JPS58220537A - Circuit supervising and controlling method of data terminal station - Google Patents

Circuit supervising and controlling method of data terminal station

Info

Publication number
JPS58220537A
JPS58220537A JP57103005A JP10300582A JPS58220537A JP S58220537 A JPS58220537 A JP S58220537A JP 57103005 A JP57103005 A JP 57103005A JP 10300582 A JP10300582 A JP 10300582A JP S58220537 A JPS58220537 A JP S58220537A
Authority
JP
Japan
Prior art keywords
data
retransmission
transmission
section
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57103005A
Other languages
Japanese (ja)
Other versions
JPH0157859B2 (en
Inventor
Kenzo Urabe
健三 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP57103005A priority Critical patent/JPS58220537A/en
Publication of JPS58220537A publication Critical patent/JPS58220537A/en
Publication of JPH0157859B2 publication Critical patent/JPH0157859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Small-Scale Networks (AREA)

Abstract

PURPOSE:To reduce a mean delay time of data retransmission in case of generation of concurrence, by operating the retransmission probability by a result of supervision of a receiving circuit and the number of transmission waiting data in a data terminal station, in case when it is known that one-delivery of a data due to generation of concurrence or deterioration of a circuit occurs at the point of time when the operation is shifted to the transmitting operation. CONSTITUTION:A transmission request signal TREQ1 is generated in a section 1, SD1 is transmitted first in a section 2, and when it is received normally by the central station, a response signal RD1 is sent back from the central station. Subsequently, when another transmission request signal TREQ2 is generated in a section 3, and a transmission modulating data SD2 is transmitted in a section 4, if it cannot be received normally by the central station due to deterioration of the circuit, a response signal RD2 is no sent back, therefore, a retransmission controlling circuit operates, and retransmission of every section of a section 5 and thereafter is decided like probability. Also, when other transmission request signal TREQ3 is generated, two data are connected to the transmission queue, the number TQ of a transmission waiting data becomes 2, and a value of a circuit evaluating value output RXM becomes small due to generation of an error of RD of the sections 3, 4 and 5, therefore, the retransmission probability of a section 6 and thereafter becomes large.

Description

【発明の詳細な説明】 本発明は1つの中央局と1回当りの送信データ量の少い
多数のデータ端局との間のデータ伝送をデータ端局間の
競合(コンテンション)方式で行う場合のデータ回線の
制御方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention performs data transmission between one central station and a large number of data terminal stations that transmit a small amount of data each time using a contention method between the data terminal stations. The present invention relates to improvements in data line control methods.

従来は競合方式によるデータ回線の制御において、中央
局から有効応答が得られない場合にこれを複数のデータ
端局間の送信データの衝突上判断し、各局にて再送を行
うとき再送までの送信待機時間をそのつどランダムに設
定することにより、複数局間の競合の継続の確率を下げ
るかまたはそのデータ端末局固有のアドレス番号に対応
して異なる時間を設定することにより再送データの衝突
を避けるなどの方式が用いられている。このうち前者の
方式はランダムに選択できる送信待機時間の種類が多け
れば送信データの再衝突の確率は小さくなるが、データ
の再送遅延の平均値が増大し、逆に少なければ再衝突の
確率は大きくなるという欠点があり、また後者の方式で
はデータ端局の数が多いと再送遅延が常時大きい端局が
存在し、再送データの即達性に不均衡が生じるという不
具合がある。さらに両者共に回線品質が劣化した場合に
は、上記の送信データの衝突と区別がつかないので、競
合発生時と同一の動作を単純に繰り返す結果となり、送
信データの確達率(送信f−夕が受信側に正しく伝わる
確率)が下るなど回線擾乱に対し全く無防備であるとい
う欠点がある。
Conventionally, when controlling a data line using a contention method, if a valid response cannot be obtained from the central station, this is judged based on the collision of transmitted data between multiple data terminal stations, and when retransmission is performed at each station, the transmission until retransmission is By setting the waiting time randomly each time, the probability of continuation of contention between multiple stations is reduced, or by setting a different time corresponding to the unique address number of the data terminal station, collision of retransmitted data is avoided. Methods such as these are used. In the former method, if there are many types of transmission waiting times that can be randomly selected, the probability of re-collision of transmitted data will decrease, but the average value of the data re-transmission delay will increase; In addition, in the latter method, when there are many data terminal stations, there is always a terminal station with a large retransmission delay, resulting in an imbalance in the timeliness of retransmitted data. Furthermore, if the line quality deteriorates in both cases, it is indistinguishable from the above-mentioned transmission data collision, and the same operation as when the contention occurs will simply be repeated, resulting in the transmission data probability (transmission f - It has the disadvantage that it is completely invulnerable to line disturbances, such as a decrease in the probability that the information will be correctly transmitted to the receiving side.

本発明はこれら従来の欠点を除くために行ったもので、
従来と同等のデー□“夕回線を使用しながら競合発生時
のデータ再送の平均遅延時間の縮少化を図ると共に、回
線擾乱に対してもデータ端局から中央局への送信データ
の確実な到達いわゆる離遠の度合すなわち確達率の劣化
を防止し、各端局で発生するデータの中央局での取りこ
ぼしを少くすることが特長で、たとえば多数の移動体と
中央局とで構成される無線回線のように競合の発生頻度
が無視できない場合や、回線品質が良好でないこともあ
って場所や時間によって著しく変化する場合などに対し
て有効に適用できる利点がある。
The present invention was made to eliminate these conventional drawbacks,
Data equivalent to conventional data □ “While using the evening line, we aim to reduce the average delay time of data retransmission when contention occurs, and also ensure that the data sent from the data terminal station to the central station is reliably transmitted even in the event of line disturbance. The feature is to prevent deterioration of the so-called remoteness, that is, the accuracy rate, and to reduce the loss of data generated at each terminal station at the central station. This has the advantage that it can be effectively applied to cases where the frequency of contention cannot be ignored, such as in wireless lines, or where the line quality is poor and varies significantly depending on location and time.

以下本発明の概要を示し、続いて実施例によってさらに
詳しく説明する。
An overview of the present invention will be shown below, followed by a more detailed explanation based on Examples.

本発明の概略は次のようである。1つの中央局に対し共
通の伝送回線で接続される互に競合関係にある複数の各
端局において、過去一定時間内の中央局からの受信入力
信号レベルの平均値や受信復調データの同期パターンや
データの誤り数を検出する手段を用いて受信回線品質を
常時監視する回路と、送信動作、に移行した時点で競合
の発生や回線の劣化にもとづくデータネ達が生じたこと
を中央局よりの有効応答のないことにより知った場合に
、あらかじめ定められた送信機会の到来毎に確率的に再
送か非再送かを決定する回路とを備えて、その再送確率
を上記受信回線の監視結果とデータ端局内の送信待ちデ
ータの数によって操作し、回線劣化時や送信待ちデータ
数の増加時には再送確率を大きくする方向へ遷移してデ
ータ受信の確立を計り、回線品質が良好な時には競合状
態であることを識別して自局に対する中央局の有効応答
を得た局は次の再送を控え、他局に対する応答を識別し
た局は次の再送を実行するようにして競合の継続時間を
縮少するということが要点である。
The outline of the present invention is as follows. The average value of the received input signal level and the synchronization pattern of received demodulated data from the central station within a certain amount of time in the past at multiple terminal stations that are connected to one central station by a common transmission line and are in a mutually competitive relationship. A circuit that constantly monitors the quality of the receiving line using a means to detect the number of data errors and the number of errors in the data, and a circuit that constantly monitors the quality of the receiving line using a means to detect the number of errors in the data. and a circuit that probabilistically determines retransmission or non-retransmission each time a predetermined transmission opportunity arrives when it is determined that there is no valid response, and the retransmission probability is calculated based on the monitoring results of the receiving line and the data. It operates according to the number of data waiting to be sent in the terminal station, and when the line deteriorates or the number of data waiting to be sent increases, the retransmission probability is increased to establish data reception, and when the line quality is good, it is in a competitive state. A station that identifies this and obtains a valid response from the central station for itself refrains from the next retransmission, and a station that identifies a response for another station executes the next retransmission, thereby reducing the duration of contention. That is the point.

つぎに上記の内容をさらに具体的に詳細説明する。Next, the above content will be explained in more detail.

第1図は本発明を実施したデータ端局のデータ伝送装置
の構造側口である。図中の1は受信部、2はデータ伝送
制御部、8は送信部である。受信部lは入力信号RXI
Nが入力すればこれを復調して復調データRDを出力す
る。他方RXINを整流して得られるアナログ信号、R
X Aは、受信回線の監視に受信入力信号RXI’Nの
レベルを使用するための受信レベル信号である。
FIG. 1 is a side view of the structure of a data transmission device of a data terminal station embodying the present invention. In the figure, 1 is a receiving section, 2 is a data transmission control section, and 8 is a transmitting section. Receiver l receives input signal RXI
If N is input, it is demodulated and demodulated data RD is output. On the other hand, the analog signal obtained by rectifying RXIN, R
XA is a reception level signal for using the level of the reception input signal RXI'N to monitor the reception line.

次にデータ伝送制御部2はデータ受信回線の監視、送受
信データの加工、検定や待行列処理、データの送信制御
が役目で、上記の復調データRDおよび受信レベル信号
RXAを人力して受信データのフレーム同期、誤り検定
、受信データ回線監視に供すると共に、有効に受信した
自局宛のデータがあった場合に、データ端局内の端末に
対し端末受信データRXDを出力する。また端末にて送
信データが発生したことを示す送信要求信号TREQを
端末より入力した時には、その端末送信データTXDを
送信待行列に取込みデータ送信制御を行う。SDは送信
中にTXDを加工して出力される送信変調データであっ
て、送信起動信号TXGと共に送信部へ出力される。
Next, the data transmission control unit 2 has the role of monitoring the data reception line, processing the transmitted and received data, verifying and queuing, and controlling the data transmission. It is used for frame synchronization, error checking, and received data line monitoring, and also outputs terminal received data RXD to the terminal within the data terminal station if there is validly received data addressed to the own station. Further, when a transmission request signal TREQ indicating that transmission data has been generated at the terminal is input from the terminal, the terminal transmission data TXD is taken into the transmission queue and data transmission control is performed. SD is transmission modulation data that is output by processing TXD during transmission, and is output to the transmitter together with the transmission activation signal TXG.

次に送信部3はデータの変調機能を有し、送信起動信号
TXGによって送信出力信号TXOUTを起動して相手
局(中央局)へデータ変調信号を送出する。
Next, the transmitter 3 has a data modulation function, activates the transmission output signal TXOUT by the transmission activation signal TXG, and transmits the data modulation signal to the other station (central station).

第2図は第1図内のデータ伝送制御部2の受信データ回
線監視動作のタイムチャートであり、第8図は第2図中
の回線評価値出力RXMを得るための(制御部2内に設
けられる)回線評価回路の構成例図である。以下には第
2図および第3図にヱーて第1図中のデータ伝送制御部
2の受信データ回線監視機能を説明する。まず第2図の
タイムチャートの横軸は時間の経過を示し、図の左端に
は信号名を示しである。同図最−L段の受信レベル信号
RXAは図のように高低レベルで変化するものとし、図
中の1点鎖線ELは受信復調誤りを起させるしきい値を
表わしている。2段目の受信復調データRDの大、小の
矩形部はデータのまとまり部分を模式的に表わしたもの
で、Fはデータフレームの同期パターンを示している。
FIG. 2 is a time chart of the received data line monitoring operation of the data transmission control unit 2 in FIG. 1, and FIG. FIG. 2 is a diagram illustrating a configuration example of a line evaluation circuit (provided). The received data line monitoring function of the data transmission control section 2 shown in FIG. 1 will be explained below with reference to FIGS. 2 and 3. First, the horizontal axis of the time chart in FIG. 2 shows the passage of time, and the left end of the chart shows the signal names. It is assumed that the reception level signal RXA at the lowest stage in the figure changes between high and low levels as shown in the figure, and the dashed line EL in the figure represents a threshold value that causes a reception demodulation error. The large and small rectangular portions of the received demodulated data RD in the second stage schematically represent clusters of data, and F represents the synchronization pattern of the data frame.

無印の矩形部はその直前のフレーム同期パターンFに続
くlフレームの情報部分を示し、斜線を施した部分は復
調誤りの発生した区間を表わしている。
The unmarked rectangular part indicates the information part of the 1 frame following the immediately preceding frame synchronization pattern F, and the shaded part indicates the section in which a demodulation error has occurred.

第2図中段のFDPoFEPの各パルスは伝送制御部2
内で作成される同1期検知パルスおよび同期誤りパルス
をそれぞれ表わしている。また最下段のRXMは伝送制
御部2内で作成される受信回線監視結果の回線評価値出
力を模式的に示し、図示のn、n−1,n−2等は時々
刻々変化する評価値を表わしている。
Each pulse of the FDPoFEP in the middle part of FIG.
The synchronous first-period detection pulse and the synchronous error pulse generated within the same period are respectively shown. In addition, RXM at the bottom schematically shows the line evaluation value output of the reception line monitoring result created in the transmission control unit 2, and n, n-1, n-2, etc. in the figure indicate evaluation values that change from moment to moment. It represents.

いま受信レベル信号RXAのレベルがT□およびT2の
時間帯でしきい値EL以下になったとすればRD上に復
調誤りが斜・線部に生じ、この間に受信したフレーム同
期パターンFは検出されず同期検知パルスFDPは発生
しない。このときFの周期性を利用して公知の方法でフ
レーム同期誤りパルスFEPを図のように作成すること
ができる。
If the level of the reception level signal RXA is now below the threshold EL in the time period T□ and T2, a demodulation error will occur in the diagonal/lined area on RD, and the frame synchronization pattern F received during this period will not be detected. No synchronization detection pulse FDP is generated. At this time, by utilizing the periodicity of F, a frame synchronization error pulse FEP can be created as shown in the figure using a known method.

以上のように構成された動作状況において、たとえば図
中Pで示した時点における回線評価値出力RXMの値は
、Pより過去一定の時間帯TMに亘って受信レベル信号
RXAの平均レベルを取出してこれを数値化するか、あ
るいは同じくTMの時間帯内のFDPとFEPのパルス
の数の差の数値とする。第2図の動作例では初期のRX
Mの値をnとした時T0にお、ける誤り発生の影響がR
XMの値の減少n−) nLlとなって現われ、さらに
T2で誤り発生の影響はn−1→n−2の減少として現
われていて、その後の受信回線の回復により約TMの時
間を置いてn−2→n−1の増加が開始される。このよ
うにして現時点近傍の回線品質を定量化し、その数値の
大小と回線品質の優劣とを直接対応させることにより、
データ伝送制御部2には受信回線監視機能が与えられる
ことになる。
In the operating situation configured as described above, the value of the line evaluation value output RXM at the time point indicated by P in the figure, for example, is obtained by extracting the average level of the reception level signal RXA over a certain time period TM in the past from P. This can be expressed numerically, or it can be expressed as the difference between the number of FDP and FEP pulses within the TM time period. In the operation example shown in Figure 2, the initial RX
When the value of M is n, the influence of error occurrence on T0 is R
The decrease in the value of The increase from n-2 to n-1 is started. In this way, by quantifying the line quality in the vicinity of the current moment and directly correlating the size of the numerical value with the superiority or inferiority of the line quality,
The data transmission control unit 2 is provided with a reception line monitoring function.

第3図は第2図の回線評価値出力RXMを得るための回
線評価回路の構成例図である。このうち(A)図は入力
に受信レベル信号RXAを使用する場合で、4は低域濾
波器(LPF )、5はLPF4の出力を直線的あるい
は対数的にディジタル数値に変換するアナログ−ディジ
タル(A/D )変換器である。LPF4のカットオフ
周波数を約%TMに設定すると、その出力はおよそ時間
TM内の受信レベル信号RXAの平均値に等しくなり第
2図の動作が実現できる。なおLPF4を省略し、RX
Aの変化に十分追従できるA/D変換器を使用すれば、
そ5のディジタル出力のディジタルフィルタリング(ハ
ードウェア、ソフトウェアのいずれでもよい)によって
同様にRXMを出力させることができる。
FIG. 3 is a diagram showing an example of the configuration of a line evaluation circuit for obtaining the line evaluation value output RXM of FIG. 2. Of these, figure (A) shows the case where the received level signal RXA is used as an input, 4 is a low pass filter (LPF), and 5 is an analog-digital (LPF) that linearly or logarithmically converts the output of LPF 4 into a digital value. A/D) converter. When the cutoff frequency of the LPF 4 is set to approximately %TM, its output becomes approximately equal to the average value of the received level signal RXA within the time TM, and the operation shown in FIG. 2 can be realized. Note that LPF4 is omitted and RX
If you use an A/D converter that can sufficiently follow changes in A,
RXM can be similarly output by digital filtering of the digital output (which may be done by hardware or software).

次に第3図(B)は第2図に示したフレーム同期検知パ
ルスFDPとフレーム同期誤りパルスFEPとを使用す
る場合であって、図中の6,7 は遅延回路CD)、8
.9 はORゲート、10はアップダウンカウンタであ
る。遅延回路りは入カバルスをTM時間遅延させるため
のものである。第3図(B)においてパルスFDPはO
Rゲート8を通じてその出力(U、とす)によりアップ
ダウンカウンタ1゜を+1だけ加算させるが、遅延回路
6、ORゲート9を通じてTM時間後にORゲート9に
もパルス出力が現われ、その出力(DOWNとす)によ
リカウンタ10は−1の減算を行ってT。時間前の加算
をキャンセルする。
Next, FIG. 3(B) shows a case where the frame synchronization detection pulse FDP and frame synchronization error pulse FEP shown in FIG. 2 are used, and 6 and 7 in the figure are delay circuits CD) and 8.
.. 9 is an OR gate, and 10 is an up/down counter. The delay circuit is for delaying the input signal by TM time. In Fig. 3(B), the pulse FDP is O
Through the R gate 8, the output (U,) causes the up/down counter 1° to be incremented by +1, but a pulse output also appears in the OR gate 9 after TM time through the delay circuit 6 and the OR gate 9, and the output (DOWN ), the counter 10 subtracts -1 and returns T. Cancel the addition before the time.

他方フレーム同期誤りパルスFEPについては□上記F
DPの場合とは逆にまずORゲート9を通じてのダウン
出力に上りカウンタ10に−1の減算を行うが、TM時
間後に遅延回路7、ORゲート8を通じてアップ出力を
生じてこれをキャンセルする。このような動作によって
アンプダウンカウンタ10の出力RXMはF’DPの1
パルスにより+1加算され、FEPの1パルスにより=
lの減算が行われるが、いずれもその効果はTM時間内
に限定されているので、その数値は現時点より過去TM
時間のFDPとFEPのパルス差と一致することは明ら
かである。なおパルスFDP、FEPはフレーム同期の
検知に関する良否のパルスとしたが、一般にデータ伝送
に使用される誤り検知符号、誤り訂正符号においては受
信誤りの検出が可能であるから、FDPを符号誤りなし
の時の正常パルス、FEPを符号誤り発生時の誤りパル
スとすれば、同様に受信回線の品質を定量化してRXM
の値に反映させることが可能である。
On the other hand, regarding the frame synchronization error pulse FEP, □F above
Contrary to the case of DP, first, a down output is generated through the OR gate 9 and -1 is subtracted from the up counter 10, but after the TM time, an up output is generated through the delay circuit 7 and the OR gate 8 to cancel this. Due to this operation, the output RXM of the amplifier down counter 10 becomes 1 of F'DP.
+1 is added by pulse, and by 1 pulse of FEP =
l is subtracted, but the effect is limited to the TM time, so the value is from the current time to the past TM time.
It is clear that the time is consistent with the pulse difference between FDP and FEP. Although pulses FDP and FEP were used as pass/fail pulses related to frame synchronization detection, since reception errors can be detected in error detection codes and error correction codes that are generally used for data transmission, FDP is used as a pulse for detecting frame synchronization. RXM
It is possible to reflect this in the value of

以上は受信回線の監視機能についての説明であったが、
次に第1図のデータ伝送制御部2のデータ送信制御機能
について第4図〜第6図によって説明する。たX′シ第
4図は第1図中のデータ伝送制御部内の再送制御回路の
構成側口、第5図は回線品質劣化時のデータ端局の再送
制御動作例のタイムチャート、第6図は2つのデータ端
局間の競合時の再送制御動作例のタイムチャートである
The above was an explanation of the receiving line monitoring function, but
Next, the data transmission control function of the data transmission control section 2 shown in FIG. 1 will be explained with reference to FIGS. 4 to 6. Figure 4 shows the configuration side of the retransmission control circuit in the data transmission control section in Figure 1, Figure 5 shows a time chart of an example of the retransmission control operation of the data terminal station when line quality deteriorates, and Figure 6 is a time chart of an example of retransmission control operation at the time of contention between two data terminal stations.

す 第4図において11はリードオη、メモリ(ROM )
で、第8図に示した回線評価値出力RXMと端末の送信
要求によって現在送信待行列につながれていて送信待ち
になっている端末送信データの数TQとをアドレス信号
として人力させ格納データAを出力する。12はランダ
ムな2進行号パターンを発生するランダムパターン発生
回路O8Cで、一般にはM系列発生シフトレジスタを送
信タイミングとは非同期な高速クロックでシフトし、特
定の複数のシフト段からパターン出力Bを取出すなどの
公知の手段で容易に実現できる。13はA、B2つの2
進数の大小を比較する比較器COMPで、その出力(A
>B ’)はA>Bの時のみH(高)レベルとなる。1
4はフリップフロップFFで、18よりのA>B信号を
入力してサンプリングホールドする。サンプリングタイ
ムはあらかじめ定められた送信開始タイミング信号Tに
よって与えられる。FF14の出力は再送指令出力RE
TRYで、これがHレベルのとき送信データの再送が実
行される。F’F14の人力SETは強制的に出力RE
TRYをHレベルに設定し再送を実行する場合に、また
人力RESETは強制的に出力RETR’YをLレベル
に設定して再送を禁止する場合にそれぞれ使用される。
In Fig. 4, 11 indicates read-off η and memory (ROM).
Then, the stored data A is manually generated using the line evaluation value output RXM shown in FIG. Output. Reference numeral 12 denotes a random pattern generation circuit O8C that generates a random binary code pattern, which generally shifts the M-sequence generation shift register using a high-speed clock that is asynchronous with the transmission timing, and extracts pattern output B from specific multiple shift stages. This can be easily realized by known means such as. 13 is 2 of A and B
Comparator COMP compares the magnitude of base numbers, and its output (A
>B') becomes H (high) level only when A>B. 1
4 is a flip-flop FF which inputs the A>B signal from 18 and samples and holds it. The sampling time is given by a predetermined transmission start timing signal T. The output of FF14 is the retransmission command output RE
When TRY is at H level, the transmitted data is retransmitted. F'F14's manual SET is forced to output RE
Manual RESET is used when TRY is set to H level to execute retransmission, and manual RESET is used when output RETR'Y is forcibly set to L level to prohibit retransmission.

次に第4図の動作を説明する。Next, the operation shown in FIG. 4 will be explained.

いまデータ端局が発呼したデータに対する中央局の有効
な応答が得られなかったとする。このときは次の送信開
始タイミング信号TでFF’14において比較器1Bの
出力A>Bが評価され、これに従って再送指令出力RE
TRYのレベルが決定される。ランダムパターン発生器
12の出力Bの最大数値をBMAxとすると、Bは0か
らBMAXの間の任意の値を等確率で発生しているので
、ROM11のデータ出力の最小値と最大値をそれぞれ
AMINとAMAXとにし・ 0<AMINぐA<AMAX〈BMAxe・・・(1)
を満足するようにすれば、COMP 18の出力A>B
がHレベルになる確率P (A>B )tナワち再送指
令信号RETRYがHレベルになる確率は(2)式を満
足する。
Suppose now that the data end station has not received an effective response from the central station to the data it has sent out. At this time, the output A>B of the comparator 1B is evaluated in FF'14 at the next transmission start timing signal T, and according to this, the retransmission command output RE
The level of TRY is determined. If the maximum value of the output B of the random pattern generator 12 is BMAx, B generates any value between 0 and BMAX with equal probability, so the minimum and maximum values of the data output of the ROM 11 are respectively AMIN and AMAX, 0<AMINGUA<AMAX<BMAXe...(1)
If it is satisfied, the output of COMP 18 A>B
The probability that the retransmission command signal RETRY becomes H level P (A>B)t The probability that the retransmission command signal RETRY becomes H level satisfies equation (2).

P(A>B)=A/(BMAX+1)・・・−(2)従
って(1) 、 (2)より次の(3)式が得られる。
P(A>B)=A/(BMAX+1)...-(2) Therefore, the following equation (3) is obtained from (1) and (2).

〈1・・・・・・(3) さてROMIIではRXMlTQをアドレスとし、RX
M、TQで指定され名番地のデータがAであるから、R
XM、TQ、Aの間に次の関数関係が成立している。
<1...(3) Now, in ROMII, RXMlTQ is the address, and RX
Since the name address data specified by M and TQ is A, R
The following functional relationship holds between XM, TQ, and A.

A=f (RXM、TQ )・・・φ・・(4)従って
(4)式をRXMに対しては単調減少関数に、TQに対
しては単調増加関数になるようにROM11のデータを
設定しておけば、再送指令出力がHレベルになる確率P
 (A>B )は(2)式によってAに比例するから、
受信回線評価値出力RXMが大きくすなわち回線品質良
好な時や、送信待行列内の送信待データの数TQが少い
時には、再送確率が小さくなる方向へ、逆にRXMが小
さ−く回線品質が劣化している時やTQが多いときは、
再送確率が大きくなる方向へそれぞれ確率の操作を行う
ことができる。
A=f (RXM, TQ)...φ...(4) Therefore, set the data in ROM 11 so that equation (4) becomes a monotonically decreasing function for RXM and a monotonically increasing function for TQ. If you do so, the probability P that the retransmission command output will be at H level
Since (A>B) is proportional to A according to equation (2),
When the reception line evaluation value output RXM is large, that is, the line quality is good, or when the number TQ of data waiting to be transmitted in the transmission queue is small, the retransmission probability decreases, and conversely, when RXM is small and the line quality is low, the retransmission probability decreases. When it is deteriorating or there is a lot of TQ,
Probabilities can be manipulated to increase the retransmission probability.

次に以上の効果を持たせた回路(−よる動作を第5図お
よび第6図によって詳細に説明する。まず第5図は回線
品質劣化時のデータ端局の再送制御動作の一例のタイム
チャートであって、図の様式は第2図と同じである。た
N゛シ送信開始タイミングTのパルス間の■〜[相]の
番号は便宜上付けた送信タイミング区間の識別番号に過
ぎない。また送信要求信号TREQ (第1図)の各パ
ルス下のTREQI〜TREQ8は送信変調データSD
の各データSDI〜SD8に1対1に対応し、互に異な
るデータの発生による送信要求信号と送信変調データを
それぞれ示している。さらに受信復調信号RDの各デー
タRDI、RD2、RD8はそれぞれ5D11SD2、
SD8に対する中央局からの応答データである。
Next, the operation of the circuit (-) with the above effects will be explained in detail with reference to FIGS. 5 and 6. First, FIG. The format of the diagram is the same as that in Figure 2.The numbers from ■ to [phase] between the pulses at the transmission start timing T are merely identification numbers of the transmission timing section for convenience. TREQI to TREQ8 below each pulse of the transmission request signal TREQ (Fig. 1) is the transmission modulation data SD.
The transmission request signal and the transmission modulation data are shown in a one-to-one correspondence with each of the data SDI to SD8, respectively, and are caused by generation of mutually different data. Furthermore, each data RDI, RD2, and RD8 of the received demodulated signal RD is 5D11SD2,
This is response data from the central office to SD8.

例を示すといま区間■にて送信要求信号TREQlが発
生し、SDIが区間:■にて最初に送信され1.1: たとし、これが正常に中央局に受信された時には応答信
号RDIが中央局より返送される。次に区間■にて別の
送信要求信号TREQ2が発生し、区間■にて送信変調
データSD2を送信した時、図に斜線で示したように回
線が劣化して中央局で正常受信ができなかったとすれば
、応答信号RD2が返送されないため、第4図の再送制
御回路が動作し、区間■以降の毎区間の再送を確率的に
決定する。この例では区間■でたまたま第4図の再送指
令出力RETRYがLレベルとなって再送が行われない
が、このときさらに別の送信要求信号THEQ8が発生
したとすると、送信待ち行列には2つのデータ(TRE
Q2、TREQ3に対応する)がつながり、送信待ちデ
ータの数TQは2となり増加する。さらに回線評価値出
力RXMの値は区間■■■のRDの誤り発生によって小
さくなるので、区間■以降の再送確率は大きくなり、例
えば区間■■■とRD2を正常受信するまで再送をくり
返す。こうして区間■でRD2を受信したときTQの値
はl(千減少するが、RXMの値は区間■■のRDの誤
り発生によりさらに少さくなるから再送確率は大きく、
たとえば区間■に続いて区間[相]で再送を行い応答信
号Rp8を得るまで、  ′すなわちRDの誤りが少な
くなるまで再送確率な下げることはない。
To give an example, suppose that the transmission request signal TREQl is generated in the interval ■, and the SDI is first transmitted in the interval ■1.1:, and when this is normally received by the central station, the response signal RDI is sent to the central station. It will be returned by the station. Next, another transmission request signal TREQ2 was generated in section ■, and when transmit modulation data SD2 was transmitted in section ■, the line deteriorated as shown by diagonal lines in the figure, and normal reception could not be performed at the central station. In this case, since the response signal RD2 is not returned, the retransmission control circuit shown in FIG. 4 operates and stochastically determines the retransmission of each section after section (2). In this example, the retransmission command output RETRY in FIG. 4 happens to go to L level in section ■, and retransmission is not performed. However, if another transmission request signal THEQ8 is generated at this time, there are two in the transmission queue. Data (TRE
(corresponding to Q2 and TREQ3) are connected, and the number TQ of data waiting to be sent increases to 2. Further, since the value of the line evaluation value output RXM becomes smaller due to the occurrence of an error in the RD in the section ■■■, the retransmission probability after the section ■ increases, and for example, retransmission is repeated until the sections ■■■ and RD2 are normally received. In this way, when RD2 is received in section ■, the value of TQ decreases by l(1,000), but the value of RXM becomes even smaller due to the occurrence of an error in RD in section ■■, so the retransmission probability is large.
For example, the retransmission probability will not be lowered until the response signal Rp8 is obtained by performing retransmission in the interval [phase] following the interval (2), that is, until the error in RD is reduced.

第6図は回線品質が良好な場合2つのデータ端局a、b
間の競合時の動作例タイムチャートで、図の様式は第5
図と同様である。たWしa局とb局の信号やデータを区
別するためそれぞれの名称に(a) 、 (b)を付け
、RDやTのようにa、b両局ではゾ同一と仮定してよ
い信号は(a、b)を付けて共通であることを表わして
いる。いま区間■でa局とb局とがたまたま時間的に近
接した時点で送信要求信号TREQ1(a)とTREQ
I(b)が発生したとすると、区間■(=おいて両局は
それぞれ送信変調データ5Dl(a)、5DI(b)を
はゾ同時に送信するから、中央局では正常に受信されず
不達になる(これをSDに斜線で示している)。これ以
後区間■より両局共に再送制御を行うが、この例では区
間■■■に亘って不幸にも両局の再送確率結果が一致し
た場合で、この間中央局からは応答がないことは自明で
ある。こ5ですでに区間■においてb局に次の送信要求
信号TREQ2(b)が発生していたとすると、b局の
送信待ちになっている端末送信データの数TQの値は1
カ・ら2(−増力臼しa局より再送確率は大きい。この
よう(−シてこの例では区間■においてb局はSDl 
(b)再送:二成功し、応答信号RD 1 (b)を得
る。a局(二おI/)でもこれを検知することができ、
かつ回線品質カー良好であるから競合による不達であ□
ることはa、b両局で識別できているので、区間■以降
kま第4図のFF14のSET人力、RESET入力を
使用して再送確率に依存しない交互送信モード(二移行
できる。すなわち中央局から自局宛に有効応答を(尋た
側が次の送信を控え、また逆;二他局(二対する有効応
答を検知した局は次の送信を実行すれ1よ(1゜次に以
上に説明した回線゛監視制御方法を2つのデータ端局間
の競合発生による再送動作(二お(するデニタの平均時
間の縮少効果という見地力・ら吟味する。いま1つのデ
ータを再送できる機会の最大数をNとす”る。従来の方
法ではN個の機会のうちの1つを再送時間としてランダ
ムに選択してvするので2局間の再送失敗によるデータ
ネ達の確率すなわち不達確率または不達率P□は両者の
選んだ再・遂時間がたまたま一致する場合の数はNであ
るから、 P  =N’  XN=N  ・・・・0・・・−(5
)1     〜 となる。他方本発明の方法による不達確率P2は、最後
を除<N−1区間にわたって毎区間の再送指令の確率試
行結果が一致する場合によるから毎回の再送確率P (
A>B )を簡単のためP□と置けば、 −1 (2PB、−2PR+1)  ・・・・(6)となる。
Figure 6 shows two data terminal stations a and b when the line quality is good.
This is an example time chart of operation when there is a conflict between
It is similar to the figure. In order to distinguish the signals and data of stations A and B, add (a) and (b) to their respective names, and use signals that can be assumed to be the same for both stations A and B, such as RD and T. (a, b) is added to indicate that they are common. In the current section ■, when station a and station b happen to be close in time, transmission request signals TREQ1(a) and TREQ are sent.
If I(b) occurs, both stations transmit modulated data 5Dl(a) and 5DI(b) at the same time in interval (This is indicated by diagonal lines in SD).After this, both stations perform retransmission control from section ■, but in this example, unfortunately, the retransmission probability results of both stations coincide over section ■■■. In this case, it is obvious that there is no response from the central station during this period.If the next transmission request signal TREQ2(b) has already been generated at station b in section 5, then the transmission request signal TREQ2(b) from station b is waiting for transmission. The value of the number TQ of terminal transmission data is 1.
2 (-Reinforcement) The retransmission probability is greater than that of station a. In this example, in interval ■, station b has SDl
(b) Retransmission: Two successes and a response signal RD 1 (b) is obtained. This can also be detected at station a (Nio I/),
And the line quality is good, so there is no possibility of delivery failure due to competition.
Since this can be identified by both stations a and b, it is possible to shift to an alternate transmission mode (two modes that do not depend on the retransmission probability) using the SET and RESET inputs of FF14 in FIG. A station sends a valid response to its own station (the inquiring side refrains from the next transmission, and vice versa; the station that detects a valid response to the other station executes the next transmission (1゜next) The described line supervisory control method will be examined from the viewpoint of reducing the average time of retransmission operations (two or more) due to contention between two data terminal stations. The maximum number is N. In the conventional method, one of the N opportunities is randomly selected as the retransmission time. The non-delivery rate P□ is the number of cases in which the re-delivery times chosen by both parties happen to coincide, so P = N' XN = N ...0...-(5
) 1 ~. On the other hand, the non-delivery probability P2 according to the method of the present invention depends on the case where the probability trial results of retransmission commands in every interval are the same over <N-1 intervals except the last, so the retransmission probability P (
If A>B) is written as P□ for simplicity, it becomes -1 (2PB, -2PR+1) (6).

種々なNの値に対してp、、 、< p工を満足するP
FLの範囲は例えば となりNが増すにつれて本発明の方法(二よる場合の不
達率が従来の方式による場合の不達率よりも小さくなる
条件を満足するP□の値の範囲は広がる。たとえば P
□二%、 N−10のとき1−3 P□=10  P2=(%)=1.95X10となり、
本発明の方法を用いた方が2桁近い改善を得ることがわ
かる。このことから逆に同一の不達率(P1=P2)を
与える最大再送機会数Nは本発明を用いた方が小さくな
り、データの平均遅延時間が縮少されることは明らかで
ある。
P that satisfies p, , , < p for various values of N
The range of FL is, for example, as N increases, the range of values of P□ that satisfies the condition that the non-delivery rate in the case of the method of the present invention is smaller than the non-delivery rate in the case of the conventional method increases.For example, P
□2%, when N-10, 1-3 P□=10 P2=(%)=1.95X10,
It can be seen that the method of the present invention provides an improvement of nearly two orders of magnitude. From this, it is clear that, conversely, the maximum number of retransmission opportunities N that gives the same non-delivery rate (P1=P2) is smaller when the present invention is used, and the average data delay time is reduced.

以上詳細に説明したように本発明の回線監視制御方法に
よれば、データネ達の原因が回線擾乱であるか競合であ
るかをおよそ識別できる効果が得られ、またいずれの原
因の場合においてもデータ離遠率の劣化を防ぎ、データ
の平均遅延時間を縮少できるという利点がある。さらに
本発明の方法を実現する上で従来必要であった装置(中
央局とデータ端局)以外の装置を必要とせず、たゾ簡単
な回線評価回路、再送制御回路などの機能をデータ端局
に付加するのミセよく、これはソフトウェアでも容易に
実現できるので経済上安価な追加で済むという利点があ
る。
As explained in detail above, according to the line monitoring control method of the present invention, it is possible to roughly identify whether the cause of data loss is line disturbance or contention, and in any case, data loss can be caused by line disturbance or contention. This has the advantage of preventing deterioration of remoteness ratio and reducing the average data delay time. Furthermore, in order to realize the method of the present invention, no equipment other than the conventionally required equipment (central office and data terminal station) is required, and functions such as a simple line evaluation circuit and retransmission control circuit can be implemented at the data terminal station. This has the advantage of being an economically inexpensive addition since it can be easily implemented using software.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を用いたデータ端局のデータ伝送装
置の構造側口、第2図は第1図中のデータ伝送制御部の
受信データ回線監視動作例のタイムチャート、第8図は
第2図の回線評価値出力を得る回線評価回路の構成例図
、第4図は第1図中のデータ伝送制御部の再送制御回路
の構成例図、第5図は回線品質劣化時のデータ端局の再
送制御動作例のタイムチャート、第6図は2つのデータ
端局間の競合時の再送制御動作例のタイムチャートであ
る。 l・・・・受信部、 2・・・・データ伝送制御部、8
・・・・送信部、 4・・・・LPF、5・・・・A/
D変換器、 6,7・・・・遅延回路、8.9・・−・
ORゲート、10・・・・可逆カウンタ、12・・・・
ランダムパターン発生回路、13・・・・比較器、  
■4・・・・フリップフロップ、FDP@會・争同期検
知パルス、 FEP・・・−フレーム同期誤りパルス、RXM・・・
・回線評価値出力、 RXA・・・・受信レベル信号、 RD・・・・復調データ出力、 RXIN・・・・受信データ入力、 RXD・・・・端末への受信データ出力、SD・・・・
送信変調データ、 TXD・・・・端末送信データ、 TXOUT・・・・送信出力信号、 TREQ・・・・送信要求信号、 TXG・・・・送信起動信号、 特許出願人  国際電気株式会社 代理人 大球 学 外1名 第 1  閃 躬 2 図 第 3 閃 (A) (8) 第 4 図 ESET
Fig. 1 shows the structure of a data transmission device of a data terminal using the method of the present invention, Fig. 2 shows a time chart of an example of the received data line monitoring operation of the data transmission control section in Fig. 1, and Fig. 8 shows Figure 2 shows an example of the configuration of a line evaluation circuit that obtains the line evaluation value output, Figure 4 shows an example of the configuration of the retransmission control circuit of the data transmission control section in Figure 1, and Figure 5 shows data when line quality deteriorates. FIG. 6 is a time chart of an example of a retransmission control operation of a terminal station. FIG. 6 is a time chart of an example of a retransmission control operation when there is contention between two data terminal stations. l...Receiving section, 2...Data transmission control section, 8
...Transmitter, 4...LPF, 5...A/
D converter, 6, 7...Delay circuit, 8.9...
OR gate, 10... Reversible counter, 12...
Random pattern generation circuit, 13... comparator,
■4...Flip-flop, FDP@kai/conflict synchronization detection pulse, FEP...-frame synchronization error pulse, RXM...
・Line evaluation value output, RXA: Reception level signal, RD: Demodulated data output, RXIN: Reception data input, RXD: Reception data output to terminal, SD:
Transmission modulation data, TXD...Terminal transmission data, TXOUT...Transmission output signal, TREQ...Transmission request signal, TXG...Transmission start signal, Patent applicant Kokusai Denki Co., Ltd. Agent Dai Ball 1 off-campus person 1st flash 2 Figure 3 Flash (A) (8) Figure 4 ESET

Claims (1)

【特許請求の範囲】[Claims] 1つの中央局に対し共通の伝送回線で接続され互に競合
関係にある複数の端局のそれぞれが、過去一定時間内の
中央局からの受信入力信号レベルの平均値および受信複
調データの同期パターンや、データの誤り数を検出する
手段を用いて蔓信回線品質を常時監視する回路と、端局
が送信動作に移行した時点で競合の発生や回線の劣化に
もとづくデータネ達が生じた場合に、あらがしめ定めら
れた送信機会の到来毎に確率的にデータの再送が非再送
かを決定する回路とを備えて、その再送確率を上記受信
回線の監視結果とデータ端局内の送信待ちデータの数に
よって操作し、伝送回線の劣化時および送信待ちデータ
数の増加時には再送確率を大きくする方向に移してデー
タ受信の確達を図り、回線品質が良好な時には競合状態
であることを識別して自局に対する中央局の有効応答を
得た端局は次の再送を控え、他局に対する中央局の応答
を識別した端局は次の再送を実行して競合の継続時間を
縮小することを特徴とするデータ端局の回線監視制御方
法。
Each of the multiple terminal stations connected to one central station via a common transmission line and in a mutually competitive relationship synchronizes the average value of the received input signal level and the received demodulation data from the central station within a certain period of time in the past. A circuit that constantly monitors the quality of the transmission line using a means to detect patterns and the number of data errors, and a circuit that constantly monitors the quality of the transmission line using a means to detect patterns and the number of data errors, and when a data error occurs due to contention or line deterioration when the terminal station shifts to transmission operation. The circuit is equipped with a circuit that probabilistically determines whether to retransmit or not to retransmit data each time a predetermined transmission opportunity arrives, and the retransmission probability is determined based on the monitoring results of the receiving line and the transmission waiting in the data terminal station. It operates based on the number of data, and when the transmission line deteriorates or the number of data waiting to be sent increases, the retransmission probability is increased to ensure data reception, and when the line quality is good, it identifies a contention state. A terminal station that obtains a valid response from the central station for itself shall refrain from the next retransmission, and a terminal station that has identified the central station's response for another station shall perform the next retransmission to reduce the duration of the contention. A data terminal station line monitoring and control method characterized by the following.
JP57103005A 1982-06-17 1982-06-17 Circuit supervising and controlling method of data terminal station Granted JPS58220537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57103005A JPS58220537A (en) 1982-06-17 1982-06-17 Circuit supervising and controlling method of data terminal station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57103005A JPS58220537A (en) 1982-06-17 1982-06-17 Circuit supervising and controlling method of data terminal station

Publications (2)

Publication Number Publication Date
JPS58220537A true JPS58220537A (en) 1983-12-22
JPH0157859B2 JPH0157859B2 (en) 1989-12-07

Family

ID=14342540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57103005A Granted JPS58220537A (en) 1982-06-17 1982-06-17 Circuit supervising and controlling method of data terminal station

Country Status (1)

Country Link
JP (1) JPS58220537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265937A (en) * 1985-05-20 1986-11-25 Oki Electric Ind Co Ltd Method for avoiding collision of call in local network
JPS6217137U (en) * 1985-07-15 1987-02-02
US6078572A (en) * 1995-09-20 2000-06-20 Ntt Docomo Access method, mobile station and base station for CDMA mobile communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265937A (en) * 1985-05-20 1986-11-25 Oki Electric Ind Co Ltd Method for avoiding collision of call in local network
JPH06101728B2 (en) * 1985-05-20 1994-12-12 沖電気工業株式会社 Method of avoiding call collision of local network
JPS6217137U (en) * 1985-07-15 1987-02-02
US6078572A (en) * 1995-09-20 2000-06-20 Ntt Docomo Access method, mobile station and base station for CDMA mobile communication system

Also Published As

Publication number Publication date
JPH0157859B2 (en) 1989-12-07

Similar Documents

Publication Publication Date Title
CA1207462A (en) Method and apparatus for the detection and regeneration of a lost token in a token based data communications network
US4561092A (en) Method and apparatus for data communications over local area and small area networks
US7979587B1 (en) Apparatus and method for automatic speed downshift for a two pair cable
JP2002524914A (en) Optical remote control interface system and optical remote control interface method
EP0634853A2 (en) Wireless communication network system
US4787083A (en) Bus-method communication network system capable of seizing transmission right by using timer means at each station
US5430843A (en) Data transmission system and method for transmitting data having real-time and non-real-time characteristics
US4807274A (en) Telephone line quality testing system
JPS58220537A (en) Circuit supervising and controlling method of data terminal station
US4975907A (en) Method and device for the asynchronous transmission of data by packets
US6016567A (en) Radio broadcast system with improved reception of an NAK code
JP3280852B2 (en) Polling communication method
US7308002B2 (en) Packet type arbitrator in WLAN and corresponding arbitrating method
JPS61260734A (en) Detection of bit synchronization
JP4575405B2 (en) Communication modem and communication method
KR100259363B1 (en) Method and apparatus for controlling lan
JP2885604B2 (en) Cell discard / cell mis-delivery detection method
CN117573586A (en) Single-wire communication method, device and system
JPS5856555A (en) Demodulation control system
JP3609701B2 (en) Error data notification method and notification system in unidirectional serial data communication system
JPH04253441A (en) Improved frame removing mechanism of token-ring network
CN116527226A (en) Method and system for intelligently identifying half-duplex communication equipment
JP3454663B2 (en) Received signal collision detection device
JP2507635B2 (en) Redundant bus system data transmission device
JPS59223095A (en) Remote control receiver