JPS58220359A - Manufacture of plate for battery - Google Patents

Manufacture of plate for battery

Info

Publication number
JPS58220359A
JPS58220359A JP57105075A JP10507582A JPS58220359A JP S58220359 A JPS58220359 A JP S58220359A JP 57105075 A JP57105075 A JP 57105075A JP 10507582 A JP10507582 A JP 10507582A JP S58220359 A JPS58220359 A JP S58220359A
Authority
JP
Japan
Prior art keywords
powder
active material
packed
base plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57105075A
Other languages
Japanese (ja)
Inventor
Makoto Kanbayashi
誠 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57105075A priority Critical patent/JPS58220359A/en
Publication of JPS58220359A publication Critical patent/JPS58220359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To simplify the manufacturing process and shorten the manufacturing time of a plate for a battery, and realize a homogeneous high-density packing of an active material powder by introducing a base plate made of a foamy porous metallic body into a packing container which is packed with the active material powder, then giving vibrations to the base body so as to enable a sufficient amount of the active material powder to be packed into the holes of the base plate. CONSTITUTION:A base plate 1 is made of a foamy porous nickel body having a thickness of 1.8mm., a porosity of 96% and continuous holes with diameters of 100-500mu. The symbol 2 represents a packing container, which is packed with a mixture powder 3 consisting of 95 parts nickel hydroxide powder passed through a sieve of 200 mesh and 5 parts cobalt metal powder. A vibrator 4 installed at the bottom of the container 2 gives vibrations of 100Hz frequency and 1mm. amplitude for 30sec, to the base plate 1 which is positioned in the container 2. The volume of water 6 sprayed by a sprayer 6, should be 20vol% of the apparent volume of powder packed in the base plate 1. The particles of the packed powder are bound together by means of a polyethylene powder spreader 12 and a hot pressser 13.

Description

【発明の詳細な説明】 、技術分野 本発明は電池用電極板の製造方法に関する。[Detailed description of the invention] ,Technical field The present invention relates to a method of manufacturing an electrode plate for a battery.

背景技術 たとえばアルカリ蓄電池に用いられているニッケル陽極
板は主として焼結式法にて作成されている。この方法に
よれば、機械的強度に優れると共に高率放電特性あるい
はサイクル寿命の面でも優れた性能を示すことが知られ
ているが、製造工程が複雑であると共に製造に長時間を
要するという問題がある。
Background Art For example, nickel anode plates used in alkaline storage batteries are mainly produced by a sintering method. This method is known to have excellent mechanical strength, as well as excellent performance in terms of high rate discharge characteristics and cycle life, but the problem is that the manufacturing process is complicated and it takes a long time. There is.

このような製法上の問題を解消する製造方法として、パ
ンチング板等の極板芯体に活物質ペーストを塗着・乾燥
させるという方法も知られているが、性能の面で焼結式
極板に比して数段劣っている0 而して、近年に至って三次元的に連続した空孔を有する
フオーム状金属多孔体を基板とし、この基板に活物質を
保持させる製造方法が提案され、それによれば、製造工
程が簡単であり、製造時間も短かく、更に性能も焼結式
極板と同等か一部はそれを上回るものであることが確認
されている。
As a manufacturing method that solves these manufacturing problems, there is a known method of applying and drying an active material paste to the core of an electrode plate such as a punched plate, but in terms of performance, sintered electrode plates are not suitable. However, in recent years, a manufacturing method has been proposed in which a foam-like porous metal body having three-dimensionally continuous pores is used as a substrate and an active material is held on this substrate. According to this report, it has been confirmed that the manufacturing process is simple, the manufacturing time is short, and the performance is equivalent to or in some cases superior to that of sintered electrode plates.

この製造方法の具体例をニッケル陽極板の場合を例にと
り説明すると、水酸化ニッケル粉末と導電剤粉末との混
合粉末に糊料液を加えてペースト状とし、このペースト
をフオーム状ニッケル多孔体の孔中に択械的方法で摺り
込んだり、超音波振動又は真智脱気などにより導入し、
乾燥後加圧して完成極板とするかあるいは加圧後、活物
質の脱落を防止するために基板表面にポリテトラフルオ
ロエチレンの懸濁液を含浸し乾燥して完成極板とするも
のである。このようにこの製造方法は従来の焼結式法に
比べ、簡略化されているが、十分に合理化された製造方
法とは云えず、またベースト状活物質を基板の細孔内に
充填する工程においても均−高密度に充填することが難
しい。
A specific example of this manufacturing method is explained using the case of a nickel anode plate as an example. A paste liquid is added to a mixed powder of nickel hydroxide powder and conductive agent powder to form a paste. By sliding it into the hole using a selective mechanical method, or introducing it by ultrasonic vibration or Machi degassing,
After drying, pressure is applied to form the completed electrode plate, or after pressurization, the substrate surface is impregnated with a suspension of polytetrafluoroethylene to prevent the active material from falling off, and then dried to form the completed electrode plate. . Although this manufacturing method is simpler than the conventional sintering method, it cannot be said to be a fully streamlined manufacturing method, and the process of filling the base-like active material into the pores of the substrate is difficult. However, it is difficult to pack evenly and densely.

発明の開示 本発明はかかる点に鑑み発明されたものであり、三次元
的に連続した空孔を有するフオーム状金属多孔体を基板
とする電極板の製造方法であり、その要旨とするところ
は、三次元的に連続した空孔を有するフオーム状金属多
孔体よりなる基板の孔内に、活物質粉末を振動を与えつ
つ充填した後、液体を付加して活物質粉末の脱落を防止
するようにしたことを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention was invented in view of the above points, and is a method for manufacturing an electrode plate using a foam-like porous metal body having three-dimensionally continuous pores as a substrate. After filling the pores of a substrate made of a foam metal porous body with three-dimensionally continuous pores with active material powder while applying vibration, a liquid is added to prevent the active material powder from falling off. It is characterized by the following.

本発明者は柚々の笑験検討の結果、フオーム状金属多孔
体よりなる基板を、活物質粉禾會充填した充填槽内に導
入し、振動を加えることにより、十分な1の活物質粉末
を基板の孔内に充填できる11′1・ ことを確認した。この充填時に振動数、振巾及び振動時
間を神々変化させ、光填饋に与える影響を調査した結果
を第1表に示す〇 第  1  表 体は孔径100〜200μ、厚さ1.2rxms多孔度
94%のものであり、充填量は基板の9孔体積当りの水
酸化ニッケル粉末(XP−均粒子径10μ以下)の光:
!Jl蓋を示す。又、振動時間は全て1分間とした。
As a result of numerous experimental studies, the present inventor introduced a substrate made of a foam-like metal porous body into a filling tank filled with active material powder, and by applying vibration, It was confirmed that 11'1. can be filled into the holes of the substrate. Table 1 shows the results of investigating the effect of varying the vibration frequency, amplitude, and vibration time on the light filling during filling. 94%, and the filling amount is the light of nickel hydroxide powder (XP-average particle size 10μ or less) per 9-hole volume of the substrate:
! Jl lid shown. Moreover, the vibration time was all set to 1 minute.

尚、振動を与えた時、その物質が受ける加速度Gは片振
幅(u→aと振動数(H2) fの関係で下式のように
定義される。
Incidentally, when vibration is applied, the acceleration G that the substance receives is defined by the relationship between the half amplitude (u→a and the frequency (H2) f) as shown in the following equation.

G=41af!X 10−’ ここで4π2は定数であるから、加速度は振幅及び振動
数の2乗の積に比例する。
G=41af! X 10-' Here, 4π2 is a constant, so the acceleration is proportional to the product of the amplitude and the square of the frequency.

第1表から明らかなように振動数が100Hz以上、又
振幅は100H2で0.5寵以上、200 Hzで0゜
08mIn以上、4DDH2で0.0’hxm以上、即
ちaf2の値が1600以上であわば高い光衛鈑が得ら
れることがわかる。
As is clear from Table 1, the frequency is 100 Hz or more, the amplitude is 0.5 mm or more for 100 H2, 0°08 mIn or more for 200 Hz, and 0.0'hxm or more for 4DDH2, that is, the af2 value is 1600 or more. It can be seen that a high-quality Koei plate can be obtained.

又この第1表に示した値は全て厚さ方間のみに振動を与
えた場合であるが、これに基板と平行の方間の振動を加
えた場合には更に効率よく充填できた。但し平行方向の
みの振動では厚み方間のみの振動に比して充填量は20
〜60多少なかった。
Furthermore, all the values shown in Table 1 are for the case where vibration is applied only in the thickness direction, but even more efficient filling was achieved when vibration was added in the direction parallel to the substrate. However, in the case of vibration only in the parallel direction, the filling amount is 20% compared to the vibration only in the thickness direction.
It was around 60.

このように活物質粉末を充填した基板を充填槽から取出
し、基板表面に付着した過剰の活物質粉末を除去した体
、液体を基板表面に付加することにより活物質粉末の脱
落を防止する。液体の付加としては、霧状にして吹きつ
けてもよいし、又は塗布するようにしてもよい。また液
体の種類は基板及び活物質粉末に変質を起させないもの
、たとえば水、アルコール類を用いる。液体の付加量は
基板の充填された活物質粉末の見掛は体積に対し、5−
40愛、好ましくFi8〜60優である。
The substrate filled with the active material powder in this manner is taken out from the filling tank, and a liquid from which excess active material powder adhering to the substrate surface has been removed is added to the substrate surface to prevent the active material powder from falling off. The liquid may be added by spraying it in the form of a mist or by coating it. Furthermore, the type of liquid used is one that does not cause deterioration of the substrate and active material powder, such as water or alcohol. The amount of liquid added is 5-5% relative to the apparent volume of the active material powder filled in the substrate.
40 love, preferably Fi 8-60 excellent.

電極板としては、しかる後必要に応じて乾燥あるいはプ
レスにより脱液を行い、加圧圧縮し、さらに結着剤を基
体表面に付加して電極板を完成するO このように本発明による製造方法は、従来の製造方法に
比べ、製造工程の簡略化及び製造時間の短縮化を図るこ
とができると共に活物質粉末の充填の高密度均一化を図
ることができる。
After that, the electrode plate is prepared by removing liquid by drying or pressing as necessary, compressing it under pressure, and then adding a binder to the surface of the substrate to complete the electrode plate. In this way, the manufacturing method according to the present invention Compared to conventional manufacturing methods, the manufacturing process can be simplified and the manufacturing time can be shortened, and the active material powder can be filled with high density and uniformity.

実施例 本発明の実施例をアルカリ蓄電池用ニッケル陽極板の場
合を例にと9、第1図に示す製造工程図に基いて親切す
る。(1)は基板であり、孔径1oト500μの連続空
孔を有し、厚さ1.8寵、多孔度96%を有するフオー
ム状ニッケル多孔体よりなる。(2)は充填槽であり、
200メツシーの篩を通した水酸化ニッケル粉末95部
及び金属コバルト粉末5部からなる混合粉末(3)が充
填されている。(4)は充填槽(2)の底に配置した振
動器であり、充ti4槽(2)内に位置する基板(1)
に対し、振動数100Hz、振巾1mmの振動を30秒
間加える。(5)は水(6)を霧状に吹き付ける吹付器
であり、その吹付量は基板(1)に充填された粉末の見
掛は体積の20体積%索である。(7)口α口Oは加圧
用ローラで、基板(1)を加圧圧縮する。
EXAMPLE 9 An example of the present invention will be described based on the manufacturing process diagram shown in FIG. 1, taking the case of a nickel anode plate for an alkaline storage battery as an example. (1) is a substrate, which is made of a foam-like porous nickel material having continuous pores with a pore diameter of 100 μm and a thickness of 1.8 μm and a porosity of 96%. (2) is a filling tank;
A mixed powder (3) consisting of 95 parts of nickel hydroxide powder and 5 parts of metallic cobalt powder passed through a 200 mesh sieve is filled. (4) is a vibrator placed at the bottom of the filling tank (2), and the substrate (1) located in the filling tank (2).
To this, vibration with a frequency of 100 Hz and a width of 1 mm is applied for 30 seconds. (5) is a sprayer that sprays water (6) in the form of a mist, and the spray amount is 20% by volume of the apparent volume of the powder filled in the substrate (1). (7) Port α Port O is a pressure roller that presses and compresses the substrate (1).

(1111ullは樹脂シート巻取用ローラである。a
21はポリエチレン粉末の散布器、[131はホットプ
レス器であり、充填粉末の粒子同志の結着を行う。圓は
極板巻取ローラである。このローラ圓に巻取られた完成
極板における活物質の充填密度は2.1〜2,294.
pである。
(1111ull is a resin sheet winding roller.a
21 is a polyethylene powder scatterer, and 131 is a hot press, which binds the particles of the filling powder together. The circle is the plate winding roller. The packing density of the active material in the completed electrode plate wound around this roller circle is 2.1 to 2,294.
It is p.

この完成極板を、従来の焼結式のものと比較するため、
50X30miの矩形に切断し、対極に同一のカドミウ
ム極を用い、苛性カリ溶液中で放電電流’/iooで%
:池容量を測定した。第2図はその放電特性であり、本
発明による電池特性(A)は焼結式の電池特性(BI 
K比べ約10q6大容量である。また体積エネルギ密度
においても、焼結式の電池が420mAH7゜。7′あ
石に対し、本発明を適用した電池は46重mAIH/。
In order to compare this completed electrode plate with the conventional sintered type,
Cut into a rectangle of 50 x 30 mi, use the same cadmium electrode as the counter electrode, and discharge in a caustic potash solution with a discharge current of '/ioo%.
: Pond capacity was measured. Figure 2 shows its discharge characteristics, and the battery characteristics (A) according to the present invention are those of the sintered type battery (BI
The capacity is approximately 10q6 larger than K. Also, in terms of volumetric energy density, the sintered battery has a volumetric energy density of 420mAH7°. For a 7' stone, the battery to which the present invention is applied has a capacity of 46 mAIH/.

。であり、昼エネルギ密度のものが得られる。. , and the daytime energy density is obtained.

次に本発明者は充填槽(2)における基板(1)の位置
について検討したところ、基板(1)を充填槽(2)の
底面から十分に離ねた位置に置く方が粉末の充填量が多
くなることを見出した○光*檜の底面からの距離Ω−と
充填it (f;’/cc)の実験結果を第2表に示す
。充填粉末としては水酸化ニッケル粉末(200メツシ
ユパス)のみを用い、振動条件は、振動数100Hz、
振巾1關、振動時間6o秒であり、基板表面と充填槽内
の活物質粉末上面との距離はいずれも20m以上であっ
た。
Next, the inventor studied the position of the substrate (1) in the filling tank (2) and found that it is better to place the substrate (1) at a position sufficiently far from the bottom of the filling tank (2) to increase the amount of powder to be filled. Table 2 shows the experimental results of the distance Ω- from the bottom of the cypress tree and the filling it (f;'/cc), which was found to increase ○light*. Only nickel hydroxide powder (200 mesh passes) was used as the filling powder, and the vibration conditions were a frequency of 100 Hz,
The vibration width was 1 angle, the vibration time was 6 o seconds, and the distance between the substrate surface and the top surface of the active material powder in the filling tank was 20 m or more.

第2表 距離が大きくなる程充填量が増加するが、その距離が5
wtn以上では充填量がほぼ同じである。
Table 2: As the distance increases, the amount of filling increases.
Above wtn, the filling amount is almost the same.

また基板の下面にポリエチレンシートを貼り付けて充填
槽に埋設し、その底面から数tirm以上離れた位置で
上述と同一の振動条件で振動を与えたところ、充填量は
0.2〜0.3y/ccと極めて少なかった。
In addition, when a polyethylene sheet was attached to the bottom surface of the substrate and buried in a filling tank, and vibration was applied under the same vibration conditions as above at a position several tirms or more away from the bottom surface, the filling amount was 0.2 to 0.3 y. /cc, which was extremely small.

このことから、基板(1)の下面に密接するものがある
場合には、撮動による活物質粉末の流れ、即ち密から疎
への流れが妨げられ充填lが増えないものと考えられる
。従って充填効率を高める/とめには、基板に対する活
物質粉末の流れを妨害しない程度に基板と充填槽底面と
の距離を保つ必要があるO 充填槽に充填される混合粉末として、水酸化ニッケル粉
末485部、水酸化コバルト粉末5部、ニンケル粉末1
0部を用い、孔61i:約′500μ、多孔贋96係厚
さ2.Owtrrのフオーム状ニッケル多孔体よりなる
基板を用い、この基板と充填槽底面との距離を10關と
した場合(ケース1)と、1關にした場合(ケース2)
と、前記混合粉末をペースト状にして前記基板に摺込む
場合(ケース6)とにおける充填時間、充填量及び充填
量のバラツキの実験結果を謝6表に示す。尚ケース6は
前記混合粉末を用い、これにカルボキシメチルセルロー
ス2%水溶液を60重−1%加λ−てペースト状とし、
前記基板にヘラ状摺り具で摺込み充填したものである。
From this, it is considered that if there is something in close contact with the lower surface of the substrate (1), the flow of the active material powder due to imaging, that is, the flow from dense to sparse, is obstructed and the filling l does not increase. Therefore, in order to increase/stop the filling efficiency, it is necessary to maintain a distance between the substrate and the bottom of the filling tank to the extent that it does not interfere with the flow of the active material powder toward the substrate. 485 parts, cobalt hydroxide powder 5 parts, ninkel powder 1
Using 0 part, hole 61i: about '500μ, hole 96 thickness 2. A case where a substrate made of Owtrr foam-like porous nickel material is used, and the distance between the substrate and the bottom of the filling tank is 10 degrees (Case 1) and 1 distance (Case 2).
Table 6 shows the experimental results of the filling time, filling amount, and variation in the filling amount in the case where the mixed powder is made into a paste and is rubbed onto the substrate (Case 6). In case 6, the above-mentioned mixed powder was used, and a 2% aqueous solution of carboxymethylcellulose was added to it at 60% by weight to make it into a paste.
The substrate is filled by being rubbed with a spatula-like rubbing tool.

また 第6表 *倉のバラツキlj″′Cあり、試量数を100個とし
た。
In addition, Table 6 *There is variation lj'''C in the warehouse, so the number of samples was 100.

完成極板の活物質充填−は、1.8〜2.5y/coに
するのが適当であり充填後のプレスによる厚み調整を初
期基板の1/2〜1/6にするとすれば、充填if後の
充填量は0.8y/ac以上とすべきである。第3表か
ら明らかな如くケース1がこの充填量を満足しており、
1だ充填量のバラツキも少なく、さらに充填時間もペー
スト式のもの(り°−スス6に比し、1/6以下と太f
;JEK知縮されている。
It is appropriate for the active material filling of the completed electrode plate to be 1.8 to 2.5 y/co, and if the thickness is adjusted by pressing after filling to 1/2 to 1/6 of the initial substrate, the filling The filling amount after if should be 0.8y/ac or more. As is clear from Table 3, Case 1 satisfies this filling amount,
1) There is little variation in the filling amount, and the filling time is less than 1/6 of the paste type (relative to the paste type 6).
;JEK has been shrunk.

応用4ダ1 1f述の実施例において、光横檜を通過した基板に付加
する液体と1−で、基板の孔内に容易に浸透fるもので
あれば、結着剤溶液を使用してもよい″(たとえばポリ
テトラフルオロエチレン分散液(8%溶液)を充填粉末
の見掛上体積に対し30体積%使用する)。
Application 4 Da 1 In the embodiment described above, if the liquid added to the substrate that has passed through the optical fiber can easily penetrate into the pores of the substrate, a binder solution can be used. (For example, a polytetrafluoroethylene dispersion (8% solution) is used in an amount of 30% by volume based on the apparent volume of the filling powder).

1だ本発明による製造方法は、実施例で示したニッケル
陽極板のみに限定されることなく、カドミウム陰極板に
も適用でき、さらにフオーム状金属多孔体よりなる基板
を集電体及活物質保持体として用いる場合には、他の系
の電池の電極板にも適用することができる。
1. The manufacturing method according to the present invention is not limited to the nickel anode plate shown in the example, but can also be applied to a cadmium cathode plate, and can also be applied to a substrate made of a foam-like metal porous body as a current collector and an active material support. When used as a body, it can also be applied to electrode plates of other types of batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による製造方法を用いた製造工程の一例
を示す図、第2図は電池の放電特性図である。 (1)・・・基板、(2)・・・充填槽、(3)・・・
混合粉末、(4)・・・振動器、(5)・・・液体吹付
器。 第2図 朕電時間(Hr )
FIG. 1 is a diagram showing an example of the manufacturing process using the manufacturing method according to the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the battery. (1)...Substrate, (2)...Filling tank, (3)...
Mixed powder, (4)...vibrator, (5)...liquid sprayer. Figure 2: Electric time (Hr)

Claims (1)

【特許請求の範囲】[Claims] (1)三次元的に連続した空孔を有するフオーム状金属
多孔体よりなる基板の孔内に、活物質粉末を振動を与え
つつ充填した後、液体を付加して活物質粉末の脱落を防
止するようにしたことを特徴とする電池用電極板の製造
方法。
(1) After filling the pores of a substrate made of a foam metal porous body with three-dimensionally continuous pores with active material powder while applying vibration, a liquid is added to prevent the active material powder from falling off. A method for manufacturing a battery electrode plate, characterized in that:
JP57105075A 1982-06-17 1982-06-17 Manufacture of plate for battery Pending JPS58220359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105075A JPS58220359A (en) 1982-06-17 1982-06-17 Manufacture of plate for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105075A JPS58220359A (en) 1982-06-17 1982-06-17 Manufacture of plate for battery

Publications (1)

Publication Number Publication Date
JPS58220359A true JPS58220359A (en) 1983-12-21

Family

ID=14397817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105075A Pending JPS58220359A (en) 1982-06-17 1982-06-17 Manufacture of plate for battery

Country Status (1)

Country Link
JP (1) JPS58220359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343408A2 (en) * 1988-05-26 1989-11-29 Deutsche Automobilgesellschaft Mbh Aqueous paste of nickel hydroxide with a high fluidity
EP0782210A3 (en) * 1995-11-25 2000-05-03 Christoph Emmerich GmbH & Co. KG Process of manufacturing prismatic alcaline accumulators
WO2010087992A1 (en) * 2009-01-27 2010-08-05 G4 Synergetics, Inc. Electrode folds for energy storage devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343408A2 (en) * 1988-05-26 1989-11-29 Deutsche Automobilgesellschaft Mbh Aqueous paste of nickel hydroxide with a high fluidity
EP0782210A3 (en) * 1995-11-25 2000-05-03 Christoph Emmerich GmbH & Co. KG Process of manufacturing prismatic alcaline accumulators
WO2010087992A1 (en) * 2009-01-27 2010-08-05 G4 Synergetics, Inc. Electrode folds for energy storage devices
JP2012516542A (en) * 2009-01-27 2012-07-19 ジー4 シナジェティクス, インコーポレイテッド Electrode folds for energy storage devices
US8859132B2 (en) 2009-01-27 2014-10-14 G4 Synergetics, Inc. Variable volume containment for energy storage devices

Similar Documents

Publication Publication Date Title
JP4219705B2 (en) Manufacturing method of secondary battery electrode
US4582098A (en) Method of fabricating electrodes for battery
JPS58220359A (en) Manufacture of plate for battery
JPS6040667B2 (en) Manufacturing method of nickel electrode
JPS63105466A (en) Manufacture of plate for alkaline storage battery
JPS58223260A (en) Manufacture of plate for battery
JPS58223262A (en) Manufacture of plate for battery
JPH0239064B2 (en)
JPH10144310A (en) Filling method of active material for electrode, and its device
JPS5887764A (en) Manufacture of electrode plate for battery
JPH0340894B2 (en)
JPH0366780B2 (en)
JPH0410355A (en) Manufacture of paste-type nickel electrode for alkaline storage battery
JPS5931833B2 (en) Manufacturing method for battery electrodes
JPH01163965A (en) Manufacture of electrode for battery
JPS5833667B2 (en) Manufacturing method for battery electrodes
JPS62105363A (en) Manufacture of paste type plate
JPS59143270A (en) Manufacture of electrode for battery
JPH01239764A (en) Paste type positive plate for alkaline storage battery and manufacture thereof
JP3489380B2 (en) Electrode for cylindrical battery and method for producing the same
JPH02256162A (en) Paste type nickel positive electrode for alkaline battery
JPH0582710B2 (en)
JPH0415582B2 (en)
JPS6269464A (en) Manufacture of sintered base plate for nickel-cadmium alkaline battery
JPS61143941A (en) Manufacture of nickel positive electrode for battery