JPH0722194B2 - Non-volatile memory - Google Patents

Non-volatile memory

Info

Publication number
JPH0722194B2
JPH0722194B2 JP59154788A JP15478884A JPH0722194B2 JP H0722194 B2 JPH0722194 B2 JP H0722194B2 JP 59154788 A JP59154788 A JP 59154788A JP 15478884 A JP15478884 A JP 15478884A JP H0722194 B2 JPH0722194 B2 JP H0722194B2
Authority
JP
Japan
Prior art keywords
gate electrode
region
floating gate
insulating film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59154788A
Other languages
Japanese (ja)
Other versions
JPS6132478A (en
Inventor
豊 林
昌明 神谷
芳和 小島
Original Assignee
工業技術院長
セイコ−電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, セイコ−電子工業株式会社 filed Critical 工業技術院長
Priority to JP59154788A priority Critical patent/JPH0722194B2/en
Publication of JPS6132478A publication Critical patent/JPS6132478A/en
Publication of JPH0722194B2 publication Critical patent/JPH0722194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は、MOS(Metal−Oxide−Semiconductor)構造を
有する浮遊ゲート型不揮発性半導体メモリに関する。
The present invention relates to a floating gate nonvolatile semiconductor memory having a MOS (Metal-Oxide-Semiconductor) structure.

従来、浮遊ゲート電極を有する不揮発性メモリにおい
て、浮遊ゲートに書き込まれた情報(電荷)の読み出し
動作時に不揮発性メモリのドレインに読み出し電圧を印
加すると、ドレイン領域と浮遊ゲート電極間の電圧によ
り絶縁膜を通して浮遊ゲート電極から電荷が流出して不
揮発性メモリの記憶保持特性を劣化させることがあつ
た。特に不揮発性メモリデバイスの微細化や、プログラ
ム電圧の低電圧化の進行によつて浮遊ゲート電極下の絶
縁膜が、トンネル効果によりトンネル電流が流れる、い
わゆるトンネル絶縁膜の程度に膜厚が薄くなるに従い、
読み出し時の電荷流出の危険度は増大する。また不揮発
性メモリのドレインに外部から静電気等に起因するサー
ジ電圧がかかつた場合にも、容易に浮遊ゲート電極から
の電荷の流出が起るという欠点を有していた。
Conventionally, in a non-volatile memory having a floating gate electrode, when a read voltage is applied to the drain of the non-volatile memory during a read operation of information (charge) written in the floating gate, the insulating film is formed by the voltage between the drain region and the floating gate electrode. Therefore, the charge may flow out from the floating gate electrode to deteriorate the memory retention characteristic of the nonvolatile memory. In particular, due to miniaturization of non-volatile memory devices and progress of lowering of program voltage, the insulating film under the floating gate electrode becomes thin as thin as a so-called tunnel insulating film in which a tunnel current flows due to a tunnel effect. in accordance with,
The risk of charge leakage during reading increases. Further, even if a surge voltage due to static electricity or the like is applied to the drain of the non-volatile memory from the outside, there is a drawback that the charge easily flows out from the floating gate electrode.

本発明は、前述のような欠点を克服するためになされた
ものであり、ドレイン領域に電圧が印加されても浮遊ゲ
ート電極からの電荷流出の起りにくい構造を有する不揮
発性メモリを提供するものである。
The present invention has been made to overcome the above-mentioned drawbacks, and provides a non-volatile memory having a structure in which charges are less likely to flow out from a floating gate electrode even when a voltage is applied to a drain region. is there.

以下、本発明の実施例について第1図から第3図を用い
て詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3.

第1図に本発明を不揮発性メモリに応用した一実施例の
断面図を示す。第1図において1はP型基板、読出し時
において2はソース領域、3はドレイン領域、即ち読出
し領域として動作する領域であり、5は浮遊ゲート電
極、6は制御ゲート電極、7は絶縁膜である。以下2及
び3はメモリの読み出し時を基準とした名称を用いる。
20及び30はそれぞれソース領域2及びドレイン領域3の
取り出し電極である。ソース領域2及びドレイン領域3
は共に高濃度のn型不純物領域により形成されるが、ド
レイン領域3の浮遊ゲート電極5の下にあたる部分は低
濃度のn型不純物領域35が形成されている。この低濃度
のn型不純物領域35を除けば、第1図は一般に良く知ら
れたチヤンネル注入型の不揮発性メモリと同じである。
浮遊ゲート電極5に電子を注入する場合(以下プログラ
ムと称す)に、制御ゲート電極6及びドレイン領域3に
印加すべき最低電圧は絶縁膜7の膜厚が薄い程低くする
ことができる。プログラムに必要な電圧を低減する上で
ばかりでなく、不揮発性メモリを微細化していく時に短
チヤンネル効果等の寄生効果を減少するためにも絶縁膜
7を薄くする必要がある。これらの理由で浮遊ゲート電
極5の下の絶縁膜7が薄くなりトンネル絶縁膜程度にな
ると、一般にチヤンネル注入型の不揮発性メモリでは、
読み出し動作時にドレイン領域3と浮遊ゲート電極5と
の間の電圧差により絶縁膜7を通して浮遊ゲート電極5
からの電子の流出の起る危険性が高くなる。特に浮遊ゲ
ート電極5に電子が多く注入されて浮遊ゲート電極5が
負に帯電しており、浮遊ゲート下のチヤンネルが非導通
になつている場合には、読み出しの為ドレイン領域3に
は読み出し電圧がそのまま印加されて負に帯電した浮遊
ゲート電極との間に大きな電圧差が生じ、浮遊ゲートか
らの電子の流出の可能性は極めて高くなる。このような
電子の流出はたとえわずかであつても、不揮発性メモリ
を長期に渡つて使用する上で記憶保持特性に重大な影響
を与えることになる。しかし本発明に基づく第1図の不
揮発性メモリにおいては、ドレイン領域3の浮遊ゲート
電極5の下にあたる部分は低濃度不純物領域35が設けら
れている為、浮遊ゲート電極5が負に帯電し、ドレイン
領域3に正の電圧が印加されている状態でのドレイン領
域3と浮遊ゲート電極5の間の電圧は低濃度不純物領域
35の表面部分の空乏層に吸収され、直接絶縁膜7にかか
る電圧は軽減される。
FIG. 1 shows a sectional view of an embodiment in which the present invention is applied to a nonvolatile memory. In FIG. 1, 1 is a P-type substrate, 2 is a source region during reading, 3 is a drain region, that is, a region that operates as a reading region, 5 is a floating gate electrode, 6 is a control gate electrode, and 7 is an insulating film. is there. In the following 2 and 3, the names based on the time of reading the memory are used.
Reference numerals 20 and 30 denote extraction electrodes for the source region 2 and the drain region 3, respectively. Source region 2 and drain region 3
Are both formed of high-concentration n-type impurity regions, but a low-concentration n-type impurity region 35 is formed in the portion of the drain region 3 below the floating gate electrode 5. Except for the low-concentration n-type impurity region 35, FIG. 1 is the same as the well-known channel-implanted nonvolatile memory.
When electrons are injected into the floating gate electrode 5 (hereinafter referred to as a program), the minimum voltage to be applied to the control gate electrode 6 and the drain region 3 can be lowered as the thickness of the insulating film 7 becomes thinner. The insulating film 7 must be thinned not only to reduce the voltage required for programming, but also to reduce parasitic effects such as the short channel effect when the nonvolatile memory is miniaturized. For these reasons, when the insulating film 7 under the floating gate electrode 5 becomes thin and becomes about a tunnel insulating film, generally in a channel injection type non-volatile memory,
During the read operation, the voltage difference between the drain region 3 and the floating gate electrode 5 causes the floating gate electrode 5 to pass through the insulating film 7.
The risk of electron outflow from is increased. Particularly, when a large number of electrons are injected into the floating gate electrode 5 and the floating gate electrode 5 is negatively charged, and the channel under the floating gate is non-conducting, the read voltage is applied to the drain region 3 for reading. Is applied as it is, and a large voltage difference is generated between the floating gate electrode and the floating gate electrode which is negatively charged, and the possibility of outflow of electrons from the floating gate becomes extremely high. Even if such an electron outflow is slight, it will seriously affect the memory retention characteristics when the nonvolatile memory is used for a long period of time. However, in the nonvolatile memory of FIG. 1 according to the present invention, since the low concentration impurity region 35 is provided in the portion of the drain region 3 below the floating gate electrode 5, the floating gate electrode 5 is negatively charged, When a positive voltage is applied to the drain region 3, the voltage between the drain region 3 and the floating gate electrode 5 is a low concentration impurity region.
The depletion layer on the surface of 35 absorbs the voltage, and the voltage directly applied to the insulating film 7 is reduced.

第2図(a)及び(b)に浮遊ゲート電極下のドレイン
領域に低濃度不純物領域35がある場合とない場合のポテ
ンシヤルエネルギー分布を示す。なお、図中CとVはそ
れぞれ伝導帯及び価電子帯のバンドエツジを示す。第2
図(a)は本発明にもとづく低濃度不純物領域35がある
場合のポテンシヤルエネルギー図であり、低濃度不純物
領域35の空乏層に大くの電圧が印加されて、絶縁膜7に
は比較的小さな電圧が印加されているだけである。一方
従来では、第2図(b)に示すように低濃度不純物領域
32のかわりに高濃度不純物のドレイン領域3があり、ド
レイン,浮遊ゲート間の電位差は殆んど全て絶縁物7に
印加されることになり、その絶縁物の膜厚がトンネル電
流が流れる程度に薄くなった場合、すなわちトンネル絶
縁膜の膜厚程度になった場合、浮遊ゲートから電子がト
ンネル効果等により流出しやすい状態となる。従つて、
低濃度不純物領域35の不純物濃度は縮退濃度以下でない
と絶縁膜7にかかる電圧の低減効果は少ない。
FIGS. 2A and 2B show potential energy distributions with and without the low-concentration impurity region 35 in the drain region below the floating gate electrode. In the figure, C and V indicate band edges of the conduction band and the valence band, respectively. Second
FIG. 10A is a potential energy diagram in the case where the low concentration impurity region 35 according to the present invention is present. A large voltage is applied to the depletion layer of the low concentration impurity region 35, and the insulating film 7 is relatively small. Only voltage is applied. On the other hand, in the conventional case, as shown in FIG.
There is a high-concentration impurity drain region 3 instead of 32, and almost all the potential difference between the drain and the floating gate is applied to the insulator 7, and the thickness of the insulator is such that a tunnel current flows. When the thickness is reduced, that is, when the thickness is about the thickness of the tunnel insulating film, electrons easily flow out from the floating gate due to the tunnel effect or the like. Therefore,
If the impurity concentration of the low concentration impurity region 35 is not less than the degenerate concentration, the effect of reducing the voltage applied to the insulating film 7 is small.

以上説明したように第1図の低濃度領域35により、読み
出し動作に対し、優れた記憶保持特性を有する不揮発性
メモリが得られる。しかしこの低濃度不純物領域35は第
1図のチヤンネル注入型不揮発性メモリのプログラム電
圧を高くするという欠点もある。これは低濃度不純物領
域がプログラム時にホツトエレクトロンを発生するドレ
イン近傍の空乏層中の電位勾配をゆるくしてしまう為で
ある。この問題を回避するには、プログラム時において
はドレイン領域3側を接地してソース領域2にプログラ
ム電圧を印加するような回路的工夫を必要とする。
As described above, the low-concentration region 35 of FIG. 1 makes it possible to obtain a non-volatile memory having excellent memory retention characteristics for read operations. However, this low-concentration impurity region 35 has a drawback that it increases the program voltage of the channel-implanted nonvolatile memory shown in FIG. This is because the low-concentration impurity region loosens the potential gradient in the depletion layer near the drain that generates photoelectrons during programming. In order to avoid this problem, it is necessary to devise a circuit so that the drain region 3 side is grounded and a program voltage is applied to the source region 2 during programming.

第3図に本発明を適用することにより前記問題を生じな
い他の実施例を示す。第1図との唯一の相違点は選択ゲ
ート電極4がソース領域2と浮遊ゲート電極5の間に挿
入されていることである。本構造の不揮発性メモリにお
いては、プログラムに必要なホツトエレクトロンの発生
はドレイン領域3の近傍の空乏層中ではなく、選択ゲー
ト電極4で作られるチヤンネルから浮遊ゲート電極5で
作られるチヤンネルへの遷移点近傍で起るため、低濃度
不純物領域35の存在がプログラム電圧に影響を与えるこ
とはない。このプログラム方式によるホツトエレクトロ
ンの発生は、ソース領域を基板1に接地した状態で選択
ゲート電極4に選択ゲートのしきい値近傍の電圧を与
え、制御ゲート電極6及びドレインに正の電圧を与える
ことで可能となる。プログラムに必要な制御ゲート電極
6及びドレイン領域3に印加すべき最低電圧は絶縁膜7
の膜厚を薄くする程低くすることができる。又微細化す
るためにも第1図の不揮発性メモリと同様の理由で絶縁
膜7を薄くする必要がある。本構造の不揮発性メモリで
の浮遊ゲート電極5の帯電状態の読み出しは、選択ゲー
ト電極4に充分高い電圧を与えて選択ゲート下のチヤン
ネルを導通させ、制御ゲート電極7をソース領域2とと
もに基板7に接地した時の浮遊ゲート電極5の下のチヤ
ンネルの導通状態をドレイン領域3に検出電圧を印加し
て行なう。従つて浮遊ゲート電極5の下の絶縁膜7が薄
くなると低濃度不純物領域35の無い場合、読み出し時に
浮遊ゲート電極5から電荷の流出の危険度が増大する。
しかしながら低濃度不純物領域35の有る場合、浮遊ゲー
ト電極5から電荷流出の起りにくい安定した特性を期待
できるのは第1図の説明と同様である。
FIG. 3 shows another embodiment in which the above problem does not occur by applying the present invention. The only difference from FIG. 1 is that the select gate electrode 4 is inserted between the source region 2 and the floating gate electrode 5. In the nonvolatile memory of this structure, the generation of photoelectrons necessary for programming is not in the depletion layer near the drain region 3 but in the transition from the channel formed by the select gate electrode 4 to the channel formed by the floating gate electrode 5. Since it occurs near the point, the existence of the low concentration impurity region 35 does not affect the program voltage. To generate photoelectrons by this programming method, a voltage near the threshold of the select gate is applied to the select gate electrode 4 and a positive voltage is applied to the control gate electrode 6 and the drain with the source region grounded to the substrate 1. It becomes possible with. The minimum voltage to be applied to the control gate electrode 6 and the drain region 3 necessary for programming is the insulating film 7.
The film thickness can be reduced as the film thickness is reduced. In order to miniaturize, it is necessary to make the insulating film 7 thin for the same reason as in the nonvolatile memory of FIG. To read the charged state of the floating gate electrode 5 in the nonvolatile memory of this structure, a sufficiently high voltage is applied to the selection gate electrode 4 to make the channel under the selection gate conductive, and the control gate electrode 7 together with the source region 2 on the substrate 7 are connected. The conduction state of the channel under the floating gate electrode 5 when it is grounded is performed by applying a detection voltage to the drain region 3. Therefore, when the insulating film 7 under the floating gate electrode 5 is thinned, the risk of the outflow of charges from the floating gate electrode 5 at the time of reading increases if the low concentration impurity region 35 is not provided.
However, in the case where the low-concentration impurity region 35 is provided, stable characteristics in which the outflow of charges from the floating gate electrode 5 is unlikely to occur can be expected as in the description of FIG.

以上説明してきたように本発明によれば繰り返しの読み
出し動作に対し記憶保持特性に優れた不揮発性メモリを
提供することができる。また外部から不意のサージ電圧
がドレイン領域にもれてきた場合にも、浮遊ゲート電極
に蓄積されたデータ破壊の起りにくい不揮発性半導体メ
モリを提供することが可能となる。
As described above, according to the present invention, it is possible to provide a non-volatile memory having excellent memory retention characteristics with respect to repeated read operations. Further, even when an unexpected surge voltage leaks to the drain region from the outside, it is possible to provide a nonvolatile semiconductor memory in which data accumulated in the floating gate electrode is less likely to be destroyed.

なお、発明の詳細な説明を通じて不揮発性メモリが形成
される半導体領域として半導体基板を用いて説明してき
たが、この半導体領域は半導体基板中に設けられたウエ
ル領域や絶縁基板上に作られた島状の半導体領域でよい
ことはいうまでもない。また、浮遊ゲート電極の電位を
制御する制御ゲート電極が付いている不揮発性メモリを
例に取つたが、この制御ゲート電極がないものについて
も、本発明の適用して同様の効果が得られることはもち
ろんである。
Although the semiconductor substrate has been described as the semiconductor region in which the nonvolatile memory is formed through the detailed description of the invention, this semiconductor region is a well region provided in the semiconductor substrate or an island formed on the insulating substrate. Needless to say, a semiconductor region having a rectangular shape is sufficient. In addition, although a non-volatile memory having a control gate electrode for controlling the potential of the floating gate electrode is taken as an example, the same effect can be obtained by applying the present invention to a memory without this control gate electrode. Of course.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の不揮発性半導体メモリセルの一実施例
の断面図、第2図(a)は本発明に基づく不揮発性メモ
リデバイスの浮遊ゲートからドレイン領域にかけてのポ
テンシヤル分布図、第2図(b)は従来のメモリデバイ
スの浮遊ゲートからドレイン領域にかけてのポテンシヤ
ル分布図である。 第3図は、本発明の不揮発性半導体メモリセルの他の実
施例の断面図である。 1…P型半導体基板 2…高不純物濃度のソース領域 3…高不純物濃度のドレイン領域(読出し領域) 4…選択ゲート電極 5…浮遊ゲート電極 6…制御ゲート電極 7…絶縁膜 35…低不純物濃度のドレイン領域(読出し領域)
FIG. 1 is a sectional view of an embodiment of a nonvolatile semiconductor memory cell of the present invention, and FIG. 2 (a) is a potential distribution diagram from a floating gate to a drain region of a nonvolatile memory device according to the present invention, FIG. (B) is a potential distribution diagram from the floating gate to the drain region of the conventional memory device. FIG. 3 is a sectional view of another embodiment of the nonvolatile semiconductor memory cell of the present invention. DESCRIPTION OF SYMBOLS 1 ... P-type semiconductor substrate 2 ... High impurity concentration source region 3 ... High impurity concentration drain region (readout region) 4 ... Select gate electrode 5 ... Floating gate electrode 6 ... Control gate electrode 7 ... Insulating film 35 ... Low impurity concentration Drain region (readout region)

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/092 29/78 8934−4M H01L 27/08 321 E (72)発明者 神谷 昌明 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 (72)発明者 小島 芳和 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 (56)参考文献 特開 昭56−104473(JP,A)Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01L 27/092 29/78 8934-4M H01L 27/08 321 E (72) Inventor Masaaki Kamiya Kameido, Koto-ku, Tokyo 6-31-1 Seiko Electronics Co., Ltd. (72) Inventor Yoshikazu Kojima 6-3-11-1 Kameido, Koto-ku, Tokyo Seiko Electronics Co., Ltd. (56) Reference JP-A-56-104473 ( JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体領域と、前記半導体領
域表面部分に設けられた前記第1導電型と異なる第2導
電型の読出し領域と、前記半導体領域及び前記読出し領
域上にトンネル絶縁膜を介して設けられた浮遊ゲート電
極とから成り、前記トンネル絶縁膜を介して前記浮遊ゲ
ート電極と重なる前記読出し領域の表面部分は、前記浮
遊ゲート電極内に注入された電子によって空乏化する第
2導電型の低不純物濃度領域により形成されていること
を特徴とする不揮発性メモリ。
1. A semiconductor region of a first conductivity type, a read-out region of a second conductivity type different from the first conductivity type provided in a surface portion of the semiconductor region, and a tunnel insulation on the semiconductor region and the read-out region. A floating gate electrode provided via a film, and a surface portion of the read region which overlaps the floating gate electrode via the tunnel insulating film is depleted by electrons injected into the floating gate electrode. A non-volatile memory formed by a low-concentration region of two conductivity type.
【請求項2】前記低濃度不純物領域の不純物濃度が縮退
濃度より低いことを特徴とする特許請求の範囲第1項記
載の不揮発性メモリ。
2. The nonvolatile memory according to claim 1, wherein the impurity concentration of the low concentration impurity region is lower than the degenerate concentration.
【請求項3】前記半導体領域表面部分に前記読出し領域
から離れて第2導電型のソース領域を設けると共に、前
記浮遊ゲート電極と前記ソース領域とによってはさまれ
た前記半導体領域表面上に絶縁膜を介して選択ゲート電
極を設けたことを特徴とする特許請求の範囲第1項記載
の不揮発性メモリ。
3. A source region of the second conductivity type is provided on the surface of the semiconductor region away from the read region, and an insulating film is provided on the surface of the semiconductor region sandwiched by the floating gate electrode and the source region. The non-volatile memory according to claim 1, wherein a selection gate electrode is provided via the.
JP59154788A 1984-07-24 1984-07-24 Non-volatile memory Expired - Lifetime JPH0722194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154788A JPH0722194B2 (en) 1984-07-24 1984-07-24 Non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154788A JPH0722194B2 (en) 1984-07-24 1984-07-24 Non-volatile memory

Publications (2)

Publication Number Publication Date
JPS6132478A JPS6132478A (en) 1986-02-15
JPH0722194B2 true JPH0722194B2 (en) 1995-03-08

Family

ID=15591908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154788A Expired - Lifetime JPH0722194B2 (en) 1984-07-24 1984-07-24 Non-volatile memory

Country Status (1)

Country Link
JP (1) JPH0722194B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059442B2 (en) * 1988-11-09 2000-07-04 株式会社日立製作所 Semiconductor storage device
JP3069607B2 (en) * 1988-10-25 2000-07-24 セイコーインスツルメンツ株式会社 Operating method of semiconductor nonvolatile memory
JP3522788B2 (en) * 1992-10-29 2004-04-26 株式会社ルネサステクノロジ Semiconductor integrated circuit device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104473A (en) * 1980-01-25 1981-08-20 Hitachi Ltd Semiconductor memory device and manufacture thereof

Also Published As

Publication number Publication date
JPS6132478A (en) 1986-02-15

Similar Documents

Publication Publication Date Title
US5300802A (en) Semiconductor integrated circuit device having single-element type non-volatile memory elements
US5172200A (en) MOS memory device having a LDD structure and a visor-like insulating layer
KR930008024B1 (en) Semiconductor memory device
US4622656A (en) Non-volatile semiconductor memory
JPH05110114A (en) Nonvolatile semiconductor memory device
US4665418A (en) Semiconductor memory device
JP2817393B2 (en) Method for manufacturing semiconductor memory device
JPS59500343A (en) Electrically Modifiable Nonvolatile Floating Gate Storage Device
JPH07202196A (en) Transistor of static discharge erasure circuit and its manufacture
JPH0464186B2 (en)
JPH0722194B2 (en) Non-volatile memory
JPS6057673A (en) Mos type semiconductor device
JP3069607B2 (en) Operating method of semiconductor nonvolatile memory
JP2643860B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US5838616A (en) Gate edge aligned EEPROM transistor
JP2797466B2 (en) Nonvolatile semiconductor memory device
JPS60182777A (en) Nonvolatile semiconductor memory
JP2686450B2 (en) Semiconductor non-volatile memory
JP2631499B2 (en) Semiconductor nonvolatile memory
JPH0260170A (en) Semiconductor non-volatile memory
JPH07183410A (en) Nonvolatile semiconductor memory device
JP3424898B2 (en) Rewriting method for nonvolatile semiconductor memory device
KR940004272B1 (en) Eprom and manufacturing method thereof
JPH0430755B2 (en)
JPS58220465A (en) Writing and reading out method in floating gate type semiconductor memory device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term