JPS58220103A - Single polarization fiber for ultralong wavelength - Google Patents

Single polarization fiber for ultralong wavelength

Info

Publication number
JPS58220103A
JPS58220103A JP57103081A JP10308182A JPS58220103A JP S58220103 A JPS58220103 A JP S58220103A JP 57103081 A JP57103081 A JP 57103081A JP 10308182 A JP10308182 A JP 10308182A JP S58220103 A JPS58220103 A JP S58220103A
Authority
JP
Japan
Prior art keywords
core
refractive index
fiber
mode
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57103081A
Other languages
Japanese (ja)
Other versions
JPS6054644B2 (en
Inventor
Katsunari Okamoto
勝就 岡本
Teruhisa Kanamori
金森 照寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57103081A priority Critical patent/JPS6054644B2/en
Publication of JPS58220103A publication Critical patent/JPS58220103A/en
Publication of JPS6054644B2 publication Critical patent/JPS6054644B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/043Chalcogenide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Abstract

PURPOSE:To decrease the loss of light in the ultralong wavelength range of a single polarization fiber and to improve the characteristic for maintaining polarization by providing stress applying parts on both sides of a core of a chalcogen compd. CONSTITUTION:The compsns. of glass for a core 1 and a clad 2 of a chalcogen compd. which has a low loss at 2-10mum wavelength range are made respectively AsxS1-y, AsyS1-y, and the relation of the equation I is satisfied, whereby the formation of a fiber is made possible. If the equation II is satsified, the refractive index of the core can be made larger than the refractive index of the clad, and a waveguide construction can be formed. If As-Ge-S-Ge is used as the glass material in stress applying parts 3 to be provided on both sides of the core, the difference DELTAbeta in the constant of propagation between an HE<x>11 mode and HE<y>11 mode is larger as the double refractive index B of the mode in the core is larger as shown by the equation III. The loss of light is thus decreased at the large DELTAbeta without receiving the influence of disturbance such as bending and the characteristic for maintaining polarization is improved.

Description

【発明の詳細な説明】 本発明は、入射光の偏光状態を保持する単一偏波ファイ
バにおいて、2〜IOμmの波長域において低損失な光
ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single polarization fiber that maintains the polarization state of incident light and has low loss in the wavelength range of 2 to IO μm.

光フアイバ内のモードの縮退をMtkHE、、−Fl−
−ドとHE□、yモードの伝搬定数差を大きくして、H
E  xまたはHE1□yモードのみを伝搬させる単一
1 偏波ファイバとして、従来はG60.またはP2O5を
SiO□に添加したコアと、Sin、のクラッドと、B
OをSin、に添加した応力付与部から成る石英8 系の単一偏波ファイバが知られていた。しかし石英系の
光ファイバにおいては、波長2μm以上の光に対する損
失が非常に大きいので、2μm以−ヒの光を伝搬させる
ことは困難であった。これに対してAE、Sから成るカ
ルフゲン化Th、4光ファイバは2〜10μmの波長域
で低損失となるので、この波長帯の光に対する光ファイ
バとして有用である。
The mode degeneracy in the optical fiber is defined as MtkHE, -Fl-
- By increasing the difference in propagation constant between mode, HE□, and y mode, H
Conventionally, G60. Or a core with P2O5 added to SiO□, a cladding of Sin, and B
A quartz-based single-polarization fiber consisting of a stress-applying portion in which O is added to Sin is known. However, in silica-based optical fibers, the loss for light with a wavelength of 2 μm or more is extremely large, so it has been difficult to propagate light with a wavelength of 2 μm or more. On the other hand, a calfgenated Th,4 optical fiber composed of AE and S has low loss in the wavelength range of 2 to 10 μm, and is therefore useful as an optical fiber for light in this wavelength range.

しかし従来のカルコゲン化物系ファイバにおいては、H
E、、”モードとHE工、yモードに対する伝搬定数が
等しいか、または非、常に小さいのでファイバに曲げや
圧力等の外乱が加わった場合、容易にモード結合が生じ
てしまい、HE工、またはHE□、yモードのみを伝搬
さぜることが困難であった。
However, in conventional chalcogenide fibers, H
The propagation constants for the E mode and the HE mode and the y mode are either the same or very small, so if a disturbance such as bending or pressure is applied to the fiber, mode coupling will easily occur, and the HE mode or It was difficult to propagate only the HE□, y mode.

本発明の目的は、これらの欠点を解決するため力ルフゲ
ン化物糸ファイバのコアの両側に応力付与4部を設け、
2〜lOμm帯で低損失、かつ良好な偏bz保持特性を
イfする超長波長用単−偏波ファイバを提供することに
ある。以下、図面により本発明の詳細な説明する。
The purpose of the present invention is to solve these drawbacks by providing four stress-applying parts on both sides of the core of the fluoride yarn fiber.
The object of the present invention is to provide a single-polarization fiber for ultra-long wavelengths that has low loss and good polarization bz retention characteristics in the 2 to 10 μm band. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例図であって1はコア、2はク
ラッド、8は応力付ダ・部である。カルコゲン化′I!
7I系ファイバのファイバ化可能な範囲は、カルコゲン
化物系ガラスの組成をA3X50−8またはAsyS、
、と表わすと、p、8ノ@ M 蹴x マタTri y
 ノ11!iが、 なる関係を満足しなければならないことがわかっている
。X、yが42以上では結晶化し、x、yがzO以下で
は線引が困難である。(参考文献:高下能、rA、−8
系光フアイバの作製」第29回応物学会T−槁集2p−
W −I P 102 、 ] 982 )第2図はA
sx5□−8ガラスのA8の含有Mxと屈折率(ただし
波長λが1.15μmの場合)の関係を示した図である
。第2図かられかるように、Xが大きい程ASX” 1
−Xガラスの屈折率は大きくなる。
FIG. 1 is a diagram showing one embodiment of the present invention, in which 1 is a core, 2 is a cladding, and 8 is a stressed portion. Chalcogenization'I!
The range in which the 7I fiber can be made into a fiber is as follows: The composition of the chalcogenide glass is A3X50-8 or AsyS,
, is expressed as p, 8@ M kick x Mata Tri y
No 11! We know that i must satisfy the relation. When X and y are 42 or more, crystallization occurs, and when x and y are zO or less, drawing is difficult. (References: Hyperactivity, rA, -8
“Preparation of system optical fiber” 29th Society of Applied Physics Society T-Makishu 2p-
W-I P 102,] 982) Figure 2 is A
FIG. 3 is a diagram showing the relationship between the content Mx of A8 in sx5□-8 glass and the refractive index (provided that the wavelength λ is 1.15 μm). As shown in Figure 2, the larger X is, the more ASX" 1
-X The refractive index of the glass increases.

したがつτ、コア用ガラスの組成をASX$1−8、ク
ラッド用ガラスの組成をAS’!/51−yとすると、
X>  y     (2) なる関係が満足されれば、コアの屈折率をクラッドの屈
折率より大きくすることができ、導波構造を形成するこ
とができる。
However, the composition of the core glass is ASX$1-8, and the composition of the cladding glass is AS'! /51-y, then
If the relationship X>y (2) is satisfied, the refractive index of the core can be made larger than the refractive index of the cladding, and a waveguide structure can be formed.

本発明の実施例においては、コア用ガラスとしてA84
゜S66としクラッド用ガラスとしてA388S62と
した。このときコアおよびクラッドの111伍率、光弾
性定数、熱扉張係数、ガラス転移温度は各4表Iのよう
である。
In the embodiment of the present invention, A84 is used as the core glass.
The glass used for the cladding was A388S62. At this time, the 111 rating, photoelastic constant, thermal expansion coefficient, and glass transition temperature of the core and cladding are as shown in Table 4.

つぎに、応力付与部の材料組成について述べる。。Next, the material composition of the stress applying portion will be described. .

応力付4部に要求される条件は、(1)クラ・ンドの熱
膨張係数と異なる熱膨張係数を有すること、(11)屈
折率はクラッドの屈折率と同じかまたは小さいことであ
る。条件(1)はコアに熱応力を生せしめるための条件
であり、条件(11)は応力付4部に光が導波されない
ためである。前記二つの条件を満足する材料としてAs
−Go−S −86が適当であることがわかった。この
材料のファイバ化iJ能条件、および前記二つの条件を
満足する組成として本発明の実施例では応力付4部の材
料をA8□7Ge16”48”e19とした。このとき
応力付4部の屈折率はη−2,40、熱膨張係数はα−
21X10  (/’。)であった。
The four stressed parts are required to have (1) a coefficient of thermal expansion different from that of the cladding, and (11) a refractive index that is the same as or smaller than that of the cladding. Condition (1) is a condition for producing thermal stress in the core, and condition (11) is for preventing light from being guided to the four stressed parts. As a material that satisfies the above two conditions, As
-Go-S -86 was found to be suitable. In the embodiment of the present invention, the material of the stressed 4 part was A8□7Ge16''48''e19 as a composition satisfying the fiberization iJ ability condition of this material and the above two conditions. At this time, the refractive index of the 4 stressed parts is η-2,40, and the thermal expansion coefficient is α-
It was 21×10 (/'.).

またガラス転移温度は260°Cである。前記のコア、
クラッドおよび応力付与部から成る単一偏波ファイバに
おいて、コア半径a −2,2μm N Ilb力付4
部の内、外半径を各々r、 −5a、 r、 −10a
としたとき、有限要素法を用いた解析により、コア内に
生じるX、y方向の応力差GM  (Jyは、σ −σ
 −−1,29(呻/闘”)   (+])y 、であることがわかった。コアの光弾性定数差は0□−
0,−−5,328X 10−’ (tm”/に9) 
r するから、B+ηX−ηy−((El−0,)・(
σX−σy)−7X10″″B   (4) である。たたし、ηえ、η9は各々Xおよびy方向に偏
光した光に対する伝搬定数β8.β、を光の波111に
で割ったものであり、 (k−2π/λ、λは光の波長) で表わされる。式(4) * f5)よりHE、、”モ
ードとHE、、yモードの間の伝搬定数差Δβは、Δβ
−ムーβy −kB   (61 でり・えられ、Bが大きい程良いことがわかる。例えば
光ファイバを曲げ半径1 cm程度に曲げた時に、曲は
応力によってコア内に生じるモード複屈折は、B−IX
IO程度である。したがって本発明の実施例の単一偏波
ファイバの伝搬定数差は、十分大きく曲げ等の外乱の彫
りをほとんど受けないので、HE、、またはHEo、y
モードのみを、安定に伝搬させることができる。
Moreover, the glass transition temperature is 260°C. the said core;
In a single polarization fiber consisting of a cladding and a stress applying part, the core radius a -2,2μm N Ilb force 4
The inner and outer radius of the part are r, -5a, r, -10a, respectively.
Then, analysis using the finite element method shows that the stress difference in the X and y directions generated in the core GM (Jy is σ - σ
−−1,29(groan/fight”) (+])y It was found that the difference in the photoelastic constant of the core is 0□−
0,--5,328X 10-' (tm”/9)
r, so B+ηX−ηy−((El−0,)・(
σX−σy)−7X10″″B (4). where, η, η9 are the propagation constants β8. for light polarized in the X and y directions, respectively. β, divided by the light wave 111, is expressed as (k-2π/λ, where λ is the wavelength of the light). From equation (4) * f5), the propagation constant difference Δβ between the HE,,” mode and the HE,,y mode is Δβ
-mu βy -kB (61) It can be seen that the larger B is, the better.For example, when an optical fiber is bent to a bending radius of about 1 cm, the mode birefringence that occurs in the core due to bending stress is B -IX
It is about IO. Therefore, the propagation constant difference of the single polarization fiber of the embodiment of the present invention is sufficiently large and hardly affected by disturbances such as bending, so that HE, or HEo, y
Only the mode can be stably propagated.

以上の説明により明らかなように、本発明の超長波長用
単−偏波ファイバは、2〜lOμmの波長域で低損失、
かつ偏波保持性の高い超長波長用単−偏波ファイバとし
て使用できるので、2〜lOμm帯におけるフヒーレン
ト光涌偏方式、光フアイバセンサとして大きな利点があ
る。
As is clear from the above explanation, the ultra-long wavelength single-polarization fiber of the present invention has low loss in the wavelength range of 2 to 10 μm.
In addition, it can be used as a single-polarization fiber for ultra-long wavelengths with high polarization maintaining properties, so it has great advantages as a coherent optical polarization type optical fiber sensor in the 2 to 10 μm band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図、 第2図はA8xS1−xガラスのA8の含有最と屈折率
の関係を表わす図である。 1・・・コア       2・・・クラッド3・・・
応力付与部
FIG. 1 is a diagram showing an example of the present invention, and FIG. 2 is a diagram showing the relationship between the content of A8 and the refractive index of A8xS1-x glass. 1... Core 2... Clad 3...
Stress applying part

Claims (1)

【特許請求の範囲】 1、、  A3X5 i −x (xは0<X<100
(7)実数)から成るコアと、A8yS1−y(yはO
</<100の実数)から成り、該コアの屈折率より小
さい屈折率を有するクラッドと、該クラッドの一部のコ
アの両端に位置する部分にクラッドと熱膨張係数の異な
る応力付与部が配置されていることを特徴とする超長波
長用単−偏波ファイバ。 λ 特Wl′請求の範囲第1項記載の超長波長用単−偏
波ファイバにおいて、コアを戊すAS)”l−Xおよび
クラッドを成すAsyS r−yにおける、Xの1直が
20くXく42、yの1直が2 o<yく42の範囲内
であることを特徴とする超長波長用単−偏波ファイバ。 8 特許請求の範囲第1項記載の超長波長用単−(74
波フアイバにおいて、応力付与部を成すガラス材料がA
s−G、 −S −Seであることを特徴とする超長波
長用単−偏波ファイバ。
[Claims] 1., A3X5 i -x (x is 0<X<100
(7) real number) and A8yS1-y (y is O
A cladding having a refractive index smaller than the refractive index of the core, and stress applying parts having a different coefficient of thermal expansion from the cladding are arranged in parts of the cladding located at both ends of the core. A single-polarization fiber for ultra-long wavelengths. λSpecial Wl' In the ultra-long wavelength single-polarization fiber according to claim 1, one axis of A single-polarization fiber for ultra-long wavelengths, characterized in that one diagonal of -(74
In the wave fiber, the glass material forming the stress applying part is A
A single-polarization fiber for ultra-long wavelengths, characterized in that it is s-G, -S-Se.
JP57103081A 1982-06-17 1982-06-17 Single polarization fiber for very long wavelengths Expired JPS6054644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57103081A JPS6054644B2 (en) 1982-06-17 1982-06-17 Single polarization fiber for very long wavelengths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57103081A JPS6054644B2 (en) 1982-06-17 1982-06-17 Single polarization fiber for very long wavelengths

Publications (2)

Publication Number Publication Date
JPS58220103A true JPS58220103A (en) 1983-12-21
JPS6054644B2 JPS6054644B2 (en) 1985-11-30

Family

ID=14344682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57103081A Expired JPS6054644B2 (en) 1982-06-17 1982-06-17 Single polarization fiber for very long wavelengths

Country Status (1)

Country Link
JP (1) JPS6054644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270862A (en) * 1990-03-16 1991-12-03 Fujitsu Ltd Ferrule end face polishing method for optical connector
US7807595B2 (en) * 2004-04-15 2010-10-05 The United States Of America As Represented By The Secretary Of The Navy Low loss chalcogenide glass fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167970U (en) * 1988-05-10 1989-11-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270862A (en) * 1990-03-16 1991-12-03 Fujitsu Ltd Ferrule end face polishing method for optical connector
US7807595B2 (en) * 2004-04-15 2010-10-05 The United States Of America As Represented By The Secretary Of The Navy Low loss chalcogenide glass fiber

Also Published As

Publication number Publication date
JPS6054644B2 (en) 1985-11-30

Similar Documents

Publication Publication Date Title
US4179189A (en) Single polarization optical fibers and methods of fabrication
Messerly et al. A broad-band single polarization optical fiber
Cohen et al. Effect of temperature on transmission in lightguides
KR0172600B1 (en) Single-mode, single polarization optical fiber
JPH0343602B2 (en)
JPS59148005A (en) Optical fiber for propagating single mode single polarized wave
JPH01237507A (en) Absolute single polarizing optical fiber
JPH01108506A (en) Buried type double diffraction type light waveguide or construction thereof and making thereof
JPS631252B2 (en)
JPS58220103A (en) Single polarization fiber for ultralong wavelength
JPS60154215A (en) Fiber type directional coupler
JPS6053285B2 (en) Constant polarization optical fiber
JPS59164505A (en) Single-polarization single-mode optical fiber
JPS59139005A (en) Fiber for maintaining linearly polarized light
JPS5834406A (en) Polarization preserving single mode fiber
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPS61228404A (en) Optical fiber for constant polarized wave
JPH0350505A (en) Single polarization optical fiber
JPH0623805B2 (en) Polarization-maintaining optical fiber
JPS6033513A (en) Single linear polarization optical fiber
JP2828251B2 (en) Optical fiber coupler
JPS63194207A (en) Optical fiber for absolutely single polarized wave
JP2003222748A (en) Optical waveguide type polarization separation element and its manufacturing method
JPS62276510A (en) Stress imparting type polarized wave maintaining optical fiber
JPS63309906A (en) Optical waveguide coupler