JPS58221576A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPS58221576A
JPS58221576A JP57104930A JP10493082A JPS58221576A JP S58221576 A JPS58221576 A JP S58221576A JP 57104930 A JP57104930 A JP 57104930A JP 10493082 A JP10493082 A JP 10493082A JP S58221576 A JPS58221576 A JP S58221576A
Authority
JP
Japan
Prior art keywords
film
electrode
photoelectric film
diodes
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57104930A
Other languages
Japanese (ja)
Inventor
Masato Yoneda
正人 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57104930A priority Critical patent/JPS58221576A/en
Publication of JPS58221576A publication Critical patent/JPS58221576A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve the matching performance between a scanning part and a photoelectric film, by providing plural signal storing diodes, scanning lines to deliver the electric charge to outside from these diodes, and electric shielding electrodes between coupled parts of diodes and scanning lines respectively on a semiconductor substrate. CONSTITUTION:A photoelectric film 2 is laminated on a semiconductor substrate 1, and plural optical signal storing diodes containing N<+> layers 3 arrayed 2-dimensionally are formed to the film 2. In addition, a polycrystal silicon buffer layer 4 which reduces the level difference and a metallic electrode 5 connected to the layer 4 are coupled to the film 2. This coupled metallic surface is used as a collector in which an optical signal is absorbed. Then an optical signal transfer electrode 6 is provided on the substrate 1 via an insulated layer. The shielding electrodes 15 are inserted among the layer 4 and electrodes 5 and 6 to keep the substrate potential. Thus the parasitic capacity is reduced between an electrode 7 for bias of film 2 and the electrode 6. This improves the matching performance between a scanning part and the film 2.

Description

【発明の詳細な説明】 本発明は固体撮像装置に関する。[Detailed description of the invention] The present invention relates to a solid-state imaging device.

従来より高感度、長寿命、かつ高い信頼性を持つ固体撮
像装置として光電膜を半導体基板走査部−にに積層する
構造のものが提案されてきた。同装置は高感度の光電膜
において発生した光信号電荷を、半導体基板上の光信号
蓄積用ダイオードに蓄積し、同光信号電荷を信号走査に
よって順次転送出力するものである。同装置は光電膜特
性により高感度となり、しかも撮像管走査部のように取
扱いに注意のいる真空管部がないために高い信頼性と長
寿命が期待できるわけであるが、一方、光電膜を直接半
導体走査部と接触させるために光電膜に必要とされるバ
イアスが、光電膜と走査回路の間の寄生容量を介して変
動をうけ、特性が不安定になる。
2. Description of the Related Art Conventionally, solid-state imaging devices with high sensitivity, long life, and high reliability have been proposed in which a photoelectric film is laminated on a scanning portion of a semiconductor substrate. This device stores optical signal charges generated in a highly sensitive photoelectric film in an optical signal storage diode on a semiconductor substrate, and sequentially transfers and outputs the optical signal charges by signal scanning. This device has high sensitivity due to the characteristics of the photoelectric film, and because it does not have a vacuum tube section that must be handled carefully like the image pickup tube scanning section, it can be expected to have high reliability and long life. The bias required for the photoelectric film to contact the semiconductor scanning section is subject to fluctuations due to parasitic capacitance between the photoelectric film and the scanning circuit, resulting in unstable characteristics.

本発明はかかる重大な問題に鑑みこの寄生容量の存在に
よる光電膜特性と走査部との整合性を改善せんとするも
のである。以下、寄生容量の発生要因、光電膜特性およ
び走査部と光電膜の整合性について述べる。
In view of this serious problem, the present invention aims to improve the matching between the photoelectric film characteristics and the scanning section due to the presence of this parasitic capacitance. Hereinafter, the causes of parasitic capacitance, the characteristics of the photoelectric film, and the compatibility between the scanning section and the photoelectric film will be described.

第1図は従来の固体撮像装置の単位絵素の断面図を示す
。図面においてP型シリコンよりなる半導体基板1上に
光電膜2を積層しており、n+層3が二次元配置をもつ
光信号蓄積用ダイオードを形成し、段差緩和のための多
結晶シリコンバッファ層4およびこれに接続してなる金
属電極5が光電膜2と結合しており、この結合する金属
面が光信号を吸収するコレクタとなるので隣りの絵素と
電気的結合をもたない範囲で十分に大きくする必要があ
る。また6はシリコン基板1上に絶縁層1aを介して設
置された光信号転送用の電極であり、図に示すA領域は
電荷転送領域であり、光電膜2上には間膜のバイアス用
の電極7を設けである。
FIG. 1 shows a cross-sectional view of a unit pixel of a conventional solid-state imaging device. In the drawing, a photoelectric film 2 is laminated on a semiconductor substrate 1 made of P-type silicon, an n+ layer 3 forms an optical signal storage diode with a two-dimensional arrangement, and a polycrystalline silicon buffer layer 4 is formed to reduce the level difference. A metal electrode 5 connected to this is bonded to the photoelectric film 2, and since this bonded metal surface becomes a collector that absorbs the optical signal, it is sufficient that there is no electrical connection with adjacent picture elements. need to be made larger. Reference numeral 6 denotes an electrode for optical signal transfer installed on the silicon substrate 1 via the insulating layer 1a, a region A shown in the figure is a charge transfer region, and an electrode for biasing the interlayer is provided on the photoelectric film 2. An electrode 7 is provided.

同断面構造より明かに!拡散部3と転送電極6は、中間
の絶縁層1aを介して寄生容量Cpを持つ。この寄生容
量が光電膜特性と半導体走査部との整合性に大きな問題
となる。
Clearly from the same cross-sectional structure! Diffusion part 3 and transfer electrode 6 have parasitic capacitance Cp via intermediate insulating layer 1a. This parasitic capacitance poses a major problem in matching the photoelectric film characteristics and the semiconductor scanning section.

次に光電膜特性について述べる。光電膜2には通常十分
なバイアスvfBを印加しておいて光によって発生する
信号電荷を十分なドリフト電界で外部に取り出す。第2
図の実線8は、ある照度での光電膜に印加するバイアス
VfB (横軸)と同光電膜の光電流工ph(縦軸)と
の関係である。同図よりわかるようにバイアスvfBが
バイアス電圧v1以下では発生した信号が全て外に取り
出され光信号となっておらず、この状態では焼き付けと
称される画像欠陥を生じる。即ち光電膜に印加するノく
イアスミ圧VfBは■1  より犬であることが必要と
される。また、同図中一点鎖線9で示したものは暗状態
での光電膜のリーク電流であり、あるノ(イアスミ圧v
2以上に光電膜バイアスVfBが大きくなると光信号電
流対リーク電流の比(即ちS/N)が悪くなり鮮明な像
を映すことができなくなる。
Next, the characteristics of the photoelectric film will be described. Usually, a sufficient bias vfB is applied to the photoelectric film 2, and signal charges generated by light are extracted to the outside by a sufficient drift electric field. Second
A solid line 8 in the figure represents the relationship between the bias VfB (horizontal axis) applied to the photoelectric film at a certain illuminance and the photocurrent ph (vertical axis) of the photoelectric film. As can be seen from the figure, when the bias vfB is lower than the bias voltage v1, all the generated signals are taken out and do not become optical signals, and in this state, an image defect called burn-in occurs. That is, the pressure VfB applied to the photoelectric film is required to be as high as (1). In addition, what is indicated by the dashed line 9 in the same figure is the leakage current of the photoelectric film in the dark state, and it is
If the photoelectric film bias VfB becomes larger than 2, the ratio of optical signal current to leakage current (ie, S/N) becomes poor, making it impossible to project a clear image.

−従って光電膜特性を十分に生かして高感度でS/Nの
良い画質を得るには、光電膜バイアスVfBが常に図中
Bの領域にある次の条件をみたす必要がある。
- Therefore, in order to fully utilize the photoelectric film characteristics to obtain high sensitivity and high S/N image quality, it is necessary to satisfy the following condition that the photoelectric film bias VfB is always in the region B in the figure.

V <V  <v    ・・・・・・・・・ (1)
−fB−2 光電膜特性が明らかになったところで半導体走査基板上
に上述の特性を有する光電膜が積層された場合の駆動状
態について検討する。
V <V <v (1)
-fB-2 Now that the photoelectric film characteristics have been clarified, the driving state when a photoelectric film having the above characteristics is laminated on a semiconductor scanning substrate will be discussed.

まず第3図に第1図の固体撮像装置の電気的等価回路を
示す。転送電極6とn+拡散部10との面の寄生容量1
2をCpとし、光電膜2を容量Cfとすると、蓄積ダイ
オード3はC,の接合容量をもったダイオードとして表
現される。また転送電極6下の半導体内の電気ポテンシ
ャルは光信号蓄積中d実線a、信号電荷読み込み時は破
線すの様な状態になり、12および13の電位ψDとψ
0は各状態の読み、込み仕切り電位である。第4図は光
電膜」二の電極7に加える電圧φITOおよび転送電極
6に加えるパルスφVの信号読み込み時のパルスタイミ
ングチャートの一例で、信号読み込み時t=T1および
光信萼蓄積時t=’r2での駆動状態を示したものが第
6図である。t=’r1の時においてn+拡散部の電位
はψD13に設定され、この時蓄積電荷14が転送電極
6下の電位ポケットに読み込まれ転送出力される。この
時の光電膜バイアス■f B(R1は電極7とn+拡散
部1oの差で決寸り Vf B(R)−ψD−φITO””””’  (2)
となる。次にt−T2となり信号読み込みパルスφVが
取り除かれ光信号蓄積状態になる時、寄生容!fCp1
1を介してn+拡散部10の電位がψDから△ψDだけ
下がってしまい光電膜バイアス■fB(1)は、以下の
ようになる。
First, FIG. 3 shows an electrical equivalent circuit of the solid-state imaging device of FIG. 1. Parasitic capacitance 1 between the transfer electrode 6 and the n+ diffusion part 10
2 is Cp, and the photoelectric film 2 is a capacitance Cf, then the storage diode 3 can be expressed as a diode with a junction capacitance of C. In addition, the electric potential in the semiconductor under the transfer electrode 6 is in a state as shown by the solid line d during optical signal storage and as shown by the broken line a when reading the signal charge, and the potentials ψD and ψ of 12 and 13 are as follows.
0 is the read/input partition potential of each state. FIG. 4 is an example of a pulse timing chart at the time of signal reading of the voltage φITO applied to the second electrode 7 of the photoelectric film and the pulse φV applied to the transfer electrode 6, where t=T1 when reading the signal and t='r2 when the photosensitive calyx is accumulated. FIG. 6 shows the driving state. When t='r1, the potential of the n+ diffusion part is set to ψD13, and at this time, the accumulated charge 14 is read into the potential pocket under the transfer electrode 6 and transferred and output. At this time, the photoelectric film bias ■f B (R1 is determined by the difference between the electrode 7 and the n+ diffusion part 1o Vf B(R)-ψD-φITO""""' (2)
becomes. Next, at t-T2, when the signal reading pulse φV is removed and the optical signal accumulation state occurs, the parasitic capacitance! fCp1
1, the potential of the n+ diffusion portion 10 is lowered by ΔψD from ψD, and the photoelectric film bias fB(1) becomes as follows.

v7B(I) =ψD−φITO−△9’p  −(3
)−力先電膜特性を十分に良く発揮させるには、上述の
ように、式(2)の条件を満足しなければならない。即
ち Vl”vfB(I)<vfB(R)≦ v2 ++++
++  (4)であることが必要であるが、寄生容量C
p11が大きく△ψDが上記(4)式を満すように小さ
くできない。
v7B(I) = ψD−φITO−Δ9′p −(3
) - In order to fully exhibit the force tip electrical film characteristics, the condition of formula (2) must be satisfied as described above. That is, Vl”vfB(I)<vfB(R)≦v2 +++++
++ (4), but the parasitic capacitance C
p11 is large and ΔψD cannot be made small enough to satisfy the above equation (4).

本発明は、この寄生容量Cp11を減少させるために第
6図の本発明の実施例に示すように段差緩和用多結晶シ
リコンバッファ層4および金属電極6と転送電極6の間
に電気シールド用の電極15を挿入して基板電位に保つ
ことにより寄生容量Cpを減少させるものであり、この
時第4図のパルスが光電膜上の電極7および転送電極に
加えられた場合の、半導体基板内のポテンシャルおよび
n+拡散部1oの電位を第7図に示す。
In order to reduce this parasitic capacitance Cp11, the present invention provides a polycrystalline silicon buffer layer 4 for step reduction and an electric shield between the metal electrode 6 and the transfer electrode 6, as shown in the embodiment of the present invention in FIG. By inserting the electrode 15 and maintaining the substrate potential, the parasitic capacitance Cp is reduced. At this time, when the pulse shown in FIG. 4 is applied to the electrode 7 on the photoelectric film and the transfer electrode, The potential and the potential of the n+ diffusion portion 1o are shown in FIG.

t−T1の信号読み込み時は従来と同様に、n+拡散部
10の電位はψDに設定され、光電膜バイア”’/B(
R1は Vf B(R)  −ψD−φITO””””’  (
6)となる。次にt=T2で読み込みパルスφ■が取り
除かれ光信号蓄積状態になると、従来のように転送電極
6とn+拡散部1oの間の寄生容量は無視しうる程小さ
いので読み込みパルスφ■による変動をR4−拡散部1
oはうけない。従ってψDの電位のそのままで光電膜バ
イアスVf B(I)は、やはり(5)式と同じく vfB(■)−ψD−φITO となる。この時以下の条件を満足しうろことは容易であ
り、 ■1$vfB(I)−fB(R)−ま たとえばφITOの値を適当に設定すれば良い。
When reading the signal at t-T1, the potential of the n+ diffusion section 10 is set to ψD, and the photoelectric film via "'/B (
R1 is Vf B(R) −ψD−φITO””””' (
6). Next, at t=T2, when the read pulse φ■ is removed and the optical signal accumulation state is reached, the parasitic capacitance between the transfer electrode 6 and the n+ diffusion region 1o is negligibly small, so the fluctuation due to the read pulse φ■ R4-diffusion part 1
I don't accept o. Therefore, with the potential of ψD unchanged, the photoelectric film bias Vf B (I) becomes vfB (■) - ψD - φITO, as in equation (5). At this time, it is easy to satisfy the following conditions: (1) 1$vfB(I)-fB(R)-For example, the value of φITO may be set appropriately.

以上説明したように本発明の電気シールド構造走査部と
の整合が改善されるもので、工業−にの利用価値が高い
As explained above, the electrical shield structure of the present invention improves the matching with the scanning section, and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電膜層型固体撮像装置の単位絵素の断
面図、第2図は光電膜の特性曲線を示す図、第3図は第
1図に示す単位絵素の等価回路図、第4図は駆動パルス
を示す図、第6図は第1図の固体撮像装置における信号
読み込み時および光信号蓄積時の単位絵素の内部ポテン
シャル図、第6図は本発明の一実施例における固体撮像
装置の単位絵素の断面図、第7図は第6図の固体撮像装
置における信号読み込み時および光信号蓄積時の単位絵
素の内部ポテンシャル図である。 1・・・・・・半導体基板、1a・・・・・・絶縁層、
2・・・・・・光電膜、3・・・・・・n″一層、4・
・・・・・多結晶シリコンバッファ層、5・・・・・金
褌、寡極、6・・・・・・転送用電極、7・・・・・・
光電膜バイアス用の電極、16・・・・・・シールド用
電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!@
 1 図 jの 第2図 バ1ア人先圧 Vh !@3図 第 4 図 t=T、   b=ル
Figure 1 is a cross-sectional view of a unit picture element of a conventional photoelectric film layered solid-state imaging device, Figure 2 is a diagram showing the characteristic curve of the photoelectric film, and Figure 3 is an equivalent circuit diagram of the unit picture element shown in Figure 1. , FIG. 4 is a diagram showing drive pulses, FIG. 6 is an internal potential diagram of a unit pixel during signal reading and optical signal accumulation in the solid-state imaging device of FIG. 1, and FIG. 6 is an example of the present invention. 7 is an internal potential diagram of the unit pixel at the time of signal reading and optical signal accumulation in the solid-state imaging device of FIG. 6. FIG. 1... Semiconductor substrate, 1a... Insulating layer,
2...Photoelectric film, 3...n'' single layer, 4...
... Polycrystalline silicon buffer layer, 5 ... Gold loincloth, oligopolar electrode, 6 ... Transfer electrode, 7 ...
Electrode for photoelectric film bias, 16... Electrode for shielding. Name of agent: Patent attorney Toshio Nakao and 1 other person! @
1 Figure 2 of Figure J B1 A person's advance pressure Vh! @Figure 3 Figure 4 t=T, b=L

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に複数個の信号蓄積用ダイオードと、前記
信号蓄積用ダイオードからの信号電荷を外部に走査出力
する走査ラインと、前記信号蓄積用ダイオード一端の少
なくとも一部分と結合する光電膜とを具備し、前記信号
蓄積ダイオードと光電膜の結合部と信号走査ライン間に
電気シールド用電極を介在させ、前記シールド用電位を
一定の電位に保ち信号走査ラインからの前記光電膜結合
部への影響を少なくすることを特徴とする固体撮像装置
A semiconductor substrate includes a plurality of signal storage diodes, a scanning line for scanning and outputting signal charges from the signal storage diodes to the outside, and a photoelectric film coupled to at least a portion of one end of the signal storage diodes. , an electric shielding electrode is interposed between the signal storage diode and photoelectric film coupling part and the signal scanning line, and the shielding potential is kept at a constant potential to reduce the influence of the signal scanning line on the photoelectric film coupling part. A solid-state imaging device characterized by:
JP57104930A 1982-06-17 1982-06-17 Solid state image pickup device Pending JPS58221576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104930A JPS58221576A (en) 1982-06-17 1982-06-17 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104930A JPS58221576A (en) 1982-06-17 1982-06-17 Solid state image pickup device

Publications (1)

Publication Number Publication Date
JPS58221576A true JPS58221576A (en) 1983-12-23

Family

ID=14393809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104930A Pending JPS58221576A (en) 1982-06-17 1982-06-17 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS58221576A (en)

Similar Documents

Publication Publication Date Title
US5401952A (en) Signal processor having avalanche photodiodes
US4972243A (en) Photoelectric conversion apparatus with shielded cell
US8183604B2 (en) Solid state image pickup device inducing an amplifying MOS transistor having particular conductivity type semiconductor layers, and camera using the same device
EP0593139A2 (en) Photoelectric converting apparatus
US4462047A (en) Solid state imager with blooming suppression
JPH09233392A (en) Photoelectric converter
US4567525A (en) CCD Picture element defect compensating apparatus
US4500924A (en) Solid state imaging apparatus
US4456929A (en) Solid state image pick-up apparatus
JPS58221576A (en) Solid state image pickup device
JP2741703B2 (en) Photoelectric conversion device
JPH0519800B2 (en)
JP2790096B2 (en) Driving method and device for infrared solid-state imaging device
JP2512723B2 (en) Photoelectric conversion device
JP3424267B2 (en) Amplification type solid-state imaging device having a capacitor for clamping
JPS59141264A (en) Solid-state image pick-up element
JP2828124B2 (en) Charge transfer device
US4661830A (en) Solid state imager
JP2770367B2 (en) Driving method of solid-state imaging device
JP2982258B2 (en) Charge coupled device
JPS639429B2 (en)
JP2818193B2 (en) Driving method of CCD solid-state imaging device
JP3148459B2 (en) Driving method of solid-state imaging device
JPH08264746A (en) Drive method for solid state image sensor
JPS63215064A (en) Solid-state image sensing device