JPS58220929A - Controller of furnace top pressure collecting turbine equipment - Google Patents

Controller of furnace top pressure collecting turbine equipment

Info

Publication number
JPS58220929A
JPS58220929A JP10138782A JP10138782A JPS58220929A JP S58220929 A JPS58220929 A JP S58220929A JP 10138782 A JP10138782 A JP 10138782A JP 10138782 A JP10138782 A JP 10138782A JP S58220929 A JPS58220929 A JP S58220929A
Authority
JP
Japan
Prior art keywords
top pressure
pressure
furnace top
recovery turbine
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10138782A
Other languages
Japanese (ja)
Inventor
Koichi Nitsuta
功一 仁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP10138782A priority Critical patent/JPS58220929A/en
Publication of JPS58220929A publication Critical patent/JPS58220929A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow

Abstract

PURPOSE:To reduce a fluctuation in a furnace top pressure as low as possible, by installing a controller, which is backed up by a regulator on the blast furnace side when a controller on the turbine side is brought to a trouble or performs a reverse operation to the above. CONSTITUTION:On the blast furnace 1 side, a signal of a pressure indicating regulator 10 is controlled by bringing the characteristics of a bypass valve 4 into a rectilinear one by means of a high selector 32 and a function operator 33. On the turbine 6 side, a signal of a pressure indicating regulator 13 enters a ratio setter 36, and outputs of another function operator 37 and a pressure control signal are selected at a low level via a low selector 38 to control them by means of a governor valve 5 and a static vane driving device. The two control systems are selectable by a switching device 31, and a regulator in an inoperative state, follows up a regulator operated by means of an external feedback signal. This enables reduction of a fluctuation in a pressure at a furnace top to as low as possible since an insensible zone is prevented from being created if the switching device 31 is happened to be operated.

Description

【発明の詳細な説明】 するものである。[Detailed description of the invention] It is something to do.

第1図は高炉1の炉頂圧により駆動される従来の炉頂圧
回収タービン(以下の説明では便宜」−これをタービン
と略称する)設備に一般的に採用される制御装置を示し
ているが、この高炉1において発生する高炉ガスは、ダ
ストキャツチャ−2及びペンチュリースクラバ−3等に
より除塵され、タービン6を運転しない場合は、セプタ
ム弁又はバイパス弁4により減圧されると共に、炉頂圧
力発信器8により検出された圧力と、ハンドコントロー
ラー9により圧力指示調節δ110に与えられている設
定圧力との比較により、制御信号を得て、セプタム弁又
はバイパス弁4により炉頂圧が一定に制御される。
FIG. 1 shows a control device generally employed in a conventional furnace top pressure recovery turbine (hereinafter referred to as a turbine for convenience) driven by the furnace top pressure of a blast furnace 1. However, the blast furnace gas generated in the blast furnace 1 is removed by a dust catcher 2, a penturi scrubber 3, etc., and when the turbine 6 is not operated, the pressure is reduced by a septum valve or bypass valve 4, and the blast furnace gas is removed from the top of the furnace. A control signal is obtained by comparing the pressure detected by the pressure transmitter 8 and the set pressure given to the pressure indication adjustment δ110 by the hand controller 9, and the furnace top pressure is kept constant by the septum valve or bypass valve 4. controlled.

11。11.

一般に、セプタム弁又はバイパス弁4にはバタフライ弁
が採用され、通常の高炉ガス量において弁開度は制御性
の最も良い弁開度30から70% 程度で使用されてい
る。
Generally, a butterfly valve is adopted as the septum valve or bypass valve 4, and the valve opening is used at a valve opening of about 30 to 70%, which provides the best controllability, at a normal blast furnace gas amount.

一方、炉頂圧回収タービン設備を運転する場合は、ハン
ドコントローラ11及び減算器12によりタービン制御
用の圧力指示調節a116の設定圧力を0.03から0
.05 kg/CrrL’ 程度、即ち高炉1側の圧力
指示調節ifHOよりも低目に設定して置き、この制御
信号を電気ガバナー14に送り、速度制御、電力制御、
圧力制御等の制御信号の内、必要な信号を選択し、信号
分配器15により調速弁5及び静翼への信号を分割して
、調速弁5及び静翼及び駆動装置16によりタービン6
を制御し、発電機7により高炉ガスのエネルギーを電力
として回収している。
On the other hand, when operating the furnace top pressure recovery turbine equipment, the hand controller 11 and subtractor 12 adjust the set pressure of the pressure instruction adjustment a116 for turbine control from 0.03 to 0.
.. The control signal is set at approximately 0.05 kg/CrrL', that is, lower than the pressure command adjustment ifHO on the blast furnace 1 side, and this control signal is sent to the electric governor 14, which controls speed control, power control,
A necessary signal is selected from control signals such as pressure control, and the signal distributor 15 divides the signal to the governor valve 5 and stator vanes, and the governor 5, stator vanes, and drive device 16 transmit the signal to the turbine 6.
The blast furnace gas energy is recovered as electricity by the generator 7.

また、静翼の作動遅れの補正が必要な場合は、静翼角度
を静翼角度発信器22によりフィードバックしているも
のもある。
In some cases, the stator blade angle is fed back by the stator blade angle transmitter 22 when correction of the stator blade operation delay is required.

一見欠点の見当らないこのような従来の制御装置におい
て、実際に炉頂圧変動を極力避けて運転することを要求
される高炉1の操業゛を行々うと次のごとき欠点のある
ことが指摘されている。
With such a conventional control system, which at first glance has no apparent defects, when actually operating the blast furnace 1, which is required to operate while avoiding top pressure fluctuations as much as possible, it has been pointed out that there are the following drawbacks. ing.

即ち、タービン6が圧力制御運転に入ると、炉頂圧はそ
れ以前の0.03から0.05 kg/crIL2、即
ちハンドコントローラ11にて低目に設定しただけ下っ
てしまうとか、高炉ガス発生量が増加して、発電電力量
が増加すると、電気ガバナー14の電力制御が選択され
、タービン6側がガスの飲み込み量を抑えてしまうと炉
頂圧が圧力指示調節イ110め設定値、即ちタービン6
の通常運転中まり0.03からO。05kg/crIL
2程度上昇して、圧力指示調節計10゛が制御信号を発
生し、セプタム弁又はバイパス弁4を開くことになるの
で、炉頂圧変動が大きいとか、一度タービン6は発電能
力一杯でセプタム弁又はバイパス弁4 (7) 制御に
入った後で、ガス量が減少し、圧力指示調節、rtlo
の制御信号が零となっても圧力が圧力指示調節J116
の設定値以下にならないと圧力指示調節計16の出力が
減少しないので、不感帯が生じるとか、高炉1の操業圧
力が変化するとタービン6の特性上電力制御にががる圧
力指示調節、tl13の出力が炉頂圧が高くなれば小さ
く々リ、炉頂圧が低くなると大きくなるため、圧力指示
調節計16のアンチリセットワインドアップの設定を行
々つて、必要以上に圧力指示調節計16の出力の増加を
避けて、実際にタービン制御に入るまでの不感帯をなく
しようとしても、実際には不可能であるとか、炉頂圧が
急に上昇した場合、実際にタービン6の前圧が上るまで
に多少の時間遅れがあるため、圧力指示調節a116の
信号が増加し、タービン6の調速弁5または静翼が開い
てかも前圧が上り、電力制御にかかり、調速弁5または
静翼が閉まり、炉頂圧が更に」1昇し、圧力指示調節計
10の設定値を越えて初めてセプタム弁又はバイパス弁
4が開く等の欠点があり、これ等の欠点は全て炉頂圧変
動を大きくすることとなり、改善すべく要望されていた
That is, when the turbine 6 enters pressure control operation, the furnace top pressure drops from 0.03 to 0.05 kg/crIL2, that is, the low value set on the hand controller 11, and the blast furnace gas generation When the amount of generated electricity increases, the power control of the electric governor 14 is selected, and when the turbine 6 side suppresses the amount of gas swallowed, the furnace top pressure increases to the set value of the pressure command adjustment 110, that is, the turbine 6
0.03 to O during normal operation. 05kg/crIL
2, the pressure indicating regulator 10' generates a control signal and opens the septum valve or bypass valve 4. Therefore, if the top pressure fluctuation is large or once the turbine 6 is at its full generating capacity, the septum valve will open. Or bypass valve 4 (7) After entering the control, the gas amount decreases, pressure command adjustment, rtlo
Even if the control signal of
Since the output of the pressure indicator controller 16 will not decrease unless it falls below the set value, a dead zone may occur, or if the operating pressure of the blast furnace 1 changes, power control will be affected due to the characteristics of the turbine 6. As the furnace top pressure increases, the output decreases gradually, and as the furnace top pressure decreases, it increases. Therefore, by setting the anti-reset windup of the pressure indicator controller 16, the output of the pressure indicator controller 16 may be increased more than necessary. Even if you try to avoid the increase and eliminate the dead zone before actually entering the turbine control, it is actually impossible, or if the furnace top pressure rises suddenly, it will take a while before the front pressure of the turbine 6 actually rises. Because there is a slight time delay, the signal of the pressure indication adjustment a116 increases, and even if the governor valve 5 or the stator vane of the turbine 6 opens, the front pressure rises, power control is applied, and the governor valve 5 or the stator vane opens. There are drawbacks such as the septum valve or bypass valve 4 opening only when the furnace top pressure increases by 1" and exceeds the set value of the pressure indicating controller 10. All of these drawbacks cause large fluctuations in the furnace top pressure. There was a request for improvement.

その上、15000 kw級の炉頂圧回収タービン設備
を例にとれば、通常タービン6側のCv値は15000
程度で殆んど全開に近い点が通常運転点として選択され
、圧力指示調節d1出力も80%から川0%が述転点と
なる。
Moreover, if we take a 15,000 kW class furnace top pressure recovery turbine equipment as an example, the Cv value on the turbine 6 side is usually 15,000.
A point close to full opening is selected as the normal operating point, and the pressure command adjustment d1 output also changes from 80% to 0% as the reversal point.

一方、セプタム弁又はノ(イノくス弁4ct、!常40
000程度のCV値のものが殆んどであり、圧プJ指示
調節111出力は30から5°%程度力;運転点となる
ので、通常、圧力指示調節3110と圧力指示調節、H
I3との調節31ゲインの設定は相当の差力玉あり、万
一のトラブルに対して)(ツクアップを主[]的として
設けられる2台の圧力指示調節計10、13がありなが
ら、融通があまり効かな(為し、圧力指示調節計13の
ル−プのトラフ゛ル【ま、圧力指示調節8110でバッ
クアップできる力;、圧力指示調節計10のトラブルは
圧力指示調節計16ではバックアップできない等の欠点
もあった。
On the other hand, the septum valve or
Most of them have a CV value of about 000, and the output of the pressure indication adjustment 111 is about 30 to 5°%;
There is a considerable difference in the adjustment 31 gain setting with I3, so in case of any trouble, there are two pressure indicating controllers 10 and 13 installed mainly for pickup, but there is little flexibility. It is not very effective (because of the troubles in the loop of the pressure indicating regulator 13 [well, the power that can be backed up by the pressure indicating regulator 8110; troubles in the pressure indicating regulator 10 cannot be backed up by the pressure indicating regulator 16, etc.). There was also.

そこで本発明は、前記従来の欠点を解消するためになさ
れたものであり、タービン側制御装置のトラブル時には
高炉側お圧力指示調節計が:1・。
Therefore, the present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology, and when there is a problem with the turbine side control device, the blast furnace side pressure indicating controller is set to 1.

バックアップし、高炉側の圧力指示調節用のトラブル時
にはタービン側の圧力指示調節用が)くツクアップでき
る制御装置を提供することを目的としたものである。
The object of the present invention is to provide a control device that can back up the pressure indication adjustment on the turbine side in the event of trouble in the pressure indication adjustment on the blast furnace side.

即ち、本発明の炉頂圧回収タービン設備の制御装置は、
高炉の炉頂圧により駆動される炉頂圧回収タービンと並
列に、セプタム弁又はノくイバス弁を設けた炉頂圧回収
タービン設備において、該セプタム弁又はバイパス弁の
最大のCV値と該炉頂圧回収タービンの最大のCV値と
を直線化するようにCV値合せを行なわせることにより
、該炉頂圧回収タービン側の制御装置のトラブル時には
該高炉側の圧力指示調節計がバックアップし、かつ該高
炉側の圧力指示調節計のトラブル時には該炉頂圧回収タ
ービン側の圧力指示調節計がバックアップすることを特
徴としたものであり、ま゛たとの制御装置の、高炉側の
炉頂圧と、炉頂圧回収タービンにより駆動される発電機
の定格出力に応じる炉頂圧回収タービンの等出力曲線と
を利用してセプタム弁又はバイパス弁を制御することも
有効であると共に、この制御装置の高炉側の圧力指示調
節rtl及び炉頂圧回収タービン側の圧力指示調節計そ
れぞれの出力信号によるセプタム弁又はバイパス弁側の
開度及び炉頂圧回収タービン側の開度を共に同一になす
ようにすることにより、上記2台の圧力指示調節計の相
互に、外部帰還によりその相手側の出力に追従させるよ
うにして、バックアップをバンプレスに行ないうるよう
にしても良い。
That is, the control device for the top pressure recovery turbine equipment of the present invention is as follows:
In a furnace top pressure recovery turbine equipment in which a septum valve or bypass valve is provided in parallel with a furnace top pressure recovery turbine driven by the furnace top pressure of a blast furnace, the maximum CV value of the septum valve or bypass valve and the furnace top pressure recovery turbine are By performing CV value matching to linearize the maximum CV value of the top pressure recovery turbine, the pressure indicating controller on the blast furnace side will back up in the event of trouble with the control device on the furnace top pressure recovery turbine side. In addition, in the event of a problem with the pressure indicating regulator on the blast furnace side, the pressure indicating regulator on the furnace top pressure recovery turbine side will back up, and the top pressure on the blast furnace side of the control device It is also effective to control the septum valve or bypass valve using the equal output curve of the top pressure recovery turbine that corresponds to the rated output of the generator driven by the top pressure recovery turbine. The opening degree of the septum valve or bypass valve side and the opening degree of the furnace top pressure recovery turbine side are made to be the same based on the output signals of the pressure indication adjustment RTL on the blast furnace side and the pressure indication regulator on the top pressure recovery turbine side. By doing so, the two pressure indicating controllers may be made to follow the output of their counterpart by external feedback, so that backup can be performed bumplessly.

以ト°、第2図に示した一実施例にもとづいて本発明を
説明すると、高炉1より高炉ガスは、ダストキャツチャ
−2、ベンチュリースクラバー6等により除塵され、セ
プタム弁又はバイパス弁4、または調速弁5、タービン
6により減圧されると同時に、炉頂圧は一定に制御され
る。
Hereinafter, the present invention will be explained based on an embodiment shown in FIG. 2. Blast furnace gas from the blast furnace 1 is removed by a dust catcher 2, a venturi scrubber 6, etc., and a septum valve or bypass valve 4, Alternatively, while the pressure is reduced by the governor valve 5 and the turbine 6, the furnace top pressure is controlled to be constant.

高炉ガスがタービン6を流れる際には、発電機7により
エネルギーが回収される。
When the blast furnace gas flows through the turbine 6, energy is recovered by the generator 7.

これらの制御装置として、高炉1側にて炉頂圧力発信器
8により炉頂圧を検出し、ハンドコン)o−ラー9で圧
力指示調節計10に設定信号を与え、圧力指示調節δ1
10の制御信号をハイセレクター62および関数演算器
63にてセプタム弁又はバイパス弁4の特性を直線化し
、セプタム弁又はバイパス弁4を制御する。
As these control devices, the furnace top pressure is detected by the furnace top pressure transmitter 8 on the blast furnace 1 side, and a setting signal is given to the pressure indication controller 10 by the hand controller 9, and the pressure indication adjustment δ1
The characteristics of the septum valve or bypass valve 4 are linearized using the high selector 62 and the function calculator 63, and the septum valve or bypass valve 4 is controlled.

一方、タービン6側制御装置として、炉頂圧力発信器8
の検出圧力を、高炉1側の圧力指示調節計10の設定値
をレシオバイアス設定器34により例えば十〇’、 1
 kl?/crIL2程度変更可能とした圧力指示調節
計13に導き、その圧力指示調節計16の制御信号を比
率設定器66によ゛すCv値合せを行ない、炉頂圧力発
信器8の検出信号により、その信号に応じた電力制御に
かかる直前の制御信号を作り出す関数演算器37よりの
信号と、圧力制御信号と、関数演算器37の出力信号と
のローセレクター68を経由して電気ガバナー14に導
き、通常の炉頂圧力の制御の場合にはその信号が低位選
択されて、信号分配器15により調速弁5と静翼および
駆動装置16とにより炉頂圧を制御する。
On the other hand, a furnace top pressure transmitter 8 is used as a turbine 6 side control device.
The detected pressure is set to the pressure indicating controller 10 on the blast furnace 1 side by the ratio bias setting device 34, for example, 10', 1.
kl? The control signal of the pressure indicator controller 16 is adjusted to the Cv value by the ratio setter 66, and the detection signal of the furnace top pressure transmitter 8 is used to The signal from the function calculator 37 that generates the last control signal for power control according to the signal, the pressure control signal, and the output signal of the function calculator 37 are guided to the electric governor 14 via the low selector 68. In the case of normal furnace top pressure control, the signal is selected at a low level, and the furnace top pressure is controlled by the signal distributor 15 using the governor valve 5, stationary blades, and drive device 16.

ここで、場合によっては、タービン6の実際のCv@は
静翼角度発信器22により検出された静翼角度で計算さ
れ、圧力制御信号と31算上の実Cv値の内、小さいも
のを、ローセレクター26で選択し、比率設定器24で
CV値もどしを行なって減算器12により圧力指示調節
計16の出力からタービン6のCV値を引いた信号がノ
・イセレフタ−62、関数演算器66を経由して、セプ
タト弁又はバイパス弁4を制御する。
Here, in some cases, the actual Cv@ of the turbine 6 is calculated from the stator blade angle detected by the stator blade angle transmitter 22, and the smaller one of the pressure control signal and the calculated actual Cv value is A signal obtained by selecting with the low selector 26, restoring the CV value with the ratio setter 24, and subtracting the CV value of the turbine 6 from the output of the pressure indicating controller 16 with the subtracter 12 is sent to the output selector 62 and the function calculator 66. via which the septate valve or bypass valve 4 is controlled.

この高炉側制御系と、タービン側制御系とは、切換弁3
1により選択できるようにし、使用されていない側の圧
力指示調節計は外部帰還信号により使用されている側の
圧力指示調節計の出力に追従するようにして置き、万一
に備え、切換器61を操作して、バックアップに入る場
合の不感帯を生じさせないようにしている。
The blast furnace side control system and the turbine side control system are the switching valve 3
1, and the pressure indicating controller on the unused side is set so that it follows the output of the pressure indicating regulator on the used side by an external feedback signal. is controlled to avoid creating a dead zone when entering backup.

なお、万一、タービン6側の81器にトラブルが生じた
場合にも、大切な高炉1側の制御を有効に働かすために
、炉頂圧力発信器8、ハンドコントローラー9、圧力指
jり調節3110、レシオ・・イアス設定器64、圧力
縞示調節1t13.−・イセレフター62、関数演算器
66、減算器12の+rl器’dL源は高炉制御電源か
ら給電し、かつそれらの計器は切換器61と共に高炉制
御盤に取り付けられることが好ましい。
In addition, in order to effectively control the important blast furnace 1 side even in the event that a problem occurs with the 81 device on the turbine 6 side, the furnace top pressure transmitter 8, hand controller 9, and pressure indicator adjustment are necessary. 3110, ratio/earth setting device 64, pressure stripe adjustment 1t13. - It is preferable that the +rl device'dL source of the iselefter 62, the function calculator 66, and the subtractor 12 be supplied with power from the blast furnace control power source, and that these devices be attached to the blast furnace control panel together with the switch 61.

このような制御装置を準備し、第3図に示す圧力指示調
節計10 (PIC−(11)及び13(PIC−02
)に対応するCV値合せ、および第4図に示すタービン
6のCV値、即ち関数演算器66の出力に対応する炉頂
圧による信号補正を行なうと、本発明の効果が発揮され
る。
Such a control device is prepared, and pressure indicating regulators 10 (PIC-(11) and 13 (PIC-02) shown in FIG.
) and signal correction based on the CV value of the turbine 6 shown in FIG.

即ち、第3図によりCV値合せについて説明すると、タ
ービン6のCV値は調速弁5のみで静翼のない場合は調
速弁5の制御上使用する範囲を直線化し、その最高CV
値がAであるとする。
That is, to explain CV value matching with reference to FIG. 3, when the CV value of the turbine 6 is only the governor valve 5 and there is no stator blade, the range used for controlling the governor valve 5 is linearized, and the maximum CV is
Suppose the value is A.

静翼付のタービン6である場合も同様に調速弁5の制御
上使用する範囲を直線化し、その直線上に本質的にほと
んど直線的特性を持っているので、一般的に直線化の必
要がない静翼の特性を乗せるように信号分配器15内部
で信号配分を行なう。
Similarly, in the case of a turbine 6 with stationary blades, the range used for controlling the governor valve 5 is linearized, and since it essentially has almost linear characteristics on that straight line, linearization is generally necessary. Signal distribution is performed inside the signal distributor 15 so as to take advantage of the characteristics of the static vanes.

その調速弁5および静翼共に制御上最大開度のCv値が
Aであるとする。
It is assumed that the Cv value of the maximum opening degree of both the speed governor valve 5 and the stator vane is A for control purposes.

一方、セプタム弁又は、バイパス弁4も直線化し、その
最大Cv@がBであるとする。
On the other hand, it is assumed that the septum valve or the bypass valve 4 is also linearized and its maximum Cv@ is B.

ここで、圧力指示調節計10および13共に、出力信号
10’0%にてセプタム弁又はバイパス弁4が全開とな
るようにするのが理論的であり、ここでもそれに合せて
説明する。
Here, it is theoretical that both the pressure indicating regulators 10 and 13 should cause the septum valve or the bypass valve 4 to be fully open when the output signal is 10'0%, and this will also be explained here.

即ち、例えばB = 40000、A = 15000
の例であれば、A/B = 0.375となるので圧力
指示調節31出力37.5%の時にタービン6側が最大
CV値になるように第2図の比率設定器66の比率を決
める。
That is, for example, B = 40000, A = 15000
In this example, A/B = 0.375, so the ratio of the ratio setter 66 in FIG. 2 is determined so that the turbine 6 side has the maximum CV value when the pressure indication adjustment 31 output is 37.5%.

従って、全体的に4〜20mA信号で総−されている場
合で、第2図においてタービン6側の最高開度も100
%信号にマツチさせる場合を例にとれば、比率設定器6
6は4.000/15000 = 2.667の勾配と
すればよい。
Therefore, in the case where the overall signal is 4 to 20 mA, the maximum opening on the turbine 6 side in Fig. 2 is also 100 mA.
For example, when matching the % signal, the ratio setter 6
6 may have a slope of 4.000/15000 = 2.667.

一方、タービン6側から高炉1側に送り返す信号をも第
2図の比率設定器66によって、l/2゜667にして
送り返せばよい。
On the other hand, the signal sent back from the turbine 6 side to the blast furnace 1 side may also be sent back at 1/2°667 using the ratio setting device 66 shown in FIG.

このようなCV値合せが実現できれば、第4図に示すご
とく、タービン特性から高炉1の操業状況により絶えず
変り、また炉況によって目まぐるしく変る炉頂圧に対し
て発電機7の定格出力に相当するタービン60等出力曲
線を炉頂圧力に対するタービン6のCV値の関係として
設定することは可能であり、前述のごとく、CV値合せ
を行ない、圧力指示調節計10.35の出力信号とター
、ビン6のCv値とを一致させれば、圧力指示調節計出
力が増加した時点で、遅れなくセプタム弁又はバイパス
弁4を開けることができる。
If such CV value matching can be realized, as shown in Fig. 4, the output will correspond to the rated output of the generator 7 against the furnace top pressure, which constantly changes depending on the operational status of the blast furnace 1 due to the turbine characteristics and changes rapidly depending on the furnace conditions. It is possible to set the equal output curve of the turbine 60 as the relationship between the CV value of the turbine 6 and the furnace top pressure, and as described above, by matching the CV value, it is possible to 6, the septum valve or bypass valve 4 can be opened without delay when the pressure indicator controller output increases.

これは、例えば第2図において、圧力指示調節計16の
出力が37.5%で比率設定器66の出力を100%に
なるようにし、しかも関数演算器33に第4図に示す特
性を持たし、炉頂圧が80%で運転されている状態であ
るときにガス量の変化で圧力指示調節計13の出力が2
6.25%から31.875%に変化したとすると;比
率設定器36の出力は70%から85%に変化すること
になる。
For example, in FIG. 2, the output of the pressure indicating controller 16 is 37.5% and the output of the ratio setting device 66 is 100%, and the function calculator 33 has the characteristics shown in FIG. However, when the furnace top pressure is 80%, the output of the pressure indicator controller 13 changes to 2 due to a change in the gas amount.
If it changes from 6.25% to 31.875%; the output of the ratio setter 36 will change from 70% to 85%.

26.25%の場合は、比率設定器36の出力は70%
であり、関数演算器67の出力は第4図により炉頂圧8
0%として76%であり、ローセレクター68は低位の
70%を電気ガバナー14に送る。
In the case of 26.25%, the output of the ratio setter 36 is 70%.
According to FIG. 4, the output of the function calculator 67 is equal to the furnace top pressure 8
0% is 76%, and the low selector 68 sends the lower 70% to the electric governor 14.

圧力制御で運転されているとすれば、この信号が信号分
配器15によりタービン6のCV値を70% とし、静
翼が信号に合致していれば、ローセレクター26の出力
は70%である。
If the engine is operated under pressure control, this signal is used by the signal distributor 15 to set the CV value of the turbine 6 to 70%, and if the stator vanes match the signal, the output of the low selector 26 is 70%. .

これが比率設定器24により1/2゜667とされれば
、26゜25%となり、減算器12の出力は26゜25
−26.25 = 0%となり、セプタム弁又はバイパ
ス弁4は閉じている。
If this is set to 1/2°667 by the ratio setter 24, it becomes 26°25%, and the output of the subtractor 12 is 26°25%.
-26.25 = 0%, and the septum valve or bypass valve 4 is closed.

この時、圧力指示調節計出力が増加し、28.5%とな
れば、比率設定器66の出力は76%となり、簡単化す
るために炉頂圧が80%のままとすると、この時が分岐
点となる。
At this time, if the pressure indicating controller output increases to 28.5%, the output of the ratio setting device 66 will become 76%.For simplicity, if the furnace top pressure remains at 80%, then at this time. It becomes a turning point.

:ζ 更に、圧力指示調節31出力が増加して31 、875
%になったとすると、比率設定器66の出力は85%と
なるが、関数演算器63の出力は76%であり、ローセ
レクター38は76%を選択する。
:ζ In addition, the pressure indication adjustment 31 output increases to 31,875
%, the output of the ratio setter 66 is 85%, but the output of the function calculator 63 is 76%, and the low selector 38 selects 76%.

従って、タービン6は76%CV値のままであるので、
比率設定器24の出力は28.5%となる。
Therefore, since turbine 6 remains at 76% CV value,
The output of the ratio setter 24 is 28.5%.

そこで、減算器12の出力は31.875−28.5=
3.375%となり、セプタム弁又はバイパス弁4のC
V値4%分、即ち、40000 X O,03375=
 1350分開くことになる。
Therefore, the output of the subtracter 12 is 31.875-28.5=
3.375%, C of septum valve or bypass valve 4
V value 4%, i.e. 40000 x O,03375=
It will be open for 1350 minutes.

これは、タービン6で追従できなかったCV値、即ち8
5−76 = 9%、15000 X 00(19= 
1350と同じである。
This is the CV value that could not be followed by turbine 6, that is, 8
5-76 = 9%, 15000 x 00 (19=
Same as 1350.

この場合、圧力指示調節計出力の変化と共に炉頂圧が変
化しても、関数演算器63の出力がそれに追従し、発電
機出力に対応したCv値にタービン6側を保持し、圧力
指示調節計出力の要求するCv値に対する不足分は、セ
プタム弁又はバイパス弁4に送られ、総合CV値は、圧
力指示調節計16の要求するCv値となることはj、・
・ 詳細説明をするまでもない。
In this case, even if the furnace top pressure changes with a change in the pressure indicator controller output, the output of the function calculator 63 follows it, maintains the turbine 6 side at the Cv value corresponding to the generator output, and adjusts the pressure indicator. The shortfall in the Cv value required by the meter output is sent to the septum valve or bypass valve 4, and the total CV value becomes the Cv value required by the pressure indicating controller 16.
・There is no need to explain in detail.

以下に、本発明によると従来の欠点が解消できることを
運転の順序にそって説明する。
Hereinafter, it will be explained in accordance with the order of operation that the present invention can solve the conventional drawbacks.

まず、第2図において、タービン6の運転開始前には圧
力指示調節8116への設定をレシオバイアス設定器3
4を操作して圧力指示調節計10の設定値よりも高目に
設定し、切換器61は圧力指示調節器10側を選択して
置く。
First, in FIG. 2, before starting the operation of the turbine 6, the pressure indication adjustment 8116 is set to the ratio bias setting device 3.
4 to set it higher than the set value of the pressure indicating regulator 10, and the switch 61 is set to select the pressure indicating regulator 10 side.

この時、圧力指示調節計16の出力は、従来の方法では
零であるが、本発明の方法では圧力指示調節3110の
出力に外部帰還により追従している。
At this time, the output of the pressure indicating regulator 16 is zero in the conventional method, but in the method of the present invention, it follows the output of the pressure indicating regulator 3110 by external feedback.

タービン6を運転する時には、先ずレシオバイアス設定
器34により圧力指示調節計13の設定値を除々に下げ
、圧力指示調節計10と同じ設定とし、切換弁61を圧
力指示調節計16側に切り換える。
When operating the turbine 6, first, the setting value of the pressure indicating regulator 13 is gradually lowered using the ratio bias setting device 34 to the same setting as the pressure indicating regulator 10, and the switching valve 61 is switched to the pressure indicating regulator 16 side.

この際、切り換えのタイミングは高炉1の運転状況を見
はからって切り換え、圧力変動もなく、パンプレスに切
り替えられる。
At this time, the timing of switching is determined based on the operational status of the blast furnace 1, and the switch can be made to the pan press without any pressure fluctuation.

一方、従来の方法であると、タービン6が起動し、ター
ビン6へのガスの飲み込みが増え、セプタム弁又はバイ
パス弁4が後で高炉1側の希望するタイミングとは全く
無関係゛°にタービン6の起動完了ノタイミングで0.
03〜0.05kg/cm2の圧力差をともなって起こ
ることとなり、これが上記のごとく改善される。
On the other hand, in the conventional method, the turbine 6 starts up, the intake of gas into the turbine 6 increases, and the septum valve or the bypass valve 4 is later closed to the turbine 6 completely independently of the timing desired by the blast furnace 1 side. 0 at the timing of completion of startup.
This occurs with a pressure difference of 0.03 to 0.05 kg/cm2, which is improved as described above.

圧力、指示調節計13へ、の切り換え直後には、タービ
ン6は停止しているので、電気ガバナー14のローセレ
クターブスは零を選定しているので圧力指示調節311
3の出力は減算器12で零を引かれ、そのままセプタム
弁又はバイパス弁4に至る。
Immediately after the pressure is switched to the indication controller 13, the turbine 6 is stopped, so the low selector bus of the electric governor 14 is set to zero, so the pressure indication adjustment 311
The output of 3 is subtracted by zero by the subtracter 12 and directly goes to the septum valve or bypass valve 4.

この状態からタービン6を起動し、除々にタービン乙の
Cv値が増えると、炉頂圧を制御しながらタービン6側
に流れるガス量が増え、セプタム弁又はバイパス弁4は
閉じてゆく。
When the turbine 6 is started from this state and the Cv value of turbine B gradually increases, the amount of gas flowing to the turbine 6 side increases while controlling the furnace top pressure, and the septum valve or bypass valve 4 closes.

ガス量が発電機7の能力以下の場合は、セプタム弁又は
バイパス弁4は全閉になり、タービン6の調速弁5と静
翼とにより、炉頂圧が制御され、タービン6の起動完了
時の炉頂圧変動はない1゜ この状態で、ガスの発生量が除々に増加し、圧力指示調
節31出力が除々に増加し、発電機7の定格出力近くに
なると1.前述の関数演算器67の出力により、その時
の炉頂圧に適したCV@にタービン6側を保持し、余分
の信号は不感帯なしに、かつ遅れもなしにセプタム弁又
はバイパス弁に送られる。
When the gas amount is less than the capacity of the generator 7, the septum valve or bypass valve 4 is fully closed, and the furnace top pressure is controlled by the governor valve 5 and stationary blades of the turbine 6, and the startup of the turbine 6 is completed. In this state, the amount of gas generated gradually increases, and the output of the pressure indication adjustment 31 gradually increases until it approaches the rated output of the generator 7. The output of the above-mentioned function calculator 67 maintains the turbine 6 side at a CV@ suitable for the furnace top pressure at that time, and the extra signal is sent to the septum valve or bypass valve without a dead zone and without delay.

このようにして従来方法の炉頂圧の0.03〜()。0
5 kg/C7n2程度の上昇を避けることができる。
In this way, the furnace top pressure of the conventional method is reduced to 0.03~(). 0
An increase of about 5 kg/C7n2 can be avoided.

史に、一度セプタム弁又はバイパス弁4も開いた状態か
ら、ガス量が減少し、圧力指示調節用16の出力が減少
すると、先ずセプタム弁又はバイパス弁4が閉るが、゛
この際、従来方法で必要であったアンチリセットワイン
ドアップの設定も、炉頂圧に応じた設定変更も不必要で
あり、不感帯もなく、炉頂圧の変動もない。
Historically, once the septum valve or bypass valve 4 is open, when the gas amount decreases and the output of the pressure indication adjustment 16 decreases, the septum valve or bypass valve 4 closes first. There is no need to set an anti-reset windup, which was necessary in the method, or to change settings according to the furnace top pressure, there is no dead zone, and there is no fluctuation in the furnace top pressure.

また、七ノ゛タム弁又はバイパス弁4が閉って運転して
いる時に、急に榎頂圧が上昇し、圧力指示調節31出力
が急増する場合は、前述の第4図の説明のごとく、信9
号が増力牝だ時点でセプタム弁又はバイパス弁4を開く
ことができ、従来のような欠点が解消される。
In addition, when operating with the seven-node valve or bypass valve 4 closed, if the top pressure suddenly increases and the output of the pressure indication adjustment 31 increases rapidly, as explained in Fig. 4 above, , Shin9
The septum valve or the bypass valve 4 can be opened when the number is boosted, and the drawbacks of the conventional system are eliminated.

圧力指示調節、?110および圧力指示R# #t 1
3のゲイン設定も、本発明によればほとんど同一にでき
る。例えば、圧力指示調節J116にて、タービン6運
転中にタービン6側語器に異常が生じてタービン6が停
止するようなことが生じても、減算器12によりセプタ
ム弁又はバイパス弁4に信号が廻り、炉頂圧力の0.0
3〜0.05kg/Cイの変動とか、従来の方法で万一
このようなことがあれば、第1図において、圧力指示調
節δ110は出力零にて待期しているので、出力信号が
適当な制御レベルまで上るまでの不感帯とか、大きな変
化に伴なう行き過ぎ等の問題も無くなる。
Pressure indication adjustment? 110 and pressure indication R# #t 1
The gain settings of 3 can also be made almost the same according to the present invention. For example, in the pressure command adjustment J116, even if an abnormality occurs in the turbine 6 side speaker during operation of the turbine 6 and the turbine 6 stops, the subtractor 12 sends a signal to the septum valve or bypass valve 4. rotation, furnace top pressure of 0.0
If there is a fluctuation of 3 to 0.05 kg/C or something like this with the conventional method, in Figure 1, the pressure indication adjustment δ110 waits at zero output, so the output signal will be appropriate. Problems such as dead zones until the control level reaches a certain level and overshooting caused by large changes are also eliminated.

また、タービン6側の用益に異常が生じれば、即座に第
2図の切替器31を操作することにより、セプタム弁又
はバイパス弁4を制御してバックアップができるし、万
一、圧力指示調節計10に異常が生じた場谷み、同じく
切替器61を操作することにより、圧力指示調節計13
によりバックアップすることができる。
In addition, if an abnormality occurs in the utility of the turbine 6 side, by immediately operating the switch 31 shown in Fig. 2, the septum valve or the bypass valve 4 can be controlled and backed up. When an abnormality occurs in the pressure indicator controller 13, by operating the switch 61 as well, the pressure indicator controller 13
It can be backed up by

以」、の説明により明らかなように、本発明は従来の技
術の欠点を解決すると同時に、タービン側制御装置のト
ラブル時には高炉側の圧力指示調f!fi’jilがバ
ックアンプし、高炉側の圧力指示調節31のトラブル時
にはタービン側の圧力指示調節31がバックアップでき
るという利点を有し、実用上極めて有効である。
As is clear from the explanation below, the present invention solves the drawbacks of the conventional technology, and at the same time, when there is trouble with the turbine side control device, the blast furnace side pressure indication f! It has the advantage that the fi'jil performs back-amplification and the pressure indication adjustment 31 on the turbine side can back up when there is a problem with the pressure indication adjustment 31 on the blast furnace side, which is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の炉頂圧回収タービン設備の制御を示す説
明図、第2図は本発明の実施例における炉頂圧回収ター
ビン設備の制御を示す説明図、第3図は第2図のセプタ
ム弁又はバイパス弁とタービンとのCV値合せを説明す
る概念図、第4図は第之図の炉頂圧により変化するター
ビンを発電機の定格出力運転に保持しながら余分の圧力
指示調節31出力をセプタム弁又はバイパス弁に送るた
めの関数演算器の概念的説明図である。 1・・・高炉、4・・・セプタム弁又はバイパス弁、5
・・・調速弁、6・・・タービン、7・・・発電機、8
・・・炉頂圧力発信器、10・・・圧力指示調節a1.
12・・・減算器、13・・・圧力指示調節計、14・
・・電気ガバナー、15・・・信号分配器、16・・・
駆動装置、22・・・静翼角度発信器、24・・・比率
設定器、61・・・切換弁、66・・・比率設定器。 代理人 弁理士 小 川 信 − 弁理士 野 白 賢 照 弁理士 斎 下 和 彦 第3図           第 タービンCv値   c%) (関数演算器出方)
FIG. 1 is an explanatory diagram showing the control of the conventional furnace top pressure recovery turbine equipment, FIG. 2 is an explanatory diagram showing the control of the furnace top pressure recovery turbine equipment in the embodiment of the present invention, and FIG. A conceptual diagram illustrating the CV value matching between the septum valve or bypass valve and the turbine. Figure 4 is a conceptual diagram illustrating the CV value matching between the septum valve or bypass valve and the turbine. FIG. 2 is a conceptual explanatory diagram of a function calculator for sending an output to a septum valve or a bypass valve. 1... Blast furnace, 4... Septum valve or bypass valve, 5
... Speed regulating valve, 6... Turbine, 7... Generator, 8
...Furnace top pressure transmitter, 10...Pressure indication adjustment a1.
12... Subtractor, 13... Pressure indicating controller, 14...
...Electric governor, 15...Signal distributor, 16...
Drive device, 22...Stator vane angle transmitter, 24...Ratio setter, 61...Switching valve, 66...Ratio setter. Agent Patent attorney Makoto Ogawa - Patent attorney Masaru No Shiro Patent attorney Kazuhiko Saishita Figure 3 Turbine Cv value c%) (Function calculator output)

Claims (1)

【特許請求の範囲】 1 高炉の炉頂圧により駆動される炉頂圧回収タービン
と並列に、セプタム弁又はバイパス弁を設けた炉頂圧回
収タービン設備において、該セプタム弁又はバイパス弁
の最大のCV値と該頂圧回収タービンの最大のCV値と
を直線化するようにCv値合せを行なわせることにより
、該炉頂圧回収タービン側の制御装置のトラブル時には
該高炉側の圧力指示調節計がバックアップし、かつ該高
炉側の圧力指示調節81のトラブル時には該炉頂圧回収
タービン側の圧力指示調節計がバックアップすることを
特徴とする炉頂圧回収タービン設備の制御装置8 2 セプタム弁又はバイパス弁の最大CV値と炉頂圧回
収タービンの最大CV値とを直線化するようにCV値合
せを行なわせている制御装置の、高炉側の炉頂圧と、炉
頂圧回収タービンにより駆動される発電機の定格出力に
応じる炉頂圧回収タービンの等出力曲線とを利用してセ
プタム弁又はバイパス弁を制御することを特徴とする特
許請求の範囲第1項記載の炉頂圧回収タービン設備の制
御装置。 3 セプ′タム弁又はバイパス弁の最大CV値と炉頂圧
回収タービンの最大CV値とを直線化するようにCv値
合せを行なわせている制御装置の、高炉側の圧力指示調
節Ml及び炉頂圧回収タービン側の圧力指示調節a1そ
れぞれの出力信号によるセプタム弁又はバイパス弁側の
開度及び炉頂圧回収タービン側の開度を共に同一になす
ようにすることにより、上記2台の圧力指示調節計の相
互に、外部帰還によりその相手側の出力に追従させるよ
うにして、バックアップをバンプレスに行ないうるよう
にしたことを特徴とする特許請求の範囲第1項及び第2
項記載の炉頂圧回収タービン設備の制御装置。
[Scope of Claims] 1. In a furnace top pressure recovery turbine equipment in which a septum valve or a bypass valve is provided in parallel with a furnace top pressure recovery turbine driven by the furnace top pressure of a blast furnace, the maximum pressure of the septum valve or bypass valve is By adjusting the CV value so as to linearize the CV value and the maximum CV value of the top pressure recovery turbine, in the event of trouble with the control device on the furnace top pressure recovery turbine side, the pressure indicating regulator on the blast furnace side control device 8 for furnace top pressure recovery turbine equipment, characterized in that the pressure indication regulator 81 on the blast furnace side backs up, and when there is a problem with the pressure indication regulator 81 on the blast furnace side, the pressure indication regulator on the furnace top pressure recovery turbine side backs up. Driven by the furnace top pressure on the blast furnace side and the furnace top pressure recovery turbine, the control device adjusts the CV value so that the maximum CV value of the bypass valve and the maximum CV value of the furnace top pressure recovery turbine are linearized. The top pressure recovery turbine according to claim 1, wherein the septum valve or the bypass valve is controlled using a constant output curve of the top pressure recovery turbine that corresponds to the rated output of the generator. Equipment control device. 3 Pressure instruction adjustment Ml on the blast furnace side of the control device that adjusts the Cv value so as to linearize the maximum CV value of the septum valve or bypass valve and the maximum CV value of the furnace top pressure recovery turbine. By making the opening degree of the septum valve or bypass valve side and the opening degree of the furnace top pressure recovery turbine side the same based on the output signal of each pressure command adjustment a1 on the top pressure recovery turbine side, the above two pressures can be adjusted. Claims 1 and 2 are characterized in that the indicating controllers are made to follow the output of their counterpart by external feedback, so that backup can be performed bumplessly.
A control device for the furnace top pressure recovery turbine equipment described in Section 3.
JP10138782A 1982-06-15 1982-06-15 Controller of furnace top pressure collecting turbine equipment Pending JPS58220929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10138782A JPS58220929A (en) 1982-06-15 1982-06-15 Controller of furnace top pressure collecting turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10138782A JPS58220929A (en) 1982-06-15 1982-06-15 Controller of furnace top pressure collecting turbine equipment

Publications (1)

Publication Number Publication Date
JPS58220929A true JPS58220929A (en) 1983-12-22

Family

ID=14299342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138782A Pending JPS58220929A (en) 1982-06-15 1982-06-15 Controller of furnace top pressure collecting turbine equipment

Country Status (1)

Country Link
JP (1) JPS58220929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994672A (en) * 2012-11-30 2013-03-27 武汉钢铁(集团)公司 Automatic control method for top pressure of TRT (blast furnace top gas recovery turbine unit) system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994672A (en) * 2012-11-30 2013-03-27 武汉钢铁(集团)公司 Automatic control method for top pressure of TRT (blast furnace top gas recovery turbine unit) system
CN102994672B (en) * 2012-11-30 2014-11-26 武汉钢铁(集团)公司 Automatic control method for top pressure of TRT (blast furnace top gas recovery turbine unit) system

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
US4173124A (en) Boiler feed water pump control systems
US4067557A (en) System for changing over of blast furnace top pressure control
JPS58220929A (en) Controller of furnace top pressure collecting turbine equipment
JPS627363B2 (en)
US5960624A (en) Process for regulating gas pressures of catalyst regenerator expansion turbines
JPS6239655B2 (en)
JPS6154927B2 (en)
JPS5916485Y2 (en) Turbine control device
JP3734791B2 (en) Gas turbine water injection control device
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPH0122521B2 (en)
JPS6357802A (en) Control device for expansion turbine
JPS59231104A (en) Controlling system of feed water pump in power plant
JPS62112099A (en) Nuclear reactor isolation cooling system controller
JPS62251427A (en) Control method for booster compressor in coal gasifying plant
JPS6033982B2 (en) Turbine plant control device
JPS6239657B2 (en)
JPS6025608B2 (en) Reactor gas energy recovery power generation system
JPH0411727B2 (en)
JPS5932672B2 (en) Water supply flow control device
JPS61218738A (en) Turbine controller
JPS61180812A (en) Control system of feedwater pump for power station
JPS62162703A (en) Turbine control device
JPS6212361B2 (en)