JPS58220465A - Writing and reading out method in floating gate type semiconductor memory device - Google Patents

Writing and reading out method in floating gate type semiconductor memory device

Info

Publication number
JPS58220465A
JPS58220465A JP57105063A JP10506382A JPS58220465A JP S58220465 A JPS58220465 A JP S58220465A JP 57105063 A JP57105063 A JP 57105063A JP 10506382 A JP10506382 A JP 10506382A JP S58220465 A JPS58220465 A JP S58220465A
Authority
JP
Japan
Prior art keywords
writing
voltage
gate
reading
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57105063A
Other languages
Japanese (ja)
Inventor
Makoto Yamamoto
誠 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57105063A priority Critical patent/JPS58220465A/en
Publication of JPS58220465A publication Critical patent/JPS58220465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7886Hot carrier produced by avalanche breakdown of a PN junction, e.g. FAMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a memory which has no erroneous operation by reversing the relationship between a source and a drain in writing and reading out, thereby preventing the writing operation due to the read-out lasting for a long period of time even at a low wiring voltage. CONSTITUTION:In an avalanche injection type Nch non-volatile memory, the voltages of layers 2, 3 are set to V1>V2>0 at the writing time, a high positive voltage is applied to a control gate 6, and a hot electrons which are produced at the junction of a P type substrate 1 and an N<+> type layer 2 in a floating gate 5. A gate insulating film 4 in the vicinity of the layer 2 is locally reduced in thickness, and efficiently written with an electric field intensity increased even at the low wiring voltage. The voltage is set to 0<=V1<=V2 at the reading-out time, and a positive voltage is applied to the gate 6. A channel is formed on the surface of the substrate 1 under the gate 5 at this time, and since the voltage V1 is low, hot electrons are not almost produced at the P-N junction of the layer 2, a gate insulating film 4 is thick in the vicinity of the P-N junction of the layer 3, undesired writing hardly occur, and an erroneous operation due to writing in the reading-out state can be extremely reduced as compared with the conventional one.

Description

【発明の詳細な説明】 この発明は、浮遊ゲート型半導体記憶装置を対象とする
情報の書き込みおよび読み出し方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for writing and reading information in a floating gate semiconductor memory device.

従来性なわれているこの種の書き込みおよび読み出し方
法を、第1図に示すアバランシェ注入型Nチャネル不揮
発性記憶装置の場合を例にして説明する。なお、同図に
おいて、(1)は第1半導体領域としてのP型半導体基
板であシ、このP型半導体基板(1)の表面に第2半導
体領域として2つのN+領領域2) 、 (3)が離間
して設けられ、とのN 領域(2)および(3)の間の
P型半導体基板(1)の表面上に、ゲート絶縁膜(4)
を介して浮遊ゲート(5)および制御ゲ−)(6)が設
けられている。また、(1)はフィールド分離絶縁膜で
ある。
This kind of conventional writing and reading method will be explained using an avalanche injection type N-channel nonvolatile memory device shown in FIG. 1 as an example. In the figure, (1) is a P-type semiconductor substrate as a first semiconductor region, and two N+ regions 2) and (3) are formed on the surface of this P-type semiconductor substrate (1) as second semiconductor regions. ) are provided spaced apart from each other, and a gate insulating film (4) is formed on the surface of the P-type semiconductor substrate (1) between the N regions (2) and (3).
A floating gate (5) and a control gate (6) are provided through the gate. Further, (1) is a field isolation insulating film.

上記構成において、情報の書き込みを行なう場合には、
N 領域(2)をドレインとして印加電圧v1を正の高
電圧とし、N 領域(3)をソースとして印加電圧v2
をOvもしくはVr>Vzとなる正の電圧として制御ゲ
ート(6)に正の高電圧を加える。これによシ、浮遊ゲ
ート(5)の下のN 領域(2)とP型半導体基板(1
)との間のPN接合でホットエレクトロンが発生し、こ
のホットエレクトロンは制御ゲ−ト(6)に加えた高電
圧によってゲート絶縁膜(4)の電位障壁を越えて浮遊
ゲート(5)に蓄積される結果、書き込みが行なわれる
。読み出しを行なう場合は、N+領領域2)をドレイン
として印加電圧v1を正電圧□とし、N領域(3)をソ
ースとして印加電圧を0もしくはvl>v2となる正の
電圧として制御ゲート(6)に正の電圧を加える。この
時、浮遊ゲート(5)の下のP型半導体基板(1)の表
面にチャネルが形成され、ドレインとしてのN 領域(
2)からソースとしてのN領域(3)へ電流が流れるか
否かにより % 11もしくは′θ′の情報を読み出す
ことができる。
In the above configuration, when writing information,
With the N region (2) as the drain, the applied voltage v1 is a positive high voltage, and with the N region (3) as the source, the applied voltage v2
A positive high voltage is applied to the control gate (6) with Ov or Vr>Vz. This allows the N region (2) under the floating gate (5) and the P type semiconductor substrate (1
) Hot electrons are generated at the PN junction between the control gate (6), and the hot electrons cross the potential barrier of the gate insulating film (4) and accumulate in the floating gate (5) due to the high voltage applied to the control gate (6). As a result, writing is performed. When reading, the N+ region (2) is used as a drain and the applied voltage v1 is a positive voltage □, and the N region (3) is used as a source and the applied voltage is set to 0 or a positive voltage such that vl>v2 to the control gate (6). Apply a positive voltage to At this time, a channel is formed on the surface of the P-type semiconductor substrate (1) under the floating gate (5), and an N region (
% 11 or 'θ' information can be read out depending on whether or not current flows from 2) to the N region (3) serving as a source.

ところで、近年このような浮遊ゲート型不揮発性記憶装
置はショートチャネル化が進み、縮小側に伴って書き込
み電圧も低くなってきており、今後もますます低電圧で
書き込みできる記憶装置が必擬とされる傾向にある。。
Incidentally, in recent years, floating gate type non-volatile memory devices have become increasingly short-channeled, and the write voltage has also become lower as they become smaller, and memory devices that can write at lower and lower voltages will continue to be essential. There is a tendency to .

よ。う、8.4いよ:うヵ従え。書きいおよび読み出し
方法では、書き込みおよび読み出しは、2つのN 領域
<2) 、 (3)のうち一方を常にドレイン。
Yo. Uh, 8.4: Follow me. In the write and read method, write and read always drain one of the two N regions <2), (3).

他方を常にソースとして、即ち、両者に印加する電圧V
 1 + V 2の電位差関係を常にVl>V2と固定
して行なうため、書き込み可能電圧の低下に伴い、よシ
低い電圧を印加して行なう読み出しであっても、長時間
読み出しを継続するうちに少しずつではあるが書き込み
と同じことが行なわれ、書き込まれていないはずの記憶
素子が書き込まれた状態となって誤動作するという問題
が生じてくる。
The other is always the source, that is, the voltage V applied to both
Since the potential difference relationship between 1 + V 2 is always fixed as Vl > V2, as the writeable voltage decreases, even when reading is performed by applying a much lower voltage, as reading continues for a long time, The same thing as writing is performed, albeit little by little, and a problem arises in that a memory element that should not have been written becomes written into it and malfunctions.

この発明は、以上のような状況に鑑みてなされたもので
あシ、その目的は、長時間の読み出しに伴って非所望の
書き込みが生じ誤動作の原因となることを有効に防止す
ることが可能な浮遊ゲート型半導体記憶装置における書
き込みおよび読み出し方法を提供することにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to effectively prevent undesired writing from occurring due to long-term reading and causing malfunctions. An object of the present invention is to provide a method for writing and reading data in a floating gate semiconductor memory device.

このような目的を達成するために、この発明は、第1導
電型を有する第1半導体領域に離間して設けられたドレ
インおよびソースとしての第2導電型を有する2つの第
2半導体領域の電位差関係を、書き込みと読み出しとで
逆にするものである。即ち、上記第2半導体領域のうち
書き込み時ドレインとして使用したものを読み出し時に
はソースとして、書き込み時ソースとして使用したもの
は読み出し時ドレインとして使用するものである。以下
、第2図に示したアバランシェ注入型Nチャネル不揮発
性記憶装置を用いてこの発明の詳細な説明する。
In order to achieve such an object, the present invention provides a potential difference between two second semiconductor regions having a second conductivity type, which serve as a drain and a source, which are provided spaced apart from each other in a first semiconductor region having a first conductivity type. The relationship is reversed between writing and reading. That is, the second semiconductor region used as a drain during writing is used as a source during reading, and the second semiconductor region used as a source during writing is used as a drain during reading. The present invention will be described in detail below using the avalanche injection type N-channel nonvolatile memory device shown in FIG.

第2図は、第1図と同様アバランシェ注入型Nチャネル
不揮発性記憶装置を示す断面図であシ、第1図と同一も
しくは対応部分は同一記号を用いて示した。ただ、第2
図において、N 領域(2)の近傍のゲート絶縁膜(4
)を局所的に薄くしであるが、これは、後述するように
上記N 領域(2)をドレインとして行なう書き込み効
率を高め、書き込み電圧を低下させる効果を有する。
FIG. 2 is a cross-sectional view showing an avalanche injection type N-channel nonvolatile memory device similar to FIG. 1, and the same or corresponding parts as in FIG. 1 are indicated using the same symbols. However, the second
In the figure, the gate insulating film (4) near the N region (2)
) is locally thinned, but this has the effect of increasing the writing efficiency in which the N 2 region (2) is used as a drain and lowering the writing voltage, as will be described later.

そこで、上記構成において、書き込みを行なう場合には
、N 領域(2)をドレインとしてその印加電圧■1を
正の高電圧とし、N 領域(3)をソースとして電圧v
2をOもしくはVl>V2となる正の電圧として制御ゲ
ート(6)に正の高電圧を印加する。
Therefore, in the above configuration, when writing, the N region (2) is used as a drain and the applied voltage ■1 is a positive high voltage, and the N region (3) is used as a source and the voltage v
A high positive voltage is applied to the control gate (6) by setting 2 to O or a positive voltage such that Vl>V2.

これにより、ドレインとしてのN 領域(2)とP型半
導体基板(1)との間のPN接合でホットエレクトロン
が発生し、このホットエレクトロンは制御ゲ−) (6
)に加えた高電圧によシグート絶縁膜(4)の電位障壁
を越えて浮遊ゲート(5)に注入蓄積される結果、書き
込みが行なわれることは先に説明したと同様であるが、
ここで、N 領域(2)の近傍のゲート絶縁膜(4)が
局所的に薄くなっているため、第1図の場合に比較して
より低い書き込み電圧でも電界強度は大きく、効率良く
書き込みを行なうことができる。
As a result, hot electrons are generated at the PN junction between the N region (2) as a drain and the P-type semiconductor substrate (1), and these hot electrons are generated by the control gate (6).
) is injected and accumulated in the floating gate (5) over the potential barrier of the Sigut insulating film (4), and as a result, writing is performed as described above.
Here, since the gate insulating film (4) near the N region (2) is locally thinned, the electric field strength is large even at a lower write voltage than in the case of Fig. 1, allowing efficient writing. can be done.

次に、読み出し時には、N 領域(3)をドレインとし
てその印加電圧v2を正の電圧とし、N 領域(2)を
ソースとしてその電圧v1をOvもしくはVl<V2と
なる正の電圧として制御グー)(6)K正の電圧を加え
る。この時、浮遊ゲート(5)の下のP型半導体基板(
1)の表面にチャネルが形成され、ドレインとしてのN
+領領域3)からソースとしてのN+領領域2)へ電流
が流れるか否かにより11′もしくは10′の情報を読
み出すことができるが、この場合、ソースとしてのN 
領域(2)の印加電圧v1ほかなシ低いため、とのN 
領域(2)とP型半導体基板間のPN接合でホットエレ
クトロンが発生する確率は極めて低くなり、非所望の書
き込みは行なわれにくくなる。また、ドレインとしての
N 領域(3)ではN 領域(3)とP型半導体基板(
1)との間のPN接合付近のゲート絶縁膜(4)が比較
的厚くなっているだめ、ホットエレクトロンを注入する
電界が弱く、ここでも非所望の簀き込みは生じにくい。
Next, during reading, the N region (3) is used as a drain and the applied voltage v2 is a positive voltage, and the N region (2) is used as a source and the voltage v1 is controlled as Ov or a positive voltage such that Vl<V2.) (6) Apply K positive voltage. At this time, the P-type semiconductor substrate (
1) A channel is formed on the surface of N
Information on 11' or 10' can be read out depending on whether or not current flows from the + region 3) to the N+ region 2) as the source.
Since the applied voltage v1 and other voltages in region (2) are low, N
The probability that hot electrons will be generated at the PN junction between the region (2) and the P-type semiconductor substrate becomes extremely low, making it difficult to perform undesired writing. In addition, in the N region (3) as a drain, the N region (3) and the P type semiconductor substrate (
Since the gate insulating film (4) in the vicinity of the PN junction between the two electrodes (1) is relatively thick, the electric field for injecting hot electrons is weak, and undesired entrapment is unlikely to occur here as well.

従って、長時間の読み出し動作によっても、従来の場合
に比べて読み出し状態での書き込みによる誤動作は極め
て少なくなる。即ち、従来の場合には、例えば上述した
ようにゲート絶縁膜(4)をN 領域(2)の近傍で薄
<L、N  領域(2)をドレインとして行なう書き込
みの効率を高めた場合、読み出しに際してもとのN 領
域(2)をドレインとして高電圧を印加した場合、電界
強度が大きいために、ホットエレクトロンの注入が比臀
、的答易に生じることとなる。
Therefore, even with a long read operation, malfunctions due to writing in the read state are extremely reduced compared to the conventional case. That is, in the conventional case, for example, as described above, when the gate insulating film (4) is made thin in the vicinity of the N region (2) and the writing efficiency is increased by using the N region (2) as the drain, the read If a high voltage is applied using the original N 2 region (2) as the drain, hot electron injection will easily occur due to the large electric field strength.

なお、曹き込みを行ない易くする方法としては、上述し
たようにゲート絶縁膜を局所的に薄くする方法の他にも
、例えばチャネル部分の不純物イオンのドーピング量を
局所的に多くするなど任意の方法を用いることができる
In addition to the method of locally thinning the gate insulating film as described above, there are other methods to facilitate doping, such as locally increasing the amount of impurity ion doping in the channel region. A method can be used.

また、上述した実施例ではアバランシェ注入型Nチャネ
ル不揮発性記憶装置の場合についてのみ説明したが、本
発明はこれに限定されるものではAく、Pチャネル不揮
発性記憶装置に適用しても同様の効果が得られることは
言うまでもないし、例えばトンネル注入型不揮発性記憶
装置等、他の浮遊ゲート構造の半導体記憶装置に適用し
ても良い0 以上説明したように、本発明によれば、書き込みと読み
出しとでソース・ドレイン関係を逆転することにより、
書き込み電圧を低下させた場合でも、長時間の読み出し
に伴う書き込み動作を有効に防止することが可能となる
ため、誤動作のない商い信頼性を有する記憶装置を得る
ことができるという優れた効果を有する。
Further, in the above-described embodiments, only the case of an avalanche injection type N-channel nonvolatile memory device was explained, but the present invention is not limited to this, and the same effect can be applied even if it is applied to a P-channel nonvolatile memory device. It goes without saying that this effect can be obtained, and it may also be applied to other floating gate structure semiconductor memory devices, such as tunnel injection type non-volatile memory devices.As explained above, according to the present invention, writing and reading By reversing the source-drain relationship with
Even when the write voltage is lowered, it is possible to effectively prevent write operations associated with long-time reading, which has the excellent effect of providing a storage device with no malfunctions and high commercial reliability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の浮遊ゲート型半導体記憶装置の一例を示
す断面図、第2図は本発明の一実施例を説明する浮遊ゲ
ート型半導体記憶装置の断面図である0 (1)・・・・P型半導体基板、(2) 、 (3)・
・・・N領域、(4)・・・・ゲート絶縁膜、(5)・
・・・浮遊ゲート。 代理人 葛野信− 第1図 第2図 特許庁長官殿 ■、事件の表示    特願昭 57−105063号
2、発明の名称 浮遊ゲート型早導体記憶装置における 書き込みおよび読み出し方法 3、補正をする者 事件との関係   特許出願人 代表者片山仁へ部 4、代理人 5、補正の対象 図   面 6、補正の内容 図面の第1図、第2図を別紙の通り補正する。 以上
FIG. 1 is a sectional view showing an example of a conventional floating gate type semiconductor memory device, and FIG. 2 is a sectional view of a floating gate type semiconductor memory device illustrating an embodiment of the present invention.・P-type semiconductor substrate, (2), (3)・
... N region, (4) ... gate insulating film, (5) ...
...Floating gate. Agent Makoto Kuzuno - Fig. 1 Fig. 2 Mr. Commissioner of the Japan Patent Office - Indication of the case Japanese Patent Application No. 57-105063 No. 2 Name of the invention Writing and reading method in a floating gate fast conductor memory device 3 Person making the amendment Relationship to the case Hitoshi Katayama, representative of the patent applicant, Department 4, Agent 5, Drawing subject to amendment 6, Contents of amendment Figures 1 and 2 of the drawings are amended as shown in the attached sheet. that's all

Claims (1)

【特許請求の範囲】[Claims] 第1導電型を有する第1半導体領域と、この第1半導体
領域表面に離間して設けられた第2導電型を有する2つ
の第2半導体領域と、少なくともこれら2つの第2半導
領域間の第1半導体領域上導体領域の一方をドレイン、
他方をソースとして行なうと共に、読み出しは書き込み
時にソースとした方の第2半導体領域をドレイン、他方
をソースとして行なうことを特徴とする浮遊ゲート型半
導体記憶装置における書き込みおよび読み出し方法。
a first semiconductor region having a first conductivity type; two second semiconductor regions having a second conductivity type provided spaced apart on the surface of the first semiconductor region; and at least between these two second semiconductor regions. one of the conductor regions on the first semiconductor region is a drain;
A method for writing and reading in a floating gate semiconductor memory device, characterized in that the other semiconductor region is used as a source, and the second semiconductor region that is used as a source during writing is used as a drain, and the other is used as a source.
JP57105063A 1982-06-16 1982-06-16 Writing and reading out method in floating gate type semiconductor memory device Pending JPS58220465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105063A JPS58220465A (en) 1982-06-16 1982-06-16 Writing and reading out method in floating gate type semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105063A JPS58220465A (en) 1982-06-16 1982-06-16 Writing and reading out method in floating gate type semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS58220465A true JPS58220465A (en) 1983-12-22

Family

ID=14397499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105063A Pending JPS58220465A (en) 1982-06-16 1982-06-16 Writing and reading out method in floating gate type semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS58220465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872058A (en) * 2012-12-10 2014-06-18 精工电子有限公司 Non-volatile memory circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872058A (en) * 2012-12-10 2014-06-18 精工电子有限公司 Non-volatile memory circuit
JP2014116469A (en) * 2012-12-10 2014-06-26 Seiko Instruments Inc Nonvolatile memory circuit
CN103872058B (en) * 2012-12-10 2018-01-23 精工半导体有限公司 Non-volatile memory

Similar Documents

Publication Publication Date Title
JP3358663B2 (en) Semiconductor storage device and storage information reading method thereof
US6777282B2 (en) Method of manufacturing a semiconductor memory device having a memory cell portion including MISFETs with a floating gate and a peripheral circuit portion with MISFETs
US7166508B2 (en) Method for forming nonvolatile memory device including insulating film containing nitrogen (nitride)
JPH0457369A (en) Semiconductor integrated circuit
US4084108A (en) Integrated circuit device
US4019198A (en) Non-volatile semiconductor memory device
CA1124858A (en) Storage element
JPS6262065B2 (en)
JPH06302828A (en) Nonvolatile semiconductor memory device
JP3375087B2 (en) Semiconductor memory device and storage information reading method thereof
GB2225485A (en) A nonvolatile semiconductor memory cell
JPS5878468A (en) Floating gate memory cell
JPS58220465A (en) Writing and reading out method in floating gate type semiconductor memory device
US6891760B2 (en) Method of erasing information in non-volatile semiconductor memory device
US3908182A (en) Non-volatile memory cell
US9966476B2 (en) Semiconductor memory device having first and second floating gates of different polarity
JPH084114B2 (en) Semiconductor non-volatile RAM
JP3186209B2 (en) How to use semiconductor devices
JP2556885B2 (en) Semiconductor device
JPS5958868A (en) Semiconductor non-volatile memory
JP2964412B2 (en) Non-volatile memory
JPH0451072B2 (en)
JPH0340956B2 (en)
JPH0722194B2 (en) Non-volatile memory
JPS6129177A (en) Semiconductor nonvolatile memory