JPS58223009A - Crystal oscillation type film thickness monitor - Google Patents
Crystal oscillation type film thickness monitorInfo
- Publication number
- JPS58223009A JPS58223009A JP10566982A JP10566982A JPS58223009A JP S58223009 A JPS58223009 A JP S58223009A JP 10566982 A JP10566982 A JP 10566982A JP 10566982 A JP10566982 A JP 10566982A JP S58223009 A JPS58223009 A JP S58223009A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- container
- film thickness
- heater
- thickness monitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
- C23C14/545—Controlling the film thickness or evaporation rate using measurement on deposited material
- C23C14/546—Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は真空蒸着、スパッタリング等の方法によシ、セ
ラミック等に形成された薄膜の膜厚を測定する膜厚モニ
タに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film thickness monitor for measuring the thickness of a thin film formed on ceramic or the like by a method such as vacuum evaporation or sputtering.
上記真空蒸着やスパッタリングは、真空中にてセラミッ
ク等の材料表面に皮膜形成物質の微粒子を衝突付着せし
めることによシ薄膜を形成する方法である。そして、こ
れ等により形成された薄膜の膜厚モニタとして一般に使
用されている水晶発振式膜厚モニタは、水晶振動子から
なるセンサを上記材料と並べて真空容器内に設置し、材
料と同一条件でセンサに上記物質の微粒子を衝黄付着せ
しめ、これによるセンサの質量変化に伴なう発振周波数
の変化を検知することにより、材料に形成された薄膜の
膜厚を換算検知するようにしたものである。The vacuum evaporation and sputtering described above are methods for forming a thin film by colliding and depositing fine particles of a film-forming substance on the surface of a material such as a ceramic in a vacuum. A crystal oscillation type film thickness monitor, which is generally used to monitor the thickness of thin films formed using these materials, is a method in which a sensor consisting of a crystal oscillator is placed in a vacuum container alongside the above-mentioned material, and the sensor is placed under the same conditions as the material. By attaching fine particles of the above substances to the sensor and detecting the change in oscillation frequency due to the change in mass of the sensor, the thickness of the thin film formed on the material can be detected in terms of conversion. be.
第1図は真空蒸着法で薄膜を形成する場合に一般に用い
られる装置の構成を示したもので、図示しない真空ポン
プに接続された硬質ガラス製の真空容器1内にはモリブ
デンあるいはタングステン製のボート2が設置しである
。このボ−ト2は図示しない通電手段により通電されて
抵抗発熱するようになっている。上記ポート2にはベレ
ット状の薄膜形成物質Aが入れてあり、真空中でポート
2の発熱にょシ熱せられると蒸気微粒子となって放射す
る。Figure 1 shows the configuration of an apparatus generally used when forming thin films by vacuum evaporation. A molybdenum or tungsten boat is placed inside a hard glass vacuum vessel 1 connected to a vacuum pump (not shown). 2 is installed. This boat 2 is energized by an energizing means (not shown) and generates resistance heat. A pellet-shaped thin film forming substance A is placed in the port 2, and when it is heated by the heat generated by the port 2 in a vacuum, it becomes vapor particles and emits it.
一方、真空容器1内の上方には図示しない治具によシ、
上記ボート2の方向を向けてセラミック等の材料3が配
設しである。この材料3と近接して図示しない治具によ
り膜厚モニタの容器4が設けである。この容器4内には
水晶振動子よυなるセンサが収納されており、容器4の
底面には開口部が設けてあって、放射した蒸気微粒子は
この開口部を通って材料3におけるとほぼ同一条件でセ
ンサに付着し、その発振周波数が変化するのである。On the other hand, a jig (not shown) is placed above the vacuum container 1.
A material 3 such as ceramic is disposed facing the direction of the boat 2. A film thickness monitor container 4 is provided in close proximity to this material 3 using a jig (not shown). A sensor called υ such as a crystal oscillator is housed in this container 4, and an opening is provided at the bottom of the container 4, and the emitted vapor particles pass through this opening and are almost identical to those in material 3. Depending on the conditions, it adheres to the sensor and its oscillation frequency changes.
容器4にはセンサの出方信号を送る信号ケープA151
の一端が接続さiておシ、このケーブルの他端は真空容
器1外の測定装置5に達している。また容器4の外周に
は薄膜形成時、ボート2からの輻射熱によって容器4の
温度が上昇するのを防止するため、冷却水を流す冷却水
導管8が巻回してあり、この冷却水導管8には冷却水の
流通を調整するパルプ81が設けである。Container 4 has a signal cape A151 that sends a sensor output signal.
One end of the cable is connected, and the other end of this cable reaches a measuring device 5 outside the vacuum vessel 1. In addition, a cooling water conduit 8 through which cooling water flows is wound around the outer circumference of the container 4 in order to prevent the temperature of the container 4 from rising due to radiant heat from the boat 2 during thin film formation. A pulp 81 is provided to adjust the flow of cooling water.
ところで材料の交換等の為に上記真空容器lを大気に戻
すと、大気中のガス成分、特に水分がセンサに付着した
微粒子に吸着される。膜厚モニタは先の膜形成工程で上
記センサに付着せしめた微粒子の上に、続いて次の膜形
成工程で新たな微粒子を付着せしめ、この時のセンサの
重量増加分から新たに形成された膜厚を測定するもので
あるから、上記復圧時に吸着された水分が次の膜形成工
程中に脱離すると、この脱離した水分の質量減少分が測
定の誤差になる。そとて従来は膜形成を開始する前に長
時間の真空引きを行なって、センサからの水分を脱離除
去する必要があった。この水分の脱離速度は非常に遅く
、水分を完全に脱離せしめるのに数時間 1.、:
を要する。By the way, when the vacuum container l is returned to the atmosphere for exchanging materials, etc., gas components in the atmosphere, especially moisture, are adsorbed by the fine particles adhering to the sensor. In the film thickness monitor, new particles are attached to the sensor in the next film formation process on top of the particles that were attached to the sensor in the previous film formation process, and the newly formed film is measured by the increase in the weight of the sensor at this time. Since the thickness is to be measured, if the moisture adsorbed during the above-mentioned pressure restoration is desorbed during the next film forming step, the mass reduction of this desorbed moisture will cause a measurement error. Conventionally, before starting film formation, it was necessary to perform a long period of evacuation to remove moisture from the sensor. The rate of desorption of this water is very slow, and it takes several hours to completely remove the water. , :
It takes.
本発明は水晶発振式膜厚モニタにおいて、水晶発振子よ
りなる上記モニタのセンサを加熱する手段を設けること
により、上記センサに付着した上記微粒子に吸着されて
いる水分を積極的に脱離せしめ、脱離に要する時間を大
幅に短縮して、作業能率を上げようとするものである・
ここで加熱手段としては、伝導伝熱による加熱あるいは
輻射伝熱による加熱のどちらを用いてもよい。The present invention provides a crystal oscillation type film thickness monitor, in which water adsorbed to the fine particles adhering to the sensor is actively desorbed by providing means for heating the sensor of the monitor made of a crystal oscillator, The aim is to significantly shorten the time required for desorption and increase work efficiency.
Here, as the heating means, either heating by conduction heat transfer or heating by radiation heat transfer may be used.
以下本発明を図示の実施例により説明する。The present invention will be explained below with reference to illustrated embodiments.
第2図は第1の実施例を示すもので伝導伝熱による加熱
を用いた例である。膜厚モニタの容器4は下半部たるセ
ンサフロントカバー41と上半部たるセンサボデー42
よりなり、センサフロントカバー41の底面中心部には
抜き穴41aが設けである。センサ9は円形の薄板状水
晶発振子91とその上下面に接着した電極92(うち一
方のみ図示)よりなシ、金属製のクリスタルホルダ10
に収納しである。クリスタルホルダ10の底面中心部に
は、上記センサフロントカバー41の抜き穴41aと同
一形状の抜き穴10aが設けである。このクリスタルホ
ルダ10には絶縁性セラミック製のりテイナ11が嵌着
される。上記リテイナ11の底面には複数の板バネ部材
11aが設けてあυ、リテイナ11を嵌着した状態で上
記電極92に弾性的に抑圧接触せしめられる。この板バ
ネ部材11aの基端はりテイナ11の底面を貫通して、
底面の上面全面に形成された電極11j)に接続しであ
る。FIG. 2 shows the first embodiment, which is an example in which heating by conduction heat transfer is used. The film thickness monitor container 4 has a sensor front cover 41 as a lower half and a sensor body 42 as an upper half.
A hole 41a is provided in the center of the bottom surface of the sensor front cover 41. The sensor 9 consists of a circular thin-plate crystal oscillator 91 and electrodes 92 (only one of which is shown) bonded to the top and bottom surfaces of the crystal oscillator 91, and a metal crystal holder 10.
It is stored in. A hole 10a having the same shape as the hole 41a of the sensor front cover 41 is provided at the center of the bottom surface of the crystal holder 10. A glue retainer 11 made of insulating ceramic is fitted into this crystal holder 10. A plurality of leaf spring members 11a are provided on the bottom surface of the retainer 11, and are brought into elastic pressure contact with the electrodes 92 when the retainer 11 is fitted. The proximal end of the leaf spring member 11a penetrates the bottom surface of the retainer 11,
It is connected to the electrode 11j) formed on the entire upper surface of the bottom surface.
上記の如くセンサ9を収納して一体化されたクリスタル
ホルダ10とリテイナ11をセンサフロントカバー41
に収納する。この時、クリスタルホルダ10の抜き穴1
0aとセンサフロントカバー41の抜き穴41aの位置
は一致する。この状態でセンサフロントカバー411C
センサボデー42を冠着すると、センサボデー42に設
けた図示しないバネ部材がリテイナ11のtixlbに
押圧接触せしめられる。このバネ部材はセンサボデー4
2の外周面に設けたコネクタ52aに接続されている。The crystal holder 10 and retainer 11, which house the sensor 9 and are integrated as described above, are attached to the sensor front cover 41.
Store it in. At this time, punch hole 1 of crystal holder 10
The positions of the hole 41a of the sensor front cover 41 and the position of the hole 41a of the sensor front cover 41 match. In this state, sensor front cover 411C
When the sensor body 42 is mounted, a spring member (not shown) provided on the sensor body 42 is pressed into contact with the tixlb of the retainer 11. This spring member is attached to the sensor body 4.
It is connected to a connector 52a provided on the outer peripheral surface of 2.
コネクタ52aにはこれと対となったコネクタ521)
により、信号ケープ/1151が接続しである。したが
ってセンサ9の出力信号は水晶発振子91の上面に取り
つけられた電極92から、リティナ11の板バネ部材1
1a、電極111)を経由してコネクタ152aに達す
る経路および水晶発振子91の下面に取りつけられた図
示しない電極からクリスタルホルダ10、センサフロン
トカバー41、センサボデー42の各本体を経由してコ
ネクタ52aに達する経路の両経路によって、信号ケー
ブル51により真空容器l外の測定装置5(第1図)に
入力される。The connector 52a has a mating connector 521)
Therefore, the signal cape/1151 is connected. Therefore, the output signal of the sensor 9 is transmitted from the electrode 92 attached to the top surface of the crystal oscillator 91 to the leaf spring member 1 of the retainer 11.
1a, electrode 111) to reach connector 152a, and from an electrode (not shown) attached to the lower surface of crystal oscillator 91 to connector 52a via each main body of crystal holder 10, sensor front cover 41, and sensor body 42. The signal is input via a signal cable 51 to the measuring device 5 (FIG. 1) outside the vacuum vessel 1 via both paths.
上記センサボデー42には先端をワッシャ状に形成した
熱電対12が螺着してあり、膜厚モニタ容器4の温度を
測定するようになっている。A thermocouple 12 having a washer-shaped tip is screwed onto the sensor body 42 to measure the temperature of the film thickness monitor container 4.
一方前述の如く冷却水導管8を付設したセンサフロント
カバー41には本発明になる加熱手段たるヒータ7が設
けである。ヒータ7は金属製保護管72を上記フロント
カバー41の外周に沿って巻回し、その内部に図示しな
い絶縁被覆されたニクロムヒータを収納したものである
。On the other hand, the sensor front cover 41 to which the cooling water conduit 8 is attached as described above is provided with the heater 7 which is the heating means of the present invention. The heater 7 has a metal protection tube 72 wound around the outer periphery of the front cover 41, and an insulating coated nichrome heater (not shown) housed inside the tube.
−シ
上記保護管72とフロントカバーの外周面とは全周溶接
されておシ、保護管72の両端部はコネクタ71aと一
体的に接合しである。コネクタ’71aと対をなすコネ
クタ71bには電力ケープ/L’71が接続され、その
他端は真空容器l(第1図)外の図示しない電源に接続
されている。- The protection tube 72 and the outer peripheral surface of the front cover are welded all around, and both ends of the protection tube 72 are integrally joined to the connector 71a. A power cape/L'71 is connected to the connector 71b that is paired with the connector '71a, and the other end is connected to a power source (not shown) outside the vacuum vessel l (FIG. 1).
次に本発明になる膜厚モニタの作用について述べる。Next, the operation of the film thickness monitor according to the present invention will be described.
真空容器1を復圧して次の蒸着工程に移る前に、冷却水
導管8のバルブ81を閉めて冷却水を止める。次にヒー
タ7に通電すると、ヒータ7の熱はセンサフロントカバ
ー41およびクリスタルホルダ10を伝導してセンサ9
に達し、センサ9が加熱され、センサ9に先の蒸着工程
で付着した微粒子に吸着された水分等は速やかに脱離す
る。この時上記ヒータマの熱はセンサボデー42にも伝
わるから、熱電対12にて測温する。この加熱温度は1
50°C以上にするのが望ましい。またヒータ7への通
電タイミングは蒸着準備期間中のいつでも良いが、充分
高真空になった後のほうが効率的である。Before repressurizing the vacuum container 1 and proceeding to the next vapor deposition process, the valve 81 of the cooling water conduit 8 is closed to stop the cooling water. Next, when the heater 7 is energized, the heat of the heater 7 is conducted through the sensor front cover 41 and the crystal holder 10 and the sensor 9
The sensor 9 is heated, and moisture and the like adsorbed by the fine particles that adhered to the sensor 9 in the previous vapor deposition step are quickly desorbed. At this time, the heat of the heater is also transmitted to the sensor body 42, so the temperature is measured with the thermocouple 12. This heating temperature is 1
It is desirable to keep the temperature at 50°C or higher. Although the heater 7 may be energized at any time during the deposition preparation period, it is more efficient to energize the heater 7 after the vacuum is sufficiently high.
充分加熱した後はヒータ7への通電をやめ、バルブ81
を開けて冷却水導管8に冷却水を流し、容器4とその中
に収納されだセンサ9の温度を下げる。充分に温度が下
がったことはセンサボデー42に装着した上記熱電対1
2によって確認する。After sufficient heating, stop energizing the heater 7 and close the valve 81.
The container 4 is opened and cooling water is allowed to flow through the cooling water conduit 8 to lower the temperature of the container 4 and the sensor 9 housed therein. The thermocouple 1 attached to the sensor body 42 indicates that the temperature has decreased sufficiently.
Confirm by 2.
このようにして充分かつ速やかにセンサ9の水分を脱離
せしめた後に、次の蒸着工程に移る。After the moisture in the sensor 9 is sufficiently and quickly removed in this way, the next vapor deposition step is started.
以上の如く本発明になる水晶発振式膜厚モニタによれば
、センサたる水晶発振子に付着した薄膜形成用物質の微
粒子に吸着された水分等を、上記モニタ客語に巻回設置
したヒータによって速やかに加熱脱離せしめることがで
き、従来長時間を要した蒸着準備時間を飛躍的に短縮す
ることができる。As described above, according to the crystal oscillation type film thickness monitor according to the present invention, moisture etc. adsorbed to the fine particles of the thin film forming substance attached to the crystal oscillator serving as the sensor are removed by the heater wound around the monitor. Thermal desorption can be carried out quickly, and the preparation time for vapor deposition, which conventionally required a long time, can be dramatically shortened.
第3図は本発明の第2の実施例を示すものであり、輻射
伝熱による加熱の例である。皮膜形成物質の表面は大気
中の水分等が付着し、汚染されているため、蒸着初期に
は材料や膜厚モニタをシャッタで遮閉して、汚染された
皮膜形成物質蒸気が付着しないようにしている。本実施
例は支柱14に支持せしめられて、旋回可能としたシャ
ッタ13の上面にヒータ7を設置したものである。ヒー
タ保護管72は波形にシャ・ンタ13のほぼ全面に溶接
によつC設けてあり、保護管72内には前記実施例同様
被覆されたニクロム線が収納しである。また熱電対12
はセンサフロントカバー41の底面に装着しである。FIG. 3 shows a second embodiment of the present invention, and is an example of heating by radiant heat transfer. Since the surface of the film-forming substance is contaminated by adhesion of atmospheric moisture, etc., the material and film thickness monitor should be closed with a shutter during the early stages of vapor deposition to prevent contaminated film-forming substance vapor from adhering. ing. In this embodiment, a heater 7 is installed on the upper surface of a shutter 13 which is supported by a support column 14 and is rotatable. A heater protection tube 72 is provided in a corrugated shape by welding on almost the entire surface of the shutter 13, and a coated nichrome wire is housed in the protection tube 72 as in the previous embodiment. Also thermocouple 12
is attached to the bottom surface of the sensor front cover 41.
本実施例においてはセンサは抜き穴゛41aを通してヒ
ータの輻射により直接加熱される。この輻射熱による温
度上昇はセンサフロンFカッく−41の底面に装着した
上記熱電対12によって測定される。壕だ本実施例はニ
クロムヒーターに限定されるものではなく、シャッタに
加熱う、ンプを取り付けて輻射加熱手段としたものであ
ってもよい。In this embodiment, the sensor is directly heated by radiation from the heater through the hole 41a. The temperature rise due to this radiant heat is measured by the thermocouple 12 attached to the bottom of the sensor Freon F cup-41. The present embodiment is not limited to the nichrome heater, but a heating pump may be attached to the shutter to serve as a radiant heating means.
以上の実施例においては熱電対によって加熱温度及び冷
却温度の確認をしているが、あらか2じめヒータの容量
およびセンサ部の熱容量よシヒータの通電電圧、通電時
間を決め、また冷却時間も長めにしておけば、必らずし
も上記熱電対は必要としない。In the above embodiment, the heating temperature and cooling temperature are confirmed using a thermocouple, but the energizing voltage and energizing time of the heater are determined in advance based on the capacity of the heater and the heat capacity of the sensor section, and the cooling time is also determined in advance. If the length is long, the above thermocouple is not necessarily required.
以上の如く本発明によれば、水晶発振式膜厚モニタの水
晶発振子の再生を非常に短時間に行なうことができ、真
空蒸着以外にもスパッタリング、イオンブレーティング
等、真空中での薄膜形成作業の能率向上および膜厚測定
精度向上に資するところ大である。As described above, according to the present invention, the crystal oscillator of the crystal oscillation type film thickness monitor can be regenerated in a very short time. This greatly contributes to improving work efficiency and film thickness measurement accuracy.
第1図は真空蒸着法で薄膜を形成する場合の従来装置の
構成を示す図、第2図は本発明の水晶発振式膜厚モニタ
の第1の実施例の分解斜視図、第3図は第2の実〃1−
例の全体斜視図である。
4・・・・・・水晶発振式膜j4jモニタの容器41a
・・・・・・水晶発振式膜厚モニタの容器の穴7・・・
・・・ヒータ(加熱手段)
72・・・・・・ヒータの保護管
13・・・・・・シャッタ部材
91・・・・・・水晶発振子
第1図
第2図
第3図
42FIG. 1 is a diagram showing the configuration of a conventional device for forming thin films by vacuum evaporation, FIG. 2 is an exploded perspective view of the first embodiment of the crystal oscillation type film thickness monitor of the present invention, and FIG. Second fruit〃1-
FIG. 2 is an overall perspective view of an example. 4...Crystal oscillation type membrane j4j monitor container 41a
...hole 7 in the container of the crystal oscillation type film thickness monitor...
... Heater (heating means) 72 ... Heater protection tube 13 ... Shutter member 91 ... Crystal oscillator Fig. 1 Fig. 2 Fig. 3 Fig. 42
Claims (3)
、容器に被膜形成物質の微粒子を容器内に導入するため
の穴を設けた水晶発振式膜厚モニタにおいて、容器に近
接して上記発振子に付着した水分を加熱蒸発せしめるた
めの加熱手段を設けたことを特徴とする水晶発娠式膜厚
モニタ。(1) In a crystal oscillation type film thickness monitor that has a crystal oscillator built into the container and has a hole in the container for introducing fine particles of a film-forming substance into the container, the oscillator is placed close to the container. A quartz crystal film thickness monitor characterized by being provided with a heating means for heating and evaporating attached moisture.
護管を上記容器の囲シに巻回して構成した特許請求の範
囲第1項記載の水晶発振式膜厚モニタ。(2) The crystal oscillation type film thickness monitor according to claim 1, wherein the heating means is constructed by winding a protective tube with a nichrome wire heater inside the container around the container.
シャッタ部材に輻射加熱源を付設して構成した特許請求
の範囲第1項記載の水晶発振式膜厚モニタ。(3) The crystal oscillation type film thickness monitor according to claim 1, wherein the heating means is constructed by attaching a radiant heating source to a shutter member for opening and closing a hole provided in the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10566982A JPS58223009A (en) | 1982-06-18 | 1982-06-18 | Crystal oscillation type film thickness monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10566982A JPS58223009A (en) | 1982-06-18 | 1982-06-18 | Crystal oscillation type film thickness monitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58223009A true JPS58223009A (en) | 1983-12-24 |
Family
ID=14413843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10566982A Pending JPS58223009A (en) | 1982-06-18 | 1982-06-18 | Crystal oscillation type film thickness monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58223009A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2416209B (en) * | 2003-04-21 | 2006-10-11 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
WO2006138678A3 (en) * | 2005-06-17 | 2007-02-08 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
US7275436B2 (en) | 2003-04-21 | 2007-10-02 | Tangidyne Corporation | Method and apparatus for measuring film thickness and film thickness growth |
JP2012127711A (en) * | 2010-12-14 | 2012-07-05 | Ulvac Japan Ltd | Vacuum vapor deposition apparatus and method for manufacturing thin film |
WO2018177853A1 (en) * | 2017-03-31 | 2018-10-04 | Aixtron Se | Device and method for determining the concentration of a vapor |
CN108950511A (en) * | 2018-07-17 | 2018-12-07 | 深圳市华星光电技术有限公司 | The measuring device and film-forming apparatus of film forming thickness |
US11268934B2 (en) | 2017-03-31 | 2022-03-08 | Aixtron Se | Device and method for determining the concentration of a vapor |
-
1982
- 1982-06-18 JP JP10566982A patent/JPS58223009A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2416209B (en) * | 2003-04-21 | 2006-10-11 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
US7275436B2 (en) | 2003-04-21 | 2007-10-02 | Tangidyne Corporation | Method and apparatus for measuring film thickness and film thickness growth |
WO2006138678A3 (en) * | 2005-06-17 | 2007-02-08 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
EP1891405A2 (en) * | 2005-06-17 | 2008-02-27 | Tangidyne Corporation | Method and apparatus for measuring film thickness and film thickness growth |
EP1891405A4 (en) * | 2005-06-17 | 2014-01-22 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
JP2012127711A (en) * | 2010-12-14 | 2012-07-05 | Ulvac Japan Ltd | Vacuum vapor deposition apparatus and method for manufacturing thin film |
WO2018177853A1 (en) * | 2017-03-31 | 2018-10-04 | Aixtron Se | Device and method for determining the concentration of a vapor |
CN110603343A (en) * | 2017-03-31 | 2019-12-20 | 艾克斯特朗欧洲公司 | Device and method for determining the concentration of steam |
US11187676B2 (en) | 2017-03-31 | 2021-11-30 | Aixtron Se | Device and method for determining the concentration of a vapor |
CN110603343B (en) * | 2017-03-31 | 2022-02-11 | 艾克斯特朗欧洲公司 | Device and method for determining the concentration of steam |
US11268934B2 (en) | 2017-03-31 | 2022-03-08 | Aixtron Se | Device and method for determining the concentration of a vapor |
TWI791504B (en) * | 2017-03-31 | 2023-02-11 | 德商愛思強歐洲公司 | Apparatus and method for determining vapor concentration |
CN108950511A (en) * | 2018-07-17 | 2018-12-07 | 深圳市华星光电技术有限公司 | The measuring device and film-forming apparatus of film forming thickness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5315092A (en) | Apparatus for heat-treating wafer by light-irradiation and device for measuring temperature of substrate used in such apparatus | |
JP2009302213A (en) | Heat treatment apparatus and heat treatment method for workpiece | |
JPS58223009A (en) | Crystal oscillation type film thickness monitor | |
JP2003133242A (en) | Apparatus for heating substrate and its purging method | |
JP4268879B2 (en) | Gas transmitter with selectively working gas flow surface | |
JP2604228B2 (en) | Hydrogen gas sensor | |
JPH09250979A (en) | Gas detecting device | |
JP3985071B2 (en) | Liquid level switch | |
JP3985072B2 (en) | Liquid level switch | |
JP3604425B2 (en) | Vapor phase growth equipment | |
JP3045860B2 (en) | Heating equipment | |
JPH03272444A (en) | Hydrogen gas sensor | |
Černý et al. | Determination of Heat of Adsorption on Clean Solid Surfaces | |
JPS5932908Y2 (en) | calorimeter | |
SU810086A3 (en) | Device for making semiconducting material | |
JP2001068415A (en) | Vapor-phase growth device | |
JP3241040B2 (en) | Heat treatment equipment | |
JP2001244201A (en) | Moisture monitoring device and semiconductor manufacturing device equipped therewith | |
JPH05281073A (en) | Pirani gauge | |
JPS62133073A (en) | Evacuated vapor growth apparatus | |
JPH03280382A (en) | Infrared heater | |
JPH0514504Y2 (en) | ||
JP2753654B2 (en) | Moisture sensitive element | |
JPH05217930A (en) | Wafer heating apparatus | |
JPS63159740A (en) | Heat constant measuring instrument by laser flash method |