiber ceramic.
(3)フィルターの排ガス出口閉塞部の後部と共に排ガ
ス入口端部の材料密度もその他の部分よりも高密度を有
するように構成した特許請求の範囲第2項記載の排ガス
フィルター。
(3) The exhaust gas filter according to claim 2, wherein the material density at the exhaust gas inlet end as well as at the rear of the exhaust gas outlet closing portion of the filter is higher than that at other portions.
(4)局部的に高密度を有する構成体を得る手段として
、耐火粘土、又はコロイド状のシリカを含浸、又は塗布
する方法を用いた特許請求の範囲第3項記載の排ガスフ
ィルター。
(4) The exhaust gas filter according to claim 3, which uses a method of impregnating or coating fireclay or colloidal silica as a means of obtaining a locally high-density structure.
(5)排ガス入口端は、コロイド状のシリカを含浸、又
は塗布することによって密度を高め、排ガス出口閉塞部
の後部は耐火粘土を含浸、又は塗布することによって密
度を高める特許請求の範囲第3項記載の排ガスフィルタ
ー。
(5) The exhaust gas inlet end is made denser by impregnating or coating colloidal silica, and the rear part of the exhaust gas outlet closing part is made denser by impregnating or coating fireclay. Exhaust gas filter as described in section.
JP29161085A 1985-12-24 1985-12-24 Exhaust gas filter Pending JPS62149316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29161085A JPS62149316A (en) 1985-12-24 1985-12-24 Exhaust gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29161085A JPS62149316A (en) 1985-12-24 1985-12-24 Exhaust gas filter

Publications (1)

Publication Number Publication Date
JPS62149316A true JPS62149316A (en) 1987-07-03

Family

ID=17771174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29161085A Pending JPS62149316A (en) 1985-12-24 1985-12-24 Exhaust gas filter

Country Status (1)

Country Link
JP (1) JPS62149316A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745759A2 (en) * 1995-05-30 1996-12-04 Sumitomo Electric Industries, Inc. Particulate trap for diesel engine
EP0747579A2 (en) * 1995-05-30 1996-12-11 Sumitomo Electric Industries, Limited Particulate trap for diesel engine
EP0849444A2 (en) * 1996-12-18 1998-06-24 Sumitomo Electric Industries, Ltd. Particulate trap for a diesel engine
US5851249A (en) * 1996-07-25 1998-12-22 Toyota Jidosha Kabushiki Kaisha Particulate trap for a diesel engine
JP2005125318A (en) * 2003-09-29 2005-05-19 Hitachi Metals Ltd Ceramic honeycomb filter and production method therefor, and sealing material for ceramic honeycomb filter
KR101123173B1 (en) 2003-09-29 2012-03-19 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb filter and method for production thereof
US10352211B2 (en) 2014-01-27 2019-07-16 Denso Corporation Exhaust gas purification filter and method of producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745759A2 (en) * 1995-05-30 1996-12-04 Sumitomo Electric Industries, Inc. Particulate trap for diesel engine
EP0747579A2 (en) * 1995-05-30 1996-12-11 Sumitomo Electric Industries, Limited Particulate trap for diesel engine
EP0745759A3 (en) * 1995-05-30 1997-03-05 Sumitomo Electric Industries Particulate trap for diesel engine
EP0747579A3 (en) * 1995-05-30 1997-03-26 Sumitomo Electric Industries Particulate trap for diesel engine
US5709722A (en) * 1995-05-30 1998-01-20 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
US5863311A (en) * 1995-05-30 1999-01-26 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
US5851249A (en) * 1996-07-25 1998-12-22 Toyota Jidosha Kabushiki Kaisha Particulate trap for a diesel engine
EP0849444A2 (en) * 1996-12-18 1998-06-24 Sumitomo Electric Industries, Ltd. Particulate trap for a diesel engine
EP0849444A3 (en) * 1996-12-18 1998-07-08 Sumitomo Electric Industries, Ltd. Particulate trap for a diesel engine
JP2005125318A (en) * 2003-09-29 2005-05-19 Hitachi Metals Ltd Ceramic honeycomb filter and production method therefor, and sealing material for ceramic honeycomb filter
KR101123173B1 (en) 2003-09-29 2012-03-19 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb filter and method for production thereof
US10352211B2 (en) 2014-01-27 2019-07-16 Denso Corporation Exhaust gas purification filter and method of producing the same

Similar Documents

Publication Publication Date Title
EP1413345B1 (en) Honeycomb structural body and method of manufacturing the structural body
JP4592695B2 (en) Honeycomb structure and exhaust gas purification device
JP4246425B2 (en) Honeycomb filter
US7041359B2 (en) Honeycomb structure and assembly thereof
JP4509029B2 (en) Honeycomb structure
EP1437491B1 (en) Filter catalyst for purifying exhaust gases
EP1726698B1 (en) Inorganic fiber aggregate, method for producing inorganic fiber aggregate, honeycomb structure and method for producing honeycomb structure
EP1251247B1 (en) Exhaust gas purifying filter
JP2003117320A (en) Honeycomb filter
WO2006106785A1 (en) Honeycomb structure body
WO2006041174A1 (en) Ceramic honeycomb structure
JP2003275521A (en) Honeycomb filter
JPWO2003093657A1 (en) Honeycomb filter for exhaust gas purification
JPWO2008078799A1 (en) Honeycomb structure and manufacturing method thereof
JPH0550323B2 (en)
JP4890857B2 (en) Honeycomb structure
EP1308605B1 (en) Ceramic filter and method for manufacture thereof
EP1649917A1 (en) Honeycomb structure body
JPS62149316A (en) Exhaust gas filter
CA2036854A1 (en) Exhaust filter element and exhaust gas-treating apparatus
JP2001096112A (en) Honeycomb filter and honeycomb filter aggregate
KR20090048110A (en) Honeycomb structure body with an asymmetric plugging configuration for improving back pressure difference and preparation method thereof
JPH05115722A (en) Exhaust gas filter
CA1193206A (en) Exhaust gas filter
JPH0555687B2 (en)