JPS58222489A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPS58222489A
JPS58222489A JP57105757A JP10575782A JPS58222489A JP S58222489 A JPS58222489 A JP S58222489A JP 57105757 A JP57105757 A JP 57105757A JP 10575782 A JP10575782 A JP 10575782A JP S58222489 A JPS58222489 A JP S58222489A
Authority
JP
Japan
Prior art keywords
high level
control signal
circuit
bringing
digit line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57105757A
Other languages
Japanese (ja)
Other versions
JPH0310195B2 (en
Inventor
Nobuyuki Yasuoka
安岡 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57105757A priority Critical patent/JPS58222489A/en
Priority to US06/506,080 priority patent/US4489404A/en
Publication of JPS58222489A publication Critical patent/JPS58222489A/en
Publication of JPH0310195B2 publication Critical patent/JPH0310195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits

Abstract

PURPOSE:To speed up the setting of initial waiting state, by providing the 1st means activating all decoder outputs signals in the row direction at the same time with an external activating signal, and the 2nd means bringing one of digit line pair groups in the column direction to a high level and the other to a low level. CONSTITUTION:A decoder circuit selecting word lines in the row direction of storage cell circuits arranged in a matrix consists of load elements L201, L202 and driver transistors(TRs) Q201-Q204. Since output signals ANi and ATi are grounded with a control signal DC, all the output signals ANi, ATi are brought to a low level in bringing the control signal to a high level. Thus, all the storage cell circuits are activated by bringing the control signal DC to a high level for bringing all the word lines WXi to the high level. Then, when control signal lines CL0 and CL1 are brought to a high level, all the storage cell circuits Cij are set to the initial waiting state at the same time for attaining the speed up of the device.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はスタティック型半導体記憶装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a static semiconductor memory device.

〔従来技術の説明〕[Description of prior art]

近年、スタティック型半導体記憶装置は、計算機、制御
機器等に広(用いられ、その付加機能も多岐に渡ってい
る。
In recent years, static semiconductor memory devices have been widely used in computers, control equipment, etc., and their additional functions have also expanded to a wide variety.

以下、このスタティック型半導体記憶装置fNチ、ヤン
ネル金属酸化膜半導体素子にて構成された装置を例にと
って説明する。
Hereinafter, a description will be given of this static type semiconductor memory device fN, taking as an example a device constructed from a Jannel metal oxide film semiconductor element.

第1図は、スタティック型半導体記憶装置の記憶セルの
回路例を示すものである。この記憶セルCは6素子構成
の回路例であり、負荷素子圓、L1、トランスファ・ト
ランジスタQTO、QTl 、  ドライバ・トランジ
スタQT3、QT4によシ構成され、負荷素子の一端は
電源端子PLOに接続され、ドライバ・トランジスタQ
T5、QT4のソース端子はPL1端子に接地されてい
る。また、トランスファ・トランジスタQTO,QT1
のゲート端子にはワード線WLOが接続され、ソース端
子にはディジット線DLO1DL1がそれぞれ接続され
ている。
FIG. 1 shows a circuit example of a memory cell of a static semiconductor memory device. This memory cell C is an example of a circuit with a six-element configuration, and is composed of a load element L1, transfer transistors QTO and QTl, and driver transistors QT3 and QT4, and one end of the load element is connected to the power supply terminal PLO. , driver transistor Q
The source terminals of T5 and QT4 are grounded to the PL1 terminal. Also, transfer transistors QTO, QT1
A word line WLO is connected to the gate terminal, and a digit line DLO1DL1 is connected to the source terminal.

次に、この記憶セルの読出し・書込み動作を第1図、第
2図および第3図を用いて説明する。
Next, read/write operations of this memory cell will be explained using FIGS. 1, 2, and 3.

読出し動作は第2図のタイミング図に示すように、ワー
ド線WLO’!!i−高レベルにし、ディジット線DL
O1DLIの信号レベル差を検出することにより実行さ
れる。すなわち、第2図中に破線あるいは実線で示され
るディジット線DLO1DL1の信号レベル状態によp
 % o ’あるいは′111状態を検出する。
The read operation is performed on the word line WLO'! as shown in the timing diagram of FIG. ! i - set to high level, digit line DL
This is executed by detecting the signal level difference of O1DLI. That is, p depends on the signal level state of digit lines DLO1DL1 shown by broken lines or solid lines in FIG.
%o' or '111 condition is detected.

書込み動作は、第3図に示すタイミング図の如(実行さ
れる。すなわち、ワード線WLOf高レベルにし、ディ
ジット線DLO1DI、1の一方を高レベルに、また他
方を低レベル圧すること罠より実行される。同図には各
ディジット線DLO1DL1の信号レベル状態を実線と
破線にて示す。
The write operation is executed as shown in the timing diagram shown in FIG. In the figure, the signal level states of each digit line DLO1DL1 are shown by solid lines and broken lines.

第4図は、第1図の記憶セル回路を用いた従来(7,)
 2 p fイツ、型半導体う憶−1置。4ヮー1.8
4ビツト構成の例を示すものである。
Figure 4 shows a conventional (7,) using the memory cell circuit shown in Figure 1.
2 pf, type semiconductor storage - 1 setting. 4ヮ-1.8
This shows an example of a 4-bit configuration.

記憶セル回路Cij(imO〜3、j=o〜3)は第1
図の破線部分Cを示し、wLoはWXi (i =0〜
3)に、D圓はDTi(i=o〜3)に、DLlはDN
i(i=o〜5)にそれぞれ対応している。
The memory cell circuit Cij (imO~3, j=o~3) is the first
The broken line part C in the figure is shown, and wLo is WXi (i = 0 ~
3), D circle is DTi (i=o~3), and DLl is DN
i (i=o to 5), respectively.

第4図は記憶セル回路C1j(i=o〜5、j=0〜3
)、ディジット線負荷素子LTi(i=o〜3)、LN
i (i = 0〜3)、デコーダ出力ワード線WX 
1(i=0〜3)、ディジット線対DTi(i=o〜3
)、nN1(i=o〜3)によ多構成される。
FIG. 4 shows a memory cell circuit C1j (i=o~5, j=0~3
), digit line load element LTi (i=o~3), LN
i (i = 0 to 3), decoder output word line WX
1 (i=0 to 3), digit line pair DTi (i=o to 3)
), nN1 (i=o~3).

この装置の動作例として記憶セル回路COi (i=0
〜3)の記憶情報を読み出す読出し動作を税制する。
As an example of the operation of this device, the memory cell circuit COi (i=0
-3) The read operation of reading the stored information is taxed.

ワード線WXOを高レベルにすることKよシ、記憶セル
回路C01(i=o〜3)の記憶情報をディジット線D
Ti(i=o〜′5)、DNi(i=o〜3)に転送し
、第2図にて説明をしたように、ディジット線対DTi
(i=0〜3)、DNi(i=0〜3)のレベル差によ
シ11゛あるいは′″0″の情報を判別:1′:。
By setting the word line WXO to high level, the stored information of the memory cell circuit C01 (i=o~3) is transferred to the digit line D.
Ti (i=o~'5), DNi (i=o~3), and as explained in FIG.
(i=0 to 3) and DNi (i=0 to 3), information of 11'' or ``0'' is determined: 1':.

する。記憶セル回路COI (i = 0〜3)に情報
を飄 書き込む書込み動作は、WXOを高レベルにし、書込み
情報が10″か11#かによってディジット線対DTi
、 DNi (i=0〜3)の一方を高レベルに他方を
低レベルにすることによシ実行される。
do. A write operation in which information is written into the memory cell circuit COI (i = 0 to 3) is performed by setting WXO to a high level, and depending on whether the write information is 10'' or 11#, the digit line pair DTi is
, DNi (i=0 to 3) are set to high level and the other to low level.

次にワード線信号WXi (i = 0〜3)の信号発
生回路の説明をする。第5図VC2人力4出力のデコー
ド回路のブロック図を示し、第6図、第7図に従来の具
体的回路例を示す。
Next, a signal generation circuit for the word line signal WXi (i=0 to 3) will be explained. FIG. 5 shows a block diagram of a decoding circuit for a VC with two manual inputs and four outputs, and FIGS. 6 and 7 show examples of conventional circuits.

第6図は入力信号Ai(i=o、1)Kよシhs信号の
真信号Artおよび補信号ANi t−発生させる回路
例であシ、負荷素子LDDI 、 L002、ドライバ
・トランジスタQ001、Q002によ多構成される。
Figure 6 is an example of a circuit that generates the input signal Ai (i=o, 1) K, the true signal Art of the hs signal, and the complementary signal ANit. It is made up of many things.

第7図は真信号ATi(i=0.1)、補信号ANi 
(i=0.1)によシワード線信号wxi (i = 
0〜3)を発生させる回路例であり、負荷素子L10i
(i =1〜4)、ドライバ・トランジスタQ101(
i = 1〜8)によ多構成される。そして、人力信号
Ai(i=0.1)t−変えることによシ、ワード線信
号wxi(i=o〜3)の一つを高レベルにし、第4図
の装置の行の一つを活性化して選択できる。
Figure 7 shows the true signal ATi (i=0.1) and the complementary signal ANi.
(i=0.1), the word line signal wxi (i=0.1)
0 to 3), and the load element L10i
(i = 1 to 4), driver transistor Q101 (
i = 1 to 8). Then, by changing the human input signal Ai (i=0.1) t-, one of the word line signals wxi (i=o~3) is set to a high level, and one of the rows of the device in FIG. Can be activated and selected.

以上の説明よシ明らかなように従来装置においては、記
憶セル回路の状態をある期待状態、たとえば初期期待状
態等にするためには、ワード線’ wxi (i = 
nN3)を各々1本づつ高レベルにする必要があシ、全
記憶セル回路を期待状態とするには上記従来装置では4
サイクルを必要とし、記憶装置の動作速度を遅(してい
た。
As is clear from the above explanation, in the conventional device, in order to bring the state of the memory cell circuit into a certain expected state, such as an initial expected state, the word line 'wxi (i =
nN3) must be brought to a high level one by one, and in order to bring all memory cell circuits to the expected state, the conventional device described above requires 4
cycles and slowed down the storage device's operating speed.

〔発明の目的〕 本発明はこのような従来装置の欠点全除去するために提
案するものであシ、1サイクル内にすべての記憶セル回
路の状態を初期期待値に設定できるようにして動作速度
の高速化を図ったスタティック型半導体記憶回路を提供
することを目的とする。
[Object of the Invention] The present invention is proposed in order to eliminate all of the drawbacks of the conventional device, and to improve the operating speed by making it possible to set the states of all memory cell circuits to initial expected values within one cycle. An object of the present invention is to provide a static semiconductor memory circuit that achieves high speed.

〔発明の要点〕[Key points of the invention]

本発明は、デコード機能を備え、内部メモリセルが複数
の行と複数の列のマトリックスに配されたスタティック
型半導体記憶回路において、外部活性化信号によシ、行
選択を行う行方向のデコーダ出力信号をすべて同時に活
性化する第1の手段と、列方向のディジット線対群のテ
ィジット線対の一方のディジット線ヲ高レベルにし、他
方のデイジツト線を低レベルにする第2の手段とを具備
し、この第1および第2の手段により内部メモリセルの
状態を同時に一定のきめられた状態に設定可能とするこ
とを特徴とする。
The present invention provides a row-direction decoder output that performs row selection according to an external activation signal in a static semiconductor memory circuit that is equipped with a decoding function and in which internal memory cells are arranged in a matrix of multiple rows and multiple columns. A first means for activating all the signals at the same time; and a second means for setting one digit line of the digit line pair of the group of digit line pairs in the column direction to a high level and setting the other digit line to a low level. However, the first and second means are characterized in that the states of the internal memory cells can be simultaneously set to a predetermined state.

〔実施例による説明〕[Explanation based on examples]

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第8図および第9図は、マ) IJソックス状配列され
た記憶セル回路の行方向ワード線を選択するためのデコ
ーダ回路実施例構成を示す図である。
FIGS. 8 and 9 are diagrams showing the configuration of an embodiment of a decoder circuit for selecting a row-direction word line of a memory cell circuit arranged in a 1/4-IJ sock shape.

第8図および第9図に示す実施例回路は、負荷素子L2
01、L202、ドライバートランジスタq2oi(i
=1〜4)および負荷素子t、5oi(+=1〜4)、
ドライバ・トランジスタQ30i(i = 1〜8)に
よシ構成される。この実施例回路が従来の回路と相違す
る点は、第8図においてドライバ拳トランジスタQ20
3、Q204が新たに付加され、制御信号DCによシ出
力信号ANi(i−0,1)、ATi(+ =1.1.
1 0.1)を接地できるように構成されていることである
。したがって、制御信号DCi高レベルにすること罠よ
シ出力信号ANi (i = 0.1)、Ari (i
=o、1 )をすべて低レベルにすることができ、これ
によシ第9図・のデコード出力信号WXi(i=0〜3
)をすべて高レベルにするコトができる。
The embodiment circuit shown in FIGS. 8 and 9 has a load element L2
01, L202, driver transistor q2oi(i
=1 to 4) and load element t, 5oi (+=1 to 4),
It is composed of driver transistors Q30i (i = 1 to 8). The difference between this embodiment circuit and the conventional circuit is that in FIG.
3, Q204 is newly added, and output signals ANi (i-0, 1), ATi (+ = 1.1.
10.1) be constructed so that it can be grounded. Therefore, it is a trap to set the control signal DCi to high level, and output signals ANi (i = 0.1), Ari (i
=o, 1) can all be set to a low level, thereby decoding output signals WXi (i=0 to 3) shown in FIG.
) can all be made to a high level.

第10図は本発明実施例の記憶セル回路マトリックス部
分の回路図を示したものである。この実施例回路は、第
4図に示した従来装置にトランジスタQ1i(i=o〜
3)、qzi(i=o〜s>’に付加した構成となって
おシ、トランジスタ。11(i=0〜5)は、そのソー
ス端子を一方のディジイツトDTi(i=口〜3)に、
そのドレイン端子を第1の電源端子pwoに接続し、そ
のゲート端子を第1の制御信号線CIに接続する。また
、トランジスタQ2i(i=0〜3)は、そのドレイン
端子を他方のディジット線DNi(i=0〜3)に、そ
のソース端子を第2の電源端子PW1または接地レベル
に接続し、そのゲート端子を第2の制御信号線CLIに
接続する。そして、電源端子PW2は、その電位を電源
端子PW1の電位よシも高いレベルに設定しておく。
FIG. 10 shows a circuit diagram of the memory cell circuit matrix portion of the embodiment of the present invention. This embodiment circuit has a transistor Q1i (i=o~
3), qzi (i=o~s>') is a transistor. 11 (i=0~5) connects its source terminal to one digit DTi (i=o~3). ,
Its drain terminal is connected to the first power supply terminal pwo, and its gate terminal is connected to the first control signal line CI. Further, the transistor Q2i (i=0 to 3) has its drain terminal connected to the other digit line DNi (i=0 to 3), its source terminal connected to the second power supply terminal PW1 or the ground level, and its gate The terminal is connected to the second control signal line CLI. The potential of the power supply terminal PW2 is set to a higher level than the potential of the power supply terminal PW1.

以下に、本実施例装置の動作を説明する。The operation of the apparatus of this embodiment will be explained below.

書込み、読出し動作は、第4図の従来例と同様であり、
この時には、CLOlCLlは低レベルにしてお(必要
がある。
Writing and reading operations are similar to the conventional example shown in FIG.
At this time, CLO1CL1 must be kept at a low level.

次に記憶セル回路を初期期待値に設定する動作を説明す
る。
Next, the operation of setting the memory cell circuit to the initial expected value will be explained.

第8図、第9図の回路において、制御信号DCi高レベ
ルにすることKよシ、第10図のワード線WXi(i=
o〜3)のすべてを高レベルにして全記憶セル回路全活
性化する。そして、制御信号線CLOおよびCLlt−
高レベルにすることKより、すべての記憶セル回路C1
j(i−0〜3、j=o〜3)は、同時に初期期待値の
状態に設定される。
In the circuits of FIGS. 8 and 9, it is better to set the control signal DCi to a high level, and the word line WXi (i=
All the memory cell circuits are activated by setting all of them to high level. Then, the control signal lines CLO and CLlt-
By setting K to a high level, all memory cell circuits C1
At the same time, j (i-0 to 3, j=o to 3) is set to the initial expected value state.

以上の説明から明らかなように1サイクル中にすべての
記憶セル回路を初期期待状態に設定することができ、高
速化を図ることができる。
As is clear from the above description, all the memory cell circuits can be set to the initial expected state during one cycle, making it possible to increase the speed.

本発明記憶セルフ)IJラックス他の実施例を第11図
に示す。
FIG. 11 shows another embodiment of the present invention (memory self-service) IJ Lux et al.

第11図は第10図の記憶セルフ)IJラックス第1の
電流制御トランジスタQ5i(i=o〜3)、および第
2の電流制御ド丁うンジスタQ4i(i=0〜3)を付
加したものであシ、第1の電流制御トランジスタq3i
(i=o〜3)は、そのソース端子を一方のディジット
負荷素子LTi(i=口〜5)に接続し、ドレイン端子
を電源端子pwxに、またゲート端子を制御線CL2に
接続する。また第2の電流制御トランジスタQ4i(i
=0〜5)は、そのソース端子を他方のディジット負荷
素子LNi(i−0〜3)に接続し、ドレインを電源端
子pwxに、ゲート端子を制御線CL3に接続する。こ
の実施例装置では、上記第1、第2の電流制御トランジ
スタにより初期期待値状態設定時の電流を制御すること
が可能となる。
FIG. 11 shows the memory cell shown in FIG. 10 with the addition of a first current control transistor Q5i (i=0 to 3) and a second current control transistor Q4i (i=0 to 3). First current control transistor q3i
(i=o~3) has its source terminal connected to one digit load element LTi (i=mouth~5), its drain terminal connected to the power supply terminal pwx, and its gate terminal connected to the control line CL2. In addition, the second current control transistor Q4i (i
=0 to 5), its source terminal is connected to the other digit load element LNi (i-0 to 3), its drain is connected to the power supply terminal pwx, and its gate terminal is connected to the control line CL3. In this embodiment, the first and second current control transistors can control the current when setting the initial expected value state.

なお、本発明の実施例では4ワード×4ビツト構成のN
チャンネル金属酸化膜半導体記憶回路について説明した
が、本発明はこれに限定されるものではな(、その構成
やトランジスタのNチャンネル、Pチャンネル等にかか
わらず、種々の変更が可能である。
In addition, in the embodiment of the present invention, N
Although the channel metal oxide film semiconductor memory circuit has been described, the present invention is not limited thereto (various modifications can be made regardless of its configuration or whether the transistor is N-channel or P-channel, etc.).

〔効果の説明〕[Explanation of effects]

以上説明したように、本発明釦よれば従来のスタティッ
ク型半導体記憶回路が初期期待値設定時に複数サイクル
を必要とする速度上の欠点を除去することができ、期待
値設定の高速化を図ることができる。
As explained above, according to the button of the present invention, it is possible to eliminate the speed disadvantage of the conventional static type semiconductor memory circuit that requires multiple cycles when setting an initial expected value, and to increase the speed of setting an expected value. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスタティック型記憶セルの回路図。 第2図は読出し動作タイミング図。 第3図は書込み動作タイミング図。 第4図は従来例の半導体記憶回路マトリックスの回路図
。 !@5図はデコーダ回路プロクク図。 第6、第7図は従来例のデコーダの回路図。 第8、第9図は本発明実施例装置のデコーダ部分の回路
図。 第10図は本発明実施例装置の半導体記憶回路第11図
は本発明の他の実施例装置の半導体記憶回路マトリック
ス部分の回路図。 C1j(i=o〜”3、j=o〜3)・・・記憶セル回
路、wxi(i=0〜3)・・・ワード線、DTi(i
=0〜5)、DNi(i=0〜3)・・・ディジット線
。 特許出願人 日本電気株式会社 代理人 弁理士 井 出 直 孝 q ハ ・) 第 1 図 尾2図 元 3 図 箪5 図 第 6 図 荒 7 図 蔦 8図 TO 蔦 9 図 第10回 M 11図
FIG. 1 is a circuit diagram of a static type memory cell. FIG. 2 is a read operation timing diagram. FIG. 3 is a write operation timing diagram. FIG. 4 is a circuit diagram of a conventional semiconductor memory circuit matrix. ! @Figure 5 is a decoder circuit diagram. 6 and 7 are circuit diagrams of a conventional decoder. 8 and 9 are circuit diagrams of a decoder portion of an apparatus according to an embodiment of the present invention. FIG. 10 is a semiconductor memory circuit of a device according to an embodiment of the present invention. FIG. 11 is a circuit diagram of a semiconductor memory circuit matrix portion of a device according to another embodiment of the present invention. C1j (i=o~”3, j=o~3)...Storage cell circuit, wxi (i=0~3)...Word line, DTi (i
=0-5), DNi (i=0-3)... digit line. Patent Applicant NEC Corporation Agent Patent Attorney Nao Ide Takashi (Ha) No. 1 Figure tail 2 Original 3 Figure 5 Figure 6 Figure rough 7 Figure 8 Figure TO Tsuta 9 Figure 10th M 11

Claims (1)

【特許請求の範囲】[Claims] (1)  記憶セルが複数の行および複数の列からなる
マトリクスに配列され、上記各行にはワード線が、上記
各列にはディジット線対がそれぞれ接続された記憶セル
群と、 上記各行のワード線に接続され、上記記憶セル群のうち
から活性化する行の選択を行う選択手段とを備えた半導
体記憶装置において、 上記全列のディジット線対の一方のディジット線を高レ
ベル忙、他方のディジット線を低レベルに同時に設定す
る設定手段を備え、 上記選択手段は外部活性化信号によル上記全ワード線を
同時に活性化できるように構成されたことを特徴とする
半導体記憶装置。
(1) A memory cell group in which memory cells are arranged in a matrix consisting of a plurality of rows and a plurality of columns, a word line is connected to each row, and a digit line pair is connected to each column; and a word line in each row. In the semiconductor memory device, one digit line of the digit line pairs of all the columns is set to a high level, and the other digit line is set to high level. 1. A semiconductor memory device comprising setting means for simultaneously setting digit lines to a low level, wherein said selection means is configured to simultaneously activate all said word lines by an external activation signal.
JP57105757A 1982-06-18 1982-06-18 Semiconductor storage device Granted JPS58222489A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57105757A JPS58222489A (en) 1982-06-18 1982-06-18 Semiconductor storage device
US06/506,080 US4489404A (en) 1982-06-18 1983-06-20 Memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105757A JPS58222489A (en) 1982-06-18 1982-06-18 Semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS58222489A true JPS58222489A (en) 1983-12-24
JPH0310195B2 JPH0310195B2 (en) 1991-02-13

Family

ID=14416096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105757A Granted JPS58222489A (en) 1982-06-18 1982-06-18 Semiconductor storage device

Country Status (2)

Country Link
US (1) US4489404A (en)
JP (1) JPS58222489A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197994A (en) * 1984-03-21 1985-10-07 Toshiba Corp Static type random access memory
JPS61105793A (en) * 1984-10-26 1986-05-23 Matsushita Electronics Corp Memory device
JPS63177392A (en) * 1987-01-19 1988-07-21 Toshiba Corp Semiconductor memory device
JPS63183681A (en) * 1987-01-26 1988-07-29 Nec Corp Storage device
JPS63306590A (en) * 1987-06-08 1988-12-14 Nec Corp Memory circuit
JPH01201896A (en) * 1988-02-05 1989-08-14 Nec Corp Semiconductor memory

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567578A (en) * 1982-09-08 1986-01-28 Harris Corporation Cache memory flush scheme
JPH051040Y2 (en) * 1985-04-09 1993-01-12
US4763305A (en) * 1985-11-27 1988-08-09 Motorola, Inc. Intelligent write in an EEPROM with data and erase check
EP0259967B1 (en) * 1986-08-01 1994-03-23 Fujitsu Limited Directory memory
US4805149A (en) * 1986-08-28 1989-02-14 Advanced Micro Devices, Inc. Digital memory with reset/preset capabilities
US4858182A (en) * 1986-12-19 1989-08-15 Texas Instruments Incorporated High speed zero power reset circuit for CMOS memory cells
JPH07109701B2 (en) * 1987-11-30 1995-11-22 株式会社東芝 Cache memory
US5054000A (en) * 1988-02-19 1991-10-01 Sony Corporation Static random access memory device having a high speed read-out and flash-clear functions
JPH0283892A (en) * 1988-09-20 1990-03-23 Fujitsu Ltd Semiconductor memory device
JPH04360095A (en) * 1991-06-06 1992-12-14 Nec Corp Semiconductor memory
US5367655A (en) * 1991-12-23 1994-11-22 Motorola, Inc. Memory and associated method including an operating mode for simultaneously selecting multiple rows of cells
US6772277B2 (en) * 2001-04-30 2004-08-03 Hewlett-Packard Development Company, L.P. Method of writing to a memory array using clear enable and column clear signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140830A (en) * 1974-10-04 1976-04-06 Nippon Electric Co
JPS5622278A (en) * 1979-07-27 1981-03-02 Fujitsu Ltd Decoder selection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209851A (en) * 1978-07-19 1980-06-24 Texas Instruments Incorporated Semiconductor memory cell with clocked voltage supply from data lines
JPS5570993A (en) * 1978-11-24 1980-05-28 Hitachi Ltd Memory circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140830A (en) * 1974-10-04 1976-04-06 Nippon Electric Co
JPS5622278A (en) * 1979-07-27 1981-03-02 Fujitsu Ltd Decoder selection system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197994A (en) * 1984-03-21 1985-10-07 Toshiba Corp Static type random access memory
JPS61105793A (en) * 1984-10-26 1986-05-23 Matsushita Electronics Corp Memory device
JPS63177392A (en) * 1987-01-19 1988-07-21 Toshiba Corp Semiconductor memory device
JPS63183681A (en) * 1987-01-26 1988-07-29 Nec Corp Storage device
JPS63306590A (en) * 1987-06-08 1988-12-14 Nec Corp Memory circuit
JPH01201896A (en) * 1988-02-05 1989-08-14 Nec Corp Semiconductor memory

Also Published As

Publication number Publication date
JPH0310195B2 (en) 1991-02-13
US4489404A (en) 1984-12-18

Similar Documents

Publication Publication Date Title
JPS58222489A (en) Semiconductor storage device
US3284782A (en) Memory storage system
GB1463382A (en) Semiconductor data stores including binery signal regenerating circuits
NL8802800A (en) STATIC MEMORY OF THE RAM TYPE.
US4063224A (en) Circuit for the production of read-out pulses
US7184304B2 (en) Nonvolatile semiconductor memory device and method for fabricating the same
JPS5979487A (en) Decoder circuit
US4189785A (en) Complementary MOS memory array including complementary MOS memory cells therefor
EP0034928A2 (en) Semiconductor memory device
JP3971045B2 (en) Semiconductor memory device having multi-bit data latch circuit capable of high integration
US4485461A (en) Memory circuit
US3911428A (en) Decode circuit
US4918657A (en) Semiconductor memory device provided with an improved precharge and enable control circuit
JPS61267992A (en) Random access memory
IE53368B1 (en) Mos dynamic memory device
KR850001614A (en) EEPROM type memory system
JPH01134799A (en) Memory device
JPS5846798B2 (en) semiconductor storage device
EP0182194B1 (en) Data output circuit for a dynamic memory
GB1380317A (en) Storage-processor elements
JP2658267B2 (en) Redundancy circuit for semiconductor memory
JPH087585A (en) Detection device of counting finish of nonvolatile memory
US20020031015A1 (en) Memory incorporating column register and method of writing in said memory
JP2991399B2 (en) Gate array semiconductor device
JP2586541B2 (en) Counter test circuit