JPS58222783A - Energization command generator for power converter - Google Patents

Energization command generator for power converter

Info

Publication number
JPS58222783A
JPS58222783A JP57102863A JP10286382A JPS58222783A JP S58222783 A JPS58222783 A JP S58222783A JP 57102863 A JP57102863 A JP 57102863A JP 10286382 A JP10286382 A JP 10286382A JP S58222783 A JPS58222783 A JP S58222783A
Authority
JP
Japan
Prior art keywords
signal
phase
power supply
phase signal
supply command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57102863A
Other languages
Japanese (ja)
Inventor
Munehiko Mimura
三村 宗彦
Hidehiko Sugimoto
英彦 杉本
Masahiko Akamatsu
昌彦 赤松
Masato Koyama
正人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57102863A priority Critical patent/JPS58222783A/en
Publication of JPS58222783A publication Critical patent/JPS58222783A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • H02M7/527Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation
    • H02M7/529Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation using digital control

Abstract

PURPOSE:To enable to readily alter the frequency, amplitude, phase and waveform of an energization command signal by obtaining the command signal of variable phase which is subjected to pulse width modulation. CONSTITUTION:An energization command generator 6 has a latch circuit 61 which receives upper bit group data of theta0 of an inputted reference signal and produces an upper phase signal thetaH, and a pulse width modulator 62 which inputs a lower bit group data of the signal theta0 and produces a lower phase signal thetaalpha pulse-width modulated. These outputs and hence the upper and lower phase signals thetaH, thetaalpha are added by an adder 63, and a repetitive phase angle signal theta1 is inputted together with an energization control signal S to a memory circuit 64. The signal S from the memory circuit 64 and a digital energization command signal D outputted corresponding to the time change of addressing to the phase signal theta1 are analog converter by a D/A converter 65, and harmonic components are removed by a filter 66, thereby obtaining an energization command signal NS.

Description

【発明の詳細な説明】 本発明は、サイクロコンバータやインバータ等の電力変
換装置に係る給電指令発生器に関するもので、特に、出
力電圧又は出力電流の周波数、振幅、及び位相とを制御
することができる給電指令発生器の改良を図ったもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply command generator for a power conversion device such as a cycloconverter or an inverter, and in particular, it is capable of controlling the frequency, amplitude, and phase of an output voltage or output current. This is an attempt to improve the power supply command generator that can be used.

第1図は一般的な三相給電形トランジスタ式インバータ
の構成例を示すもので、図中、(1)tf、)ランジス
タテ工〜T6と還流ダイオードDエヘD6、及び電源E
aとで構成される電力変換主回路、(2〕は負荷、(8
)はトランジスタ駆動回路、(4)は通電制御回路、(
5)は給電指令発生器で、該給電指令発生器(5)は周
波数信号F及び電圧あるいは電流の振幅設定信号Vs(
Iりの入力に基いて各相給電指令信号vf1u(1,u
)〜”5W(ISW)を得るようになされ、この各相給
電指令信号vB u (’ 811)〜■BW(IBM
)に応じて上記通電制御回路(4)は通電制御信号Sユ
〜S6を得、さらに該通電制御信号S□〜S、はトラン
ジスタ駆動回路(8)で整形増幅されトランジスタT□
〜T6のオンオフ制御を行なうことによ)所望の給電電
圧あるいは給電電流を得ることができるようになされて
いる。
Figure 1 shows an example of the configuration of a general three-phase power supply type transistor inverter.
(2) is the load, (8) is the power conversion main circuit consisting of
) is a transistor drive circuit, (4) is an energization control circuit, (
5) is a power supply command generator, which generates a frequency signal F and a voltage or current amplitude setting signal Vs(
Each phase power supply command signal vf1u (1, u
) ~ "5W (ISW), and this power supply command signal vB u ('811) ~ ■BW (IBM
), the energization control circuit (4) obtains energization control signals SU to S6, and further, the energization control signals S□ to S are shaped and amplified by the transistor drive circuit (8), and the transistors T□
By performing on/off control of T6), a desired power supply voltage or power supply current can be obtained.

通常、所望の給電電流に制御する場合には、各相電流検
出器を設は電流帰還閉ループ制御を行なっておシ、この
種の電力変換装置は、給電制御が電力変換主回路素子の
オンオフ制御によって行なわれ、実出力電圧瞬時値は高
調波分の多い波形となるが、瞬時平均電圧でみると前記
給電指令信号に追従制御を行なうことができる。また、
この給電電流制御を行なう場合に、負荷が誘導性の場合
には高調波分が少なくなシ給電指令信号と出力電流との
偏差の少ない制御が行なえることが知られている。
Normally, when controlling the power supply current to a desired level, a current detector for each phase is installed and current feedback closed loop control is performed. The instantaneous value of the actual output voltage has a waveform with many harmonic components, but when viewed in terms of the instantaneous average voltage, it is possible to perform follow-up control to the power supply command signal. Also,
It is known that when performing this power supply current control, if the load is inductive, control can be performed with less harmonic content and less deviation between the power supply command signal and the output current.

第2図は、上記給電指令発生器(6)の従来例の構成を
示し、図中、φI)はパルスカウンタ、輪、−はメモリ
回路、■、に)はディジタルアナログ変換器(以下D 
/ A変換器と称す)、Q)6)、17)は乗算器、1
1581は加算器で、これら構成を備える給電指令発生
′1 器(6)において、先ずパルスカウンタ四)は可変周波
数パルス列でなる周波数信号Fを入力して積算しその積
算結果を所定の分局比で分周した出力周波数を有する位
相信号θを得、メモリ回路伜硲、−にアドレス入力とし
て送出する。メそり回路H、(54iはそれぞれ位相信
号θに対し下式で示されるデータが格納されていて。
Fig. 2 shows the configuration of a conventional example of the power supply command generator (6), in which φI) is a pulse counter, a ring, - is a memory circuit, and 2) is a digital-to-analog converter (hereinafter D).
/ A converter), Q) 6), 17) are multipliers, 1
Reference numeral 1581 denotes an adder, and in the power supply command generator (6) equipped with these components, first, the pulse counter 4) inputs and integrates the frequency signal F consisting of a variable frequency pulse train, and calculates the integrated result at a predetermined division ratio. A phase signal θ having the divided output frequency is obtained and sent as an address input to the memory circuit. The mesori circuit H (54i) stores data expressed by the following formula for the phase signal θ.

σ =に血θ        ・・・(1)θ = K
 sin (θ十−π)    @z(g)6 □相位相信号θ8と、相位相信号0vをデータ出力信号
として出力し、これらデータ出力信号θ□。
σ = blood θ ... (1) θ = K
sin (θ1−π) @z(g)6 □The phase signal θ8 and the phase signal 0v are output as data output signals, and these data output signals θ□.

0 はD/ム変換器■、■によシアナログ変換さ■ れてアナログ位相・信号θuAI’VAとなシ、乗算器
に)。
0 is converted into an analog phase signal θuAI'VA by the D/mu converter (2) and (2) and then converted to an analog phase signal θuAI'VA (which is then sent to the multiplier).

mlにそれぞれ与えられる。ml each.

しかして、乗算器■、 17)は上記アナログ位相信号
ζA、ev□と共に、この給電指令発生器(6)に入力
される振幅設定信号Vs(またはIg)を入力し、これ
らの乗算によってU相給電指令僅号v、u(1,u)及
びV相給電指令信号vli V (’ 8 V)を得て
おハまた1′″″M)U E″″−0−”9”[M[i
+(Fl  4・4.。
Therefore, the multiplier ■, 17) inputs the analog phase signals ζA, ev□ as well as the amplitude setting signal Vs (or Ig) input to the power supply command generator (6), and by multiplying these, the U phase After obtaining the power supply command numbers v, u (1, u) and the V-phase power supply command signal vli V (' 8 V), i
+(Fl 4・4.

vsw(1av)を下式よp求めるようになされている
vsw(1av) is calculated by p using the following formula.

■8’W(IBW)= −(vllu(’au)” ■
8V(111V) )・・・(8)しかるに、従来の給
電指令発生器(5)は以上のような構成となっている3
ので、周波数は周波数信号Fで、又振幅設定信号Vs(
iたは工1りによル設定でき所望の正弦波、階段波、台
形波等の波形を有した給電指令信号を得ることができ、
位相信号θと固定位相での信号を得ることができるが、
位相信号θに対し可変位相の信号を得ることができなく
、従って負荷条件に応じて位相を制御することができな
かった。
■8'W(IBW)=-(vllu('au)” ■
8V (111V) )...(8) However, the conventional power supply command generator (5) has the above configuration.
Therefore, the frequency is the frequency signal F, and the amplitude setting signal Vs (
It is possible to obtain a power supply command signal having a desired waveform such as a sine wave, a staircase wave, a trapezoidal wave, etc. by setting the power supply command signal manually or manually.
Although it is possible to obtain a phase signal θ and a signal with a fixed phase,
It was not possible to obtain a variable phase signal for the phase signal θ, and therefore it was not possible to control the phase according to the load conditions.

そこで本発明は、上記のような従来のものの問題点を解
消するためになされたもので、位相信号σに対し可変位
相の給電指令信号を得ることができるとともに周波数、
振幅、位相、波形を容易に変更できる給電指令発生器を
提出するものである。
Therefore, the present invention was made to solve the problems of the conventional ones as described above, and it is possible to obtain a power feeding command signal with a variable phase for the phase signal σ, and also to
This paper proposes a power supply command generator that can easily change the amplitude, phase, and waveform.

以下、本発明の一実施例を図に基いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図はこの発明による給電指令発生器(6)の実施例
の構成を示す図で、図中、机は入力される基準位相信号
のθ。の上位ビット群データを取)込み上位位相信号θ
ヨを得るラッチ回路、鴫は上記基準位相信号θ。の下位
ビット群データを入力としパルス幅変y4された下位位
相信号σ。を得るシ(ルス幅変調器(以下pwy変詞器
と称す)、Mは上記上位位相信号aHと下位位相信号θ
α、とを加算して繰シ返し位相角信号でなる位相信号−
0を得る加算器、−は振幅、位相、波形を選択する給電
制御信号Sと上記加算器−から出力される位相信号σ□
とをアドレス入力とし該アドレス入力に対応した給電指
令信号りのデータを格納したメモリ回路で、このメモリ
回路■から上記給電制御信号Bと位相信号θ□とのアド
レス設定の時間変化に対応して出力されるディジタル給
電指令信号りは、D / A変換器−によ)アナログ変
換され、またフィルター)によって高調波成分が除去さ
れて出力されるようになっている。
FIG. 3 is a diagram showing the configuration of an embodiment of the power supply command generator (6) according to the present invention. In the figure, the desk indicates θ of the input reference phase signal. The upper bit group data is taken) and the upper phase signal θ is obtained.
The latch circuit that obtains the above reference phase signal θ. The lower phase signal σ is input with the lower bit group data of , and the pulse width is changed by y4. M is the upper phase signal aH and the lower phase signal θ.
A phase signal that is a repeated phase angle signal by adding α, −
The adder that obtains 0, - is the power supply control signal S that selects the amplitude, phase, and waveform, and the phase signal σ□ output from the adder -.
This is a memory circuit which stores the data of the power feed command signal corresponding to the address input and the address input, and from this memory circuit The output digital power supply command signal is converted into an analog signal by a D/A converter, and harmonic components are removed by a filter before being output.

上記構成において、メモリ回路−には、位相信号θ□と
ディジタル給電指令信号りとの関係を示す第4図図示の
ように階段波のデータを格納したシ、また、台形波、正
弦波、三角波等を格納することができ、位相信号θ□に
対し位相、振幅、波形を任意に設定できるデータを格納
している。そして、位相信号θ□は時間的に繰少返し増
加あるいは減少を行ない、瞬時位相を与えることができ
、繰り返し異期を可変にすれば可変周波数の任意の給電
指令信号を得ることができるようになされている。ここ
で、位相・振幅・波形の選択はメモリ回路((4)の上
位ビット群の信号である給電制御信号Sであらかじめ格
納した一連のデータを選択するようになされておシ、例
えば第4図に示すH)の関数と振幅及び波形とが同じで
位相のみを変更した場合には同図に示す←2の関数のデ
ータを格納すれば良く、給電制御信号Sでビ〕あるいは
QO)の関舷の選択が可能になっている。
In the above configuration, the memory circuit stores data of a staircase wave as shown in FIG. 4, which shows the relationship between the phase signal θ It stores data that allows the phase, amplitude, and waveform to be arbitrarily set for the phase signal θ□. Then, the phase signal θ□ can be repeatedly increased or decreased in time to give an instantaneous phase, and by making the repeated difference variable, it is possible to obtain an arbitrary power supply command signal with a variable frequency. being done. Here, the phase, amplitude, and waveform are selected by selecting a series of data stored in advance using the power supply control signal S, which is a signal of the upper bit group of the memory circuit ((4). For example, as shown in FIG. If the amplitude and waveform are the same as the function H) shown in the figure, but only the phase is changed, it is sufficient to store the data of the function ←2 shown in the same figure, and the power supply control signal S can be used to It is possible to choose the ship's side.

次に、位相信号θ□の信号発生について説明すると、第
4図で基準位相信号σ。は図示しない設定装置よシ与え
られる可変周期を有する瞬時位相角を示す信号で、また
、Poはキャリアパルス、Pckはクロックパルスで、
前記指令位相信号C6の上位ビット群のデータはラッチ
回FMr(611で取)込まれて、このラッチ回路(6
〃により上位位相信号θヨが得られるようになされ、前
記基準位相信号σ。
Next, the generation of the phase signal θ□ will be explained. FIG. 4 shows the reference phase signal σ. is a signal indicating an instantaneous phase angle with a variable period given by a setting device (not shown); Po is a carrier pulse; Pck is a clock pulse;
The data of the upper bit group of the command phase signal C6 is taken in at the latch circuit FMr (611), and the data is sent to the latch circuit (611).
〃 allows the upper phase signal θyo to be obtained, and the reference phase signal σ.

の下位ビット群のデータはPWM変調器−に入シ、この
変調器−によシ下位位相信号IPaが得られるようにな
されている。ここで上記キャリアパルスP は一定線シ
返し周期を有するパルス列で、上記ラッチ回路(6〃の
データ取シ込みのタイミングとPWM変調器■のデータ
取シ込みタイミングとを得ている。
The data of the lower bit group is input to a PWM modulator, and the lower phase signal IPa is obtained by this modulator. Here, the carrier pulse P is a pulse train having a constant line repetition period, and obtains the data acquisition timing of the latch circuit (6) and the data acquisition timing of the PWM modulator (2).

しかして、上記下位位相信号1IPaを得るPWM変調
器部匂は、図示しないカウンタ及び信号処理回路とで構
成されていて、前記キャリアパルスP0毎に前記基準位
相信号σ。の下位ビット群データをプリセットするよう
になされ、内蔵するカウンタは、通常前記プリセット時
点からパルスをカウントしていきカウンタ積算値が減少
し最終的には零となる。ここで、クロックパルスP。k
はキャリアパルス周期の下位ビット群データの状態数分
の1の周期とし、例えば下位ビット群データがnビット
のデータとすれば、下位ビット群データの状態数にはz
nKなる。また、内蔵する信号処理回路    (はカ
ウンタ積算値が零になれば上記カウンタへのクロックパ
ルスP。kの入力を阻止しカウント動作を停止させるよ
うになされておシ、カウンタのカウント動作時とカウン
ト動作停止時の動作のいずれかを示すモード信号が下位
位相信号θ6.にな夛、この下位位相信号〜、はi b
ttの1.0の論理信号になる。そしてこの論理信号の
時間比率が前記指令位相信号θ。の下位ビット群データ
に比例すすPWM変調された下位位相信号り1を得るこ
とができるようになされている。また、加算器−は上位
位相信号aHと下位位相信号θ4.0加算を行ない上記
メモリ回路(881への位相信号θ、を得ておシ、ここ
で上記下位位相信号04 は11)1を信号であるから
上位位相信号σヨにあるいは0を加算した数値として位
相信号θよが得られるようになされている。
The PWM modulator unit for obtaining the lower phase signal 1IPa is composed of a counter and a signal processing circuit (not shown), and outputs the reference phase signal σ for each carrier pulse P0. The built-in counter normally counts pulses from the preset time, and the counter integrated value decreases until it finally reaches zero. Here, the clock pulse P. k
is the period of the carrier pulse period divided by the number of states of the lower bit group data. For example, if the lower bit group data is n-bit data, the number of states of the lower bit group data is z.
It becomes nK. In addition, the built-in signal processing circuit (is designed to prevent the input of the clock pulse P to the counter when the counter integrated value becomes zero and stop the counting operation). The mode signal indicating one of the operations when the operation is stopped is the lower phase signal θ6., and this lower phase signal ~ is i b
It becomes a logic signal of 1.0 of tt. The time ratio of this logic signal is the command phase signal θ. It is possible to obtain a lower phase signal which is PWM modulated proportionally to the lower bit group data. Further, the adder adds the upper phase signal aH and the lower phase signal θ4.0 to obtain the phase signal θ to the memory circuit (881), where the lower phase signal 04 (11)1 is sent to the memory circuit (881). Therefore, the phase signal θ is obtained as a value obtained by adding 0 to the upper phase signal σ.

以上、説明した構成を有する給電指令発生器(6)の時
間変化に対する動作説明図を第5図に示す。
FIG. 5 shows an explanatory diagram of the operation of the power supply command generator (6) having the configuration described above with respect to time changes.

図中、(a) * (b)は指令位相信号θ。の上位ビ
ット群データへ。と下位ピット群データσ、。を示して
おシ、繰シ返し波形部分は近似表示している(C)は牟
ヤリアバルスP。、(d)は下位ビット群データ0.。
In the figure, (a) * (b) is the command phase signal θ. to the upper bit group data. and lower pit group data σ,. , and the repetitive waveform part is approximated. (C) is Muyaria Vals P. , (d) is lower bit group data 0. .

、(Q)はパルス幅変調したT位位相信号#、 % C
f)は上位位相信号θヨと下位位相信号θ6.との和で
ある位相信号θ□、(g)はメモリ回路((イ)から得
られるディジクル給電指令信号りを示している。なお、
メモリ回路(64Iの関数内容は第4図に示すげ2のデ
ータの場合について示しておシ、パルス幅変調部分を破
線の近似線で示している。また、帆ンは位相信号0□、
(幻はディジタル給電指令信号りで、パルス幅変調部分
を波線の近似線で示している。なお、ここでは′9.流
中性点をディジタル給電指令信号りが8の時を零として
いる。また、第6図構成においてはディジタル給電指令
(i号Diアナログ童に変換するのにD/ム変換器−を
用い、さらにパルス幅変調による高調波リップルを軽減
するため高調波除去フィルターを用いてアナログ給電指
令信号V、を得て訃)、このアナログ給電指令信号V。
, (Q) is the pulse width modulated T-phase signal #, % C
f) is the upper phase signal θyo and the lower phase signal θ6. The phase signal θ□, which is the sum of (g), indicates the digital power supply command signal obtained from the memory circuit ((a).
The function contents of the memory circuit (64I) are shown in Fig. 4 for the case of data 2, and the pulse width modulation part is shown by a dashed approximation line.
(The illusion is the digital power supply command signal, and the pulse width modulation part is shown by a dashed approximation line. Here, the '9. flow neutral point is set to zero when the digital power supply command signal is 8. In addition, in the configuration shown in Fig. 6, a D/mu converter is used to convert the digital power supply command (i. This analog power supply command signal V is obtained.

は第5図(i)の近似線で示す交流船′成波形とほぼ同
じになる。
is almost the same as the AC ship's waveform shown by the approximate line in FIG. 5(i).

し九がって第3図構成によれば以上のようにして周波数
、振幅、位相、波形を任意に選択できる可変周波数の給
電指令信号を得ることができることKなる。また、位相
信号−よの分解能を上げて波形を良好にするには、位相
信号のビット数を増加させると良いが、この場合には必
然的にメモリ回路の容量が増大する。しかして、この発
明の実施例の場合はパルス幅変調を行なった位相信号θ
□とすることによシメモリ回路のアドレス入力が少なく
なり、メモリ回路容量を大巾に削減することができるこ
とになる。
Therefore, according to the configuration shown in FIG. 3, it is possible to obtain a variable frequency power supply command signal whose frequency, amplitude, phase, and waveform can be arbitrarily selected as described above. Further, in order to improve the resolution of the phase signal and improve the waveform, it is better to increase the number of bits of the phase signal, but in this case, the capacity of the memory circuit inevitably increases. Therefore, in the case of the embodiment of the present invention, the phase signal θ subjected to pulse width modulation is
By setting □, the number of address inputs to the memory circuit is reduced, and the memory circuit capacity can be greatly reduced.

なお、上記実施例において、多相給電指令信号を得る場
合には、あらかじめ位相の異なるデータを格納したメモ
リ回路、D/A変換器、高調波除去フィルタをそれぞれ
相数分用意すれば良く特に三相給電指令信号を得る場合
には二相分のメモリ回路・DA変換器・高調波除去フィ
ルタを用意し残る一相分は他の二相のアナログ加算によ
って容易に得ることができるのは勿論である。
In the above embodiment, in order to obtain a multiphase power supply command signal, it is sufficient to prepare a memory circuit storing data of different phases, a D/A converter, and a harmonic removal filter for the number of phases. Of course, when obtaining a phase power supply command signal, a memory circuit, a DA converter, and a harmonic removal filter for two phases are prepared, and the remaining one phase can be easily obtained by analog addition of the other two phases. be.

以上のように本発明によれば、可変位相の給電指令信号
を得ることができると共に、周波数、振幅1位相、及び
波形を容易に変更できる給電指令
As described above, according to the present invention, it is possible to obtain a variable phase power supply command signal, and also to easily change the frequency, amplitude, one phase, and waveform of the power supply command signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なインバータの構成図、第2図は従来の
給電指令発生器の構成図、第6図は本発明による給電指
令発生器の構成図、第4図と第5図はそれぞれ本発明に
よる給電指令信号発生器の動作説明図である。 (1)・・電力変換装置 T、〜T6−・スイッチング素子 (4)・・通電制御回路 y  、v  、v  ・・給電指令信号su    
sv    aw (6)・・給電指令発生器 机・・ラッチ回路 ((321・・IPWM変調器 一00加算器 ((イ)・・メモリ回路 俤)働・D/A変換器 −−・フィルタ                 1
″ao ・φ基準位相信号 Po 会・キャリアパルス S・・給電制御信号 Pck・・クロックツくルス θ、・・位相信号 θヨ・・上位位相信号 θ2 ・・下位位相信号 D・・給電指令信号 代理人 葛 野 信 − 第1図 第2図 第4図
Figure 1 is a block diagram of a general inverter, Figure 2 is a diagram of a conventional power supply command generator, Figure 6 is a diagram of a power supply command generator according to the present invention, and Figures 4 and 5 are respectively FIG. 3 is an explanatory diagram of the operation of the power supply command signal generator according to the present invention. (1)... Power converter T, ~T6-... Switching element (4)... Energization control circuit y, v, v... Power supply command signal su
sv aw (6)...Power supply command generator...Latch circuit ((321...IPWM modulator - 100 adder ((A)...memory circuit) function/D/A converter--Filter 1
``ao・φ Reference phase signal Po Association・Carrier pulse S・・Power supply control signal Pck・・Clock pulse θ,・・Phase signal θY・・Upper phase signal θ2・・Lower phase signal D・・Power supply command signal substitute People Makoto Kuzuno - Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 電力変換装置の各スイッチング素子を制御する通電制御
回路に給電指令信号を供給する電力変換装置の給電指令
発生器において、入力される基準位相信号の上位ビット
群データを取り込み上位位相信号を得るラッチ回路、上
記基準位相信号の下位ビット群データを入力としパルス
幅変調された上位位相信号を得るパルス幅変調器、上記
上位位相信号と下位位相信号とを加算して繰ル返し位相
角信号でなる位相信号を得る加算器、及び振幅、位相、
波形を選択する給電制御信号の入力と上記加算器から出
力される位相信号とをアドレス入力とし、該アドレス入
力に対応した給電指令信号のデータを格納してなるメモ
リ回路を備えたことを特徴とする電力変換装置の給電指
令発生器。
A latch circuit that takes in the upper bit group data of the input reference phase signal and obtains the upper phase signal in the power supply command generator of the power converter that supplies the power supply command signal to the energization control circuit that controls each switching element of the power converter. , a pulse width modulator that receives the lower bit group data of the reference phase signal as input and obtains a pulse width modulated upper phase signal; and a pulse width modulator that receives the lower bit group data of the reference phase signal and obtains a pulse width modulated upper phase signal; Adder to get the signal, and amplitude, phase,
The present invention is characterized by comprising a memory circuit which uses an input of a power supply control signal for selecting a waveform and a phase signal outputted from the adder as address inputs, and stores data of a power supply command signal corresponding to the address inputs. A power supply command generator for power conversion equipment.
JP57102863A 1982-06-15 1982-06-15 Energization command generator for power converter Pending JPS58222783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57102863A JPS58222783A (en) 1982-06-15 1982-06-15 Energization command generator for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102863A JPS58222783A (en) 1982-06-15 1982-06-15 Energization command generator for power converter

Publications (1)

Publication Number Publication Date
JPS58222783A true JPS58222783A (en) 1983-12-24

Family

ID=14338745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102863A Pending JPS58222783A (en) 1982-06-15 1982-06-15 Energization command generator for power converter

Country Status (1)

Country Link
JP (1) JPS58222783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343277A (en) * 1998-10-28 2000-05-03 Hyundai Electronics Ind Command generator having single-input to multi-output convertor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343277A (en) * 1998-10-28 2000-05-03 Hyundai Electronics Ind Command generator having single-input to multi-output convertor
GB2343277B (en) * 1998-10-28 2003-02-05 Hyundai Electronics Ind Command generator having single-input to multi-output converter

Similar Documents

Publication Publication Date Title
US3581212A (en) Fast response stepped-wave switching power converter circuit
US4364109A (en) Control device of inverters
US4354223A (en) Step-up/step down chopper
JPS58103875A (en) Controlling method for output voltage of pulse width modulation inverter
JPS60156270A (en) Drive controller of power converter
US5282125A (en) Power generation system with soft-start circuit
US4349867A (en) Control apparatus for a cycloconverter
JP2527911B2 (en) PWM converter
JPS58222783A (en) Energization command generator for power converter
JPS6311871B2 (en)
JPH10201246A (en) Pwm inverter apparatus
JPS58127592A (en) Controlling inverter for motor
US4267570A (en) Control unit for multi-phase static converter
JP2923727B2 (en) Power converter
JPS6332034B2 (en)
JPS6035892B2 (en) power converter
JP2000287453A (en) Multiplex power converter
JP3354465B2 (en) Power converter
JPS58222785A (en) Energization command generator for power converter
GB2125239A (en) A three phase supply synthesis arrangement
JPS58107083A (en) Driving regenerative converting power supply device
JPH07177753A (en) Control method and equipment for power converter unit
JPS5943912B2 (en) Polyphase AC inverter
JPS62268396A (en) Method and apparatus for forming reference voltage of three-phase inverter for supplying power to ac motor
JP7051600B2 (en) Multi-stage transducer control device