JPS58220466A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58220466A
JPS58220466A JP10332882A JP10332882A JPS58220466A JP S58220466 A JPS58220466 A JP S58220466A JP 10332882 A JP10332882 A JP 10332882A JP 10332882 A JP10332882 A JP 10332882A JP S58220466 A JPS58220466 A JP S58220466A
Authority
JP
Japan
Prior art keywords
layer
film
semiconductor layer
wiring layer
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10332882A
Other languages
Japanese (ja)
Inventor
Minoru Kimura
実 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10332882A priority Critical patent/JPS58220466A/en
Publication of JPS58220466A publication Critical patent/JPS58220466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

PURPOSE:To microminiaturize and accelerate a semiconductor device without deteriorating the characteristics by forming a semiconductor layer insularly on a sapphire substrate, adding an impurity, covering it with an insulating film as a wiring layer, covering it with a semiconductor layer, selectively removing it, and forming a polysilicon layer on the insular element forming region and the insulating film. CONSTITUTION:An epitaxial layer 12 is selectively formed on a sapphire substrate 11, ions are implanted to form an n<+> type layer 14, and covered with an SiO2 film 13. Then, an Si epitaxial layer 15 is superposed, ions are implanted as a p type layer, selectively etched to form a single crystal island 16 on the substrate and a polysilicon layer 17 on the film 13. Then, SiO2 films 18, 19 are covered, a polysilicon gate electrode 20 and a polysilicon wirings 21, and n<+> type layer 22 are formed, an SiO2 film is covered, windows are opened at the wiring layers 14, 17, 21 and the layer 22, aluminum wirings are attached to complete it. According to this configuration, multilayer wirings can be formed without causing the deterioration of the electric characteristics, ultrafinely and highly integrated device can be obtained, and a diffused wiring layer can be reduced in its resistance, thereby accelerating the element.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、詳しくは絶縁性
基板上の素子の分離技術及び配線形成技術を改良した半
導体装置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device that improves the separation technology of elements on an insulating substrate and the technology for forming wiring.

〔発明の技術的背景〕[Technical background of the invention]

従来、絶縁性基板上の半導体層の素子分離や拡散配線層
形成としては、′次のような方法が知られている。
Conventionally, the following methods have been known for element isolation and formation of a diffusion wiring layer in a semiconductor layer on an insulating substrate.

まず、第1図(a)に示す如く例えばサファイア基板1
上に厚さ0.5〜0.7μmのシリコン半導体層2をエ
ピタキシャル成長させた5O8(8111eonOn 
5apphiマe)ウエノ・を用意する。つづいて、シ
リコン半導体層2上に熱酸化膜3及び515N4膜4を
順次形成する(第1図(b)図示)。ひきつづき、第1
図(C)に示す如(5i5N4膜4及び熱酸化膜3の素
子分離領域(フィールド領域)の予定部を選択的にエツ
チングして積層ノ臂ターン5〜3000Xの膜厚で残る
ように異方性エツチングする(第1図(d)図示)。次
いで、積層ノfターン5・・・上層の815N4膜4を
耐酸化性マスクとして熱酸化処理を施して鋸出する残存
シリコン半導体層を酸化して酸化膜からなるフィールド
領域6を形成して素子形成領域や拡散配線層として利用
する複数の島状半導体層7・・・を形成する(第1図(
e)図示)。
First, as shown in FIG. 1(a), for example, a sapphire substrate 1
5O8 (8111eonOn) on which a silicon semiconductor layer 2 with a thickness of 0.5 to 0.7 μm was epitaxially grown.
5apphi mae) Prepare ueno. Subsequently, a thermal oxide film 3 and a 515N4 film 4 are sequentially formed on the silicon semiconductor layer 2 (as shown in FIG. 1(b)). Continuing, 1st
As shown in FIG. Next, the stacked layer f-turn 5... is subjected to thermal oxidation treatment using the upper layer 815N4 film 4 as an oxidation-resistant mask to oxidize the remaining silicon semiconductor layer to be sawn out. Then, a field region 6 made of an oxide film is formed, and a plurality of island-shaped semiconductor layers 7 to be used as an element formation region and a diffusion wiring layer are formed (see FIG. 1).
e) As shown).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記方法にあっては、以下に列挙する糧
々の欠点があった。
However, the above method has a number of drawbacks listed below.

(1)長時間の高温熱酸化を必要とするため、サファイ
ア基板1(α−At20g )からフィールド領域6で
分離された島状半導体層(素子領域等)7へ−Atがオ
ートドーピングされる。その結果、デバイス製造後の電
気特性、特にリーク電流の増大を招く。リーク電流の増
大は、素子領域7にMOS )ランジスタを形成した場
合、パックチャンネル現象として問題となる。
(1) Since long-term high-temperature thermal oxidation is required, -At is auto-doped into the island-shaped semiconductor layer (device region, etc.) 7 separated from the sapphire substrate 1 (α-At 20 g) by the field region 6. As a result, electrical characteristics after device manufacture, particularly leakage current, increase. The increase in leakage current becomes a problem as a packed channel phenomenon when a MOS transistor is formed in the element region 7.

(2)  フィールド酸化時に第1図(e)に示す如く
81 sN4膜4が上方にかな勺反シ、その応力によ多
素子領域表面に欠陥が顧じ、電気的特性が劣化する。
(2) During field oxidation, as shown in FIG. 1(e), the 81sN4 film 4 is tilted upward, and the stress causes defects on the surface of the multi-element region, deteriorating the electrical characteristics.

(3)フィールド酸化による素子領域への喰い込み、い
わゆるバードビークが生じるため、実効的な素子領域の
幅が減少し、ひいては微細化の障害となる。
(3) Since field oxidation causes digging into the device region, so-called bird's beak, the effective width of the device region decreases, which in turn becomes an obstacle to miniaturization.

(4)  論理回路等を構成するような場合、拡散配線
層を非常に多く使用するため、集積度の向上に際しての
障害となる。
(4) When configuring a logic circuit or the like, a large number of diffusion wiring layers are used, which becomes an obstacle to increasing the degree of integration.

(5)短チャンネル化に伴ないシロ−トチャンネル効果
やミラー効果を防止するため、ノース、ドレイン領域の
形成に用いられる不純物の添加量をある程度制御してい
る。その結果、同時罠形成される拡散配線層を低抵抗で
きないため、素子の高速化の妨げとなる。
(5) In order to prevent the slope channel effect and mirror effect that accompany the shortening of the channel, the amount of doping of impurities used to form the north and drain regions is controlled to some extent. As a result, the resistance of the diffusion wiring layer formed at the same time cannot be reduced, which impedes the speeding up of the device.

〔発明の目的〕[Purpose of the invention]

本発明は菓子の電気特性の劣化を招くことなく、微細化
、高集積化、高速化を容易に達成し得る半導体装置の製
造方法を提供しようとするものである。
The present invention aims to provide a method for manufacturing a semiconductor device that can easily achieve miniaturization, high integration, and high speed without causing deterioration of the electrical characteristics of confectionery.

形成し、この半導体層を選択的に除去して島状半導体層
とし、これに不純物の添加を行ない酸化処理等によ層表
面を絶縁膜で覆い残った島状半導体層を拡散配線層とし
て用い、次いで全面に第2の半導体層を形成し、選択的
に除去することによシ前記サファイア基板上に前記絶縁
膜で分離された島状の素子形成領域を、該絶縁膜上に多
結晶半導体層からなる第2の拡散配線層を、夫々形成し
、2層の拡散配線層を有し、更に多結晶シリコン配線、
At配線の4層配線が可能で電気特性の劣化を招くこと
なく微細化を達成できる半導体装置を得ることを骨子と
する。
This semiconductor layer is selectively removed to form an island-shaped semiconductor layer, and impurities are added to this, and the layer surface is covered with an insulating film through oxidation treatment, etc., and the remaining island-shaped semiconductor layer is used as a diffusion wiring layer. Then, by forming a second semiconductor layer on the entire surface and selectively removing it, island-shaped element formation regions separated by the insulating film are formed on the sapphire substrate, and a polycrystalline semiconductor layer is formed on the insulating film. A second diffusion wiring layer is formed, each having two diffusion wiring layers, and further comprising a polycrystalline silicon wiring,
The main objective is to obtain a semiconductor device in which four-layer At wiring is possible and miniaturization can be achieved without causing deterioration of electrical characteristics.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明をMOS )ランジスタの製造に適用した
例について第2図(、)〜(e)を参照して説明する。
Next, an example in which the present invention is applied to the manufacture of a MOS transistor will be described with reference to FIGS. 2(a) to 2(e).

(1)マず、サファイア基板ll上に厚さ0.3〜0.
7μmの第1のシリコン層をエピタキシャル成長2図(
a)図示)。つづいて、n型不純物、例えば砒素をドー
ズ量10 ”7cm2〜10 ”10n20条件で島状
シリコン層12・・・にイオン注入した後、熱酸化処理
を施した。この時、島状シリコン層表面&C0・2μm
前後の厚い酸化膜13が成長された。
(1) First, the thickness is 0.3~0.
Figure 2: Epitaxial growth of 7 μm first silicon layer (
a) As shown). Subsequently, an n-type impurity such as arsenic was ion-implanted into the island-like silicon layer 12 at a dose of 10"7cm2 to 10"10n20, and then thermal oxidation treatment was performed. At this time, the island-like silicon layer surface &C0・2μm
Thick oxide films 13 were grown on the front and back.

なお、残存したn型島状シリコ7層14・・・は第1の
拡散配線層として用いる(第2図(b)図示)。
Note that the remaining n-type island-shaped silicon 7 layer 14 is used as a first diffusion wiring layer (as shown in FIG. 2(b)).

エピタキシャル成長させた。この時、サファイア基板1
1上には単結晶シリコン層が、それ以外の領域に多結晶
シリコン層が形成された。つづいて、酸化膜13上の多
結晶シリコン膜部分にレジストパターン(図示せず)を
形成し、これをマスクとして多結晶シリコンのエッチャ
ントを用いてエツチングを行なった。この時、サファイ
ア基板11上に酸化膜13で分離された島状単結晶シリ
コン層からなる素子形成領域16・・・が、前記酸化膜
13上に多結晶シリコンからなる第2の拡散配線層I7
・・・が形成された(第2図(d)図示)。なお、この
工程におい−τ、第2の拡散配線層17・・・を低抵抗
化する場合・−け、第2のシリコン層15を成長させた
後、第2の拡散配線層予定部付近に不純物を例えばイオ
ン注入法圧よシ選択的にドーピングt−レバよい。
Grown epitaxially. At this time, sapphire substrate 1
A single-crystal silicon layer was formed on the substrate 1, and a polycrystalline silicon layer was formed on the other regions. Subsequently, a resist pattern (not shown) was formed on the polycrystalline silicon film portion on the oxide film 13, and using this as a mask, etching was performed using a polycrystalline silicon etchant. At this time, an element formation region 16 made of an island-like single crystal silicon layer separated by an oxide film 13 on the sapphire substrate 11 is formed into a second diffusion wiring layer I7 made of polycrystalline silicon on the oxide film 13.
... was formed (as shown in FIG. 2(d)). Note that in this step, when lowering the resistance of the second diffusion wiring layer 17, after growing the second silicon layer 15, a The impurities can be selectively doped using, for example, an ion implantation method using a T-lever.

0:i)  次いで、熱酸化処理を施して素子形成領域
16・Jニーに厚さ300〜500X(71’−ト酸化
膜18・・・を、第2の拡散配線層17・・・周囲に同
厚さの第2の酸化膜19を成長させた。つづいて、全面
に例えば厚さ2000〜4000Xの多結晶シリコン膜
を堆積し、パターニングして、素子形成領域16・・・
のゲート酸化膜18上にダート電!2o・・・を、第2
の拡散配線層17・・・の第2の酸化膜19上に多結晶
シリコン配線層21・・・全形成した後、e−)電極2
o・・・等をマスクとしてn型不純物、例えば砒素をイ
オン注入して素子形成領域16・・・にソース、ドレイ
ン領域としてのn+!J!領域22□・・・・を形成し
た(第2図(eン図示)。その彼、常法に従って全面に
CVD −5io2膜(層間絶縁膜)を堆積し、第1゜
第2の拡散配線層14・・・、17・・・、n+型領領
域22・・及び多結晶シリコン配線層21・・・上にコ
ンタクトホールを開孔した後、M蒸着、パターニングを
行なってAt配線を形成してnチャンネルMO8LSI
を製造した(図示せず)。
0:i) Next, a thermal oxidation process is performed to form a 300 to 500X (71'-thick) oxide film 18 on the element forming region 16 and J knee, and around the second diffusion wiring layer 17... A second oxide film 19 of the same thickness was grown.Subsequently, a polycrystalline silicon film with a thickness of 2000 to 4000×, for example, was deposited on the entire surface and patterned to form element forming regions 16...
Dirt electricity on the gate oxide film 18! 2o..., the second
After completely forming the polycrystalline silicon wiring layer 21 on the second oxide film 19 of the diffusion wiring layer 17, e-) the electrode 2
o... etc. as a mask, n-type impurities, for example arsenic, are ion-implanted into the element forming regions 16... as source and drain regions. J! A region 22□... was formed (see Fig. 2). Then, a CVD-5io2 film (interlayer insulating film) was deposited on the entire surface according to a conventional method, and a second diffusion wiring layer was formed. 14..., 17..., contact holes are formed on the n+ type regions 22... and the polycrystalline silicon interconnection layer 21..., and then M vapor deposition and patterning are performed to form At interconnections. n-channel MO8LSI
was manufactured (not shown).

しかして、本発明方法によれば、予め島状シリコン層1
2・・・を形成し、この表面に厚い第1の酸化膜13を
成長させた後、第2のシリコン層75をエピタキシャル
成長させ、エツチングによシサファイア基板11上に第
1の酸化膜13で分離された島状単結晶シリコン層から
なる素子形成領域ノロ・・・を形成する。つまル、第2
のシリコン層15の成長後は高温で長時間の熱酸化処理
を一切行なうことなく、島状の素子形成領域16・・・
を形成できる。したがって、サファイア基板11から素
子形成領域16・・・へのAAのオートドーピングを解
消できるため、ソース、ドレイン領域としてのl型領域
22・・・を形成した場合のパックチャンネル現象を阻
止できる。
According to the method of the present invention, the island-like silicon layer 1 is prepared in advance.
2... and grown a thick first oxide film 13 on the surface thereof, a second silicon layer 75 is epitaxially grown, and the first oxide film 13 is formed on the sapphire substrate 11 by etching. An element forming region groove consisting of a separated island-like single crystal silicon layer is formed. Tsumaru, 2nd
After the growth of the silicon layer 15, the island-shaped element forming regions 16... are grown without any long-term thermal oxidation treatment at high temperatures.
can be formed. Therefore, auto-doping of AA from the sapphire substrate 11 to the element forming regions 16 can be eliminated, and the packed channel phenomenon can be prevented when the l-type regions 22 are formed as source and drain regions.

しかも選択酸化法で問題となるバードビークによるチャ
ンネル幅の減少が全くなく、r−)耐圧も良好で高信頼
性と微細化を達成できる。
Furthermore, there is no reduction in the channel width due to bird beak, which is a problem with selective oxidation, and the r-) withstand voltage is also good, making it possible to achieve high reliability and miniaturization.

また、従来方法では拡散配線層、多結晶シリコン配線層
、At配線層の3層であった配線層が、本発明方法によ
れば、第1の拡散配線層14・・・、第2の拡散配線層
17・・・、多結晶シリコン配線層21及びAA配線層
(図示せず)の4層の配線層を実現できるため、集積度
を大幅に向上できる。しかも、第1の拡散配線層14・
・・はシース、ドレイン領域の形成とは独立して形成さ
れ、その不純物添加量が制限され々いため、非常に低抵
抗化でき、高速化を達成できる。
Furthermore, in the conventional method, the wiring layer consists of three layers: a diffusion wiring layer, a polycrystalline silicon wiring layer, and an At wiring layer. Since four wiring layers, including the wiring layer 17, the polycrystalline silicon wiring layer 21, and the AA wiring layer (not shown), can be realized, the degree of integration can be greatly improved. Moreover, the first diffusion wiring layer 14.
... is formed independently of the formation of the sheath and drain regions, and the amount of impurities added thereto is often limited, so that it is possible to achieve extremely low resistance and high speed.

なお、上記実施例では島状半導体層を熱酸化による酸化
膜で覆ったが、これに限定されず、例えばCVD−81
02膜や他の絶縁膜で覆ってもよい。
In the above embodiment, the island-shaped semiconductor layer was covered with an oxide film formed by thermal oxidation, but the invention is not limited to this, and for example, CVD-81
It may be covered with 02 film or other insulating film.

また、上記実施例では各配線層の接続及びソース、ドレ
イン領域との接続においてはコンタクトホールを介して
At配線層を用いて行なったが、第2のシリコン層をエ
ピタキシャル成長する前に第1の拡散配線層上の厚い第
1の酸化膜の所望部分を選択的にエツチング除去すれば
、第1の拡散配線層と第2の拡散配線層及びソース、ド
レイン領域とを直接接続することができる。このような
方法を採用すれば一層の微細化を達成できる。
In addition, in the above embodiment, the connection of each wiring layer and the connection with the source and drain regions were made using the At wiring layer through contact holes, but before epitaxially growing the second silicon layer, the first diffusion By selectively etching away a desired portion of the thick first oxide film on the wiring layer, the first diffusion wiring layer and the second diffusion wiring layer and the source and drain regions can be directly connected. If such a method is adopted, further miniaturization can be achieved.

上記実施例では第2のシリコン層の素子形成領域や配線
層を形成する際、エツチング法を用いたが、特に平坦化
を問題にするような場合には選択酸化法を用いてもよい
a具体的には、第2のシリコン層上に厚さ500〜80
01@S 102膜と2000〜40001 g)8i
sNaMf:堆積し、ノ臂ターニングして素子形成領域
、第2の拡散配線層の予定部上にそれらの積層ノやター
ンを形成した後、これをマスクとして熱酸化する方法や
、熱酸化時間を大幅に短縮するために、前記積層ノリー
ンをマスクとして酸素を1 (117/ItI〜i o
”7cJイオン注入した後熱処理や熱酸化処理する方法
が挙げられる。
In the above embodiment, an etching method was used to form the element formation region and wiring layer of the second silicon layer, but if planarization is a particular issue, a selective oxidation method may be used. Specifically, a thickness of 500 to 80 mm is deposited on the second silicon layer.
01@S 102 membrane and 2000-40001 g) 8i
sNaMf: Deposited and turned to form stacked layers and turns on the intended area of the element formation region and second diffusion wiring layer, and then thermally oxidized using this as a mask, and the thermal oxidation time In order to significantly shorten the time, using the laminated Noreen as a mask, oxygen is 1 (117/ItI~i o
``A method of performing heat treatment or thermal oxidation treatment after 7 cJ ion implantation is mentioned.

上記実施例ではf−)[極として多結晶シリコンを用い
たが、これに限定されず、金属シリサイド、高融点金属
等で形成してもよい。絶縁基板についても、サファイア
に限らず、スピネルなどの絶縁基板、またS tO2−
多結晶シリコン構造等の他の誘電体分離板でもよい・ 本発明は上記実施例の如きnチャンネルMO8LSIの
製造のみに限らず、pチャンネルMO8LSI、0MO
8LSI等にも同様に適用できる。
In the above embodiment, polycrystalline silicon was used as the f-)[pole, but the electrode is not limited to this, and may be formed of metal silicide, high melting point metal, or the like. The insulating substrate is not limited to sapphire, but also insulating substrates such as spinel, and S tO2-
Other dielectric separation plates such as polycrystalline silicon structures may also be used. The present invention is not limited to manufacturing n-channel MO8LSIs as in the above embodiments, but also applies to p-channel MO8LSIs, 0MOs, etc.
It can be similarly applied to 8LSI etc.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明に係る半導体装置の製造方法
によれば電気的特性と信頼性に優れ、しかも素子の高密
度化、高速化を達成できる等顕著な効果を有する。
As described in detail above, the method for manufacturing a semiconductor device according to the present invention has remarkable effects such as excellent electrical characteristics and reliability, as well as the ability to achieve higher density and higher speed devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(・)は従来方法によシ絶縁基板上の半
導体層を素子分離すると共に配線層を形成する工程を順
次示す断面図、第2図(4)〜(・)は本発明の実施例
におけるnチャンネルMO8L8Iの製造工程を順次示
す断面図下ある。
Figures 1 (a) to (•) are cross-sectional views sequentially showing the steps of separating semiconductor layers on an insulating substrate and forming wiring layers by a conventional method, and Figures 2 (4) to (•) are Below are cross-sectional views sequentially showing the manufacturing process of n-channel MO8L8I in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に第1の半導体層を形成する工程と、この第
1の半導体層を選択的に除去して島・状半導体層を形成
する工程と、この島状半導体層に不純物をドーピングし
た後、該半導体層の全面を絶縁膜で覆う工程と、全面に
第2の半導体層を形成する工程と、この第2の半導体層
を前記島状半導体層上の絶縁膜と蚤なくとも一部が接触
するように選択的に除去して島状の素子形成領域を形成
する工程とを具備したことを特徴とする半導体装置の製
造方法。
A step of forming a first semiconductor layer on an insulating substrate, a step of selectively removing this first semiconductor layer to form an island-shaped semiconductor layer, and a step of doping the island-shaped semiconductor layer with an impurity. , a step of covering the entire surface of the semiconductor layer with an insulating film, a step of forming a second semiconductor layer on the entire surface, and a step of forming the second semiconductor layer at least partially with the insulating film on the island-shaped semiconductor layer. 1. A method of manufacturing a semiconductor device, comprising the step of selectively removing so as to contact each other to form an island-like element formation region.
JP10332882A 1982-06-16 1982-06-16 Manufacture of semiconductor device Pending JPS58220466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332882A JPS58220466A (en) 1982-06-16 1982-06-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332882A JPS58220466A (en) 1982-06-16 1982-06-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58220466A true JPS58220466A (en) 1983-12-22

Family

ID=14351101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332882A Pending JPS58220466A (en) 1982-06-16 1982-06-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58220466A (en)

Similar Documents

Publication Publication Date Title
JP3058954B2 (en) Method of manufacturing semiconductor device having growth layer on insulating layer
JPS59210658A (en) Semiconductor device and manufacture thereof
KR20020067774A (en) SOI Substrate and Method of Manufacturing Thereof
JPS62237754A (en) Semiconductor integrated circuit device and manufacture thereof
JPS58220466A (en) Manufacture of semiconductor device
JPS5828734B2 (en) hand tai souchi no seizou houhou
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPS60136327A (en) Manufacture of semiconductor device
JPS59168675A (en) Manufacture of semiconductor device
JPH04112532A (en) Manufacture of semiconductor integrated circuit
JPS5856460A (en) Semiconductor device
JP2614519B2 (en) Method of manufacturing semiconductor integrated circuit incorporating MIS capacitance element
JPS6115372A (en) Semiconductor device and manufacture thereof
JP2723539B2 (en) Master slice type semiconductor device
JPS6196748A (en) Dielectric isolated substrate and manufacture thereof
JPS5935464A (en) Complementary metal-oxide semiconductor device and manufacture thereof
JPH08172128A (en) Semiconductor device and its manufacture
JPS58142542A (en) Semiconductor integrated circuit device of dielectric isolation structure and manufacture thereof
JPS61154045A (en) Manufacture of semiconductor device
JPS5980968A (en) Manufacture of semiconductor integrated circuit device
JPS596579A (en) Semiconductor device
JPS59175769A (en) Semiconductor device and manufacture thereof
JPS5892233A (en) Manufacture of oxide film-isolated integrated circuit
JPH0218587B2 (en)
JPH046827A (en) Manufacture of semiconductor device