JPS58219617A - Constant value controlling method - Google Patents

Constant value controlling method

Info

Publication number
JPS58219617A
JPS58219617A JP10205282A JP10205282A JPS58219617A JP S58219617 A JPS58219617 A JP S58219617A JP 10205282 A JP10205282 A JP 10205282A JP 10205282 A JP10205282 A JP 10205282A JP S58219617 A JPS58219617 A JP S58219617A
Authority
JP
Japan
Prior art keywords
flow rate
control valve
control
total
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10205282A
Other languages
Japanese (ja)
Other versions
JPH0529925B2 (en
Inventor
Yasuo Tasaka
田坂 靖夫
Michimasa Okabe
岡部 道昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10205282A priority Critical patent/JPS58219617A/en
Publication of JPS58219617A publication Critical patent/JPS58219617A/en
Publication of JPH0529925B2 publication Critical patent/JPH0529925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To control the total flow rate of fluid and its variation, by performing opening/closing operation through a control valve with capacity controllable for the total flow rate on the basis of the capacity sum of control valves only when a control valve with capacity capable of controlling variation in flow rate within a pecific range is fully open or closed. CONSTITUTION:When a supply flow rate is decreased, a pressure controller 30 outputs a signal to a switch 50 to open a control valve 44. Then, when the total intake flow rate exceeds a specific value, a control valve 43 is closed to put the switch 50 out of its fully open position, so the opening operation of the valve 44 is stopped to obtain a specific extent of opening. When the supply flow rate is increased, the operation is carried out oppositely to said operation to control the total intake flow rate to the processing air quantity of a compressor 10. Further, variation in intake flow rate, i.e. the flow rate of fluid with the supply flow rate opens or closes the control valve 43 to regulate a by-pass flow rate corresponding to variation in supply flow rate, controlling the inlet pressure of the compressor 10 within the specific pressure range.

Description

【発明の詳細な説明】 本発明は、定値制御方法に係り、特に流体の流量の全量
並びに変動量を定値制御するのに好適な定値制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant value control method, and more particularly to a constant value control method suitable for constant value control of the total flow rate and fluctuation amount of fluid.

従来の定値制御方法を第1図、第2図により説明する。A conventional fixed value control method will be explained with reference to FIGS. 1 and 2.

第1図、第2図は、例えば、空気の液化深冷分離装置等
で分離された製品ガスを圧縮機で圧縮し送出する際に、
圧縮機での吸入圧力を一定圧力に制御する吸入圧制御装
置の系統図である。
Figures 1 and 2 show, for example, when a product gas separated by an air liquefaction cryogenic separation device is compressed by a compressor and sent out.
FIG. 2 is a system diagram of a suction pressure control device that controls suction pressure in a compressor to a constant pressure.

第1図で、圧縮′Ia10の吸入側には、例えば、空気
の液化深冷分離装置(以下、分離装置と略)(図示省略
)に連結された導管加が、吐出側には、例えば、使用端
(図示省略)に連結された導管21がそれぞれ連結され
ている。導管加と導管21とには、圧縮機lOをバイパ
スし導管nが連結されている。導管mには、圧力調節計
加が設けられ、導管乙には、調節弁旬が設けられている
。調節弁切は、圧力調節計園に接続されている。
In FIG. 1, on the suction side of the compression 'Ia10, there is a conduit connected to, for example, an air liquefaction cryogenic separation device (hereinafter abbreviated as the separation device) (not shown), and on the discharge side, for example, Conduits 21 connected to the use ends (not shown) are connected to each other. A conduit n is connected to the conduit connection and the conduit 21, bypassing the compressor lO. The conduit m is provided with a pressure regulator, and the conduit B is provided with a control valve. The control valve cutter is connected to the pressure regulator.

流体である分離装置で分離された製品ガスは、導管加を
経て圧縮機lOに吸入され、ここで、圧縮された後に吐
出され導管21を経て使用端へ送出される。一方、圧縮
機10の吸入圧力は、圧力調節計器により調節弁恥の弁
開度を調節し、これにより導管21を経て使用端へ送出
される途中で一部分流された流体を調節弁荀を介し導管
区な経て導管加を流通する流体に合流させることで一定
圧力に制御される。        、 今、分離装置から導管加を経て圧縮機10に供給される
流体の流量(以下、供給流量と略)を80ON rl”
 / l(、圧縮機lOの処理風量を120ONm”/
Hと仮定すれば、必然的に導管21の途中で分流し調節
弁旬な介し導管nを流通する流体の流量(以下、バイパ
ス流量と略)は40ONm’/Hとなる。また、供給流
量が極端にONm”/Hとなった場合には、圧縮機10
の処理風量が120ONm”/Hでみるため、バイパス
流量を120ONm’/Hとしなければ圧縮機10の吸
入圧力を一定圧カに保つことができない。したがって、
調節弁旬の流量調節容量(以下、容量と略)は最大12
0ONm’/H必要となる。一方、圧縮機lOの吸入圧
力を、例えば、1005nAq :l:約50mAq 
4m制御すルニは、導管加のポリ−ニームにもよるが、
圧縮機1oに吸入される流体の流量(以下、吸入流量と
略)の変動量を数Nm”/H以下に抑制しなければなら
ないO つまり、調節弁荀は数N m” / Hの制御が可能で
なくてはならないが、しかし、調節弁切の調節限界範囲
(以下、レンジアビリティ−と称す)は通常330〜5
0程度であり、調節弁旬の容量を最大1200 Nm”
/Hとすれば、調節弁荀の最小限容量は40〜24Nm
”/Hであり、したがって、このような吸入圧制御装置
では、吸入流量の全量を一定量に制御できるものの、吸
入流量の変動量を一定量内に制御できないといった欠点
があった。
The product gas, which is a fluid, separated by the separator is taken into the compressor lO through a conduit, where it is compressed and then discharged and sent to the use end via the conduit 21. On the other hand, the suction pressure of the compressor 10 is controlled by adjusting the valve opening degree of the control valve using a pressure control instrument, so that the fluid that is partially flowed out while being sent to the use end via the conduit 21 is passed through the control valve. The pressure is controlled at a constant level by connecting the conduit to the flowing fluid through the conduit section. Now, the flow rate of the fluid supplied from the separator to the compressor 10 via conduit addition (hereinafter referred to as supply flow rate) is set to 80ON rl.
/ l(, compressor lO processing air volume is 120ONm”/
If it is assumed that the flow rate is H, the flow rate of the fluid flowing through the intervening conduit n (hereinafter abbreviated as bypass flow rate), which necessarily has a branch control valve in the middle of the conduit 21, will be 40 ONm'/H. In addition, if the supply flow rate becomes extremely ONm"/H, the compressor 10
Since the processing air volume is 120ONm'/H, the suction pressure of the compressor 10 cannot be maintained at a constant pressure unless the bypass flow rate is set to 120ONm'/H.
The maximum flow rate adjustment capacity (hereinafter referred to as capacity) of the control valve is 12
0ONm'/H is required. On the other hand, the suction pressure of the compressor lO is set to, for example, 1005 nAq: l: about 50 mAq
4m control luni depends on the polyneem of the conduit,
The amount of fluctuation in the flow rate of fluid sucked into the compressor 1o (hereinafter abbreviated as suction flow rate) must be suppressed to less than a few Nm''/H. However, the adjustment limit range of the control valve (hereinafter referred to as range ability) is usually 330 to 5.
0, and the capacity of the control valve can be up to 1200 Nm.”
/H, the minimum capacity of the control valve is 40 to 24 Nm.
Therefore, although such a suction pressure control device can control the total suction flow rate to a constant amount, it has a drawback that it cannot control the amount of variation in the suction flow rate to within a constant amount.

第2図で、圧縮機lOの吸入側には、例えば、分離装置
(図示省略)に連結された導管加が、吐出側には、例え
ば、使用端(図示省略)に連結された導管4がそれぞれ
連結されている。導管加と導管21、とには、圧縮機1
0をバイパスし導管nが連結されている。導管加には、
圧力調節針園が設けられ、導管nには、調節弁41が設
けられている。導管ρには、調節弁41をバイパスし導
管nが連結されている。導管囚には、調節弁42が設け
られている。また、調節弁41.42は、圧力調節計間
にそれぞれ接続されている。なお、調節弁41は、調節
弁42が全開となりても圧縮機10の処理風量と比較し
吸入流量の全量が不足している場合に、圧力調節針、(
9)により開作動される。
In FIG. 2, on the suction side of the compressor IO, there is a conduit 4 connected to, for example, a separation device (not shown), and on the discharge side, for example, a conduit 4 connected to the use end (not shown). Each is connected. The conduit connection and the conduit 21 are connected to the compressor 1.
A conduit n is connected by bypassing 0. For conduit addition,
A pressure regulating needle is provided, and a regulating valve 41 is provided in the conduit n. A conduit n is connected to the conduit ρ, bypassing the control valve 41. A control valve 42 is provided in the conduit. Further, the control valves 41 and 42 are respectively connected between the pressure regulators. Note that even if the control valve 42 is fully opened, the pressure control needle (
9).

今、供給流量を80ONm”/H,圧縮機10の処理風
量を120ONm”/Hと仮定すれば、この場合、バイ
パス流量は40ONm”/Hとなる。したがって、調節
弁42の容量を40ONm”/H以下とすれば、調節弁
42が必ず全開となりバイパス流量は調節弁41でのみ
調節されるようになり調節弁42を設けた意味がなくな
るため、調節弁42の容量は最大40ONm’/H以上
となる必要がある。
Now, if we assume that the supply flow rate is 80ONm"/H and the processing air volume of the compressor 10 is 120ONm"/H, then in this case, the bypass flow rate will be 40ONm"/H. Therefore, the capacity of the control valve 42 will be 40ONm"/H. If it is below H, the control valve 42 will always be fully open and the bypass flow rate will be regulated only by the control valve 41, so there is no point in providing the control valve 42, so the maximum capacity of the control valve 42 should be 40 ONm'/H or more. It is necessary to

そこで、調節弁42の容量を最大40ONm”/Hとし
たとしても通常のレンジアビリティ−30〜50程度で
は、13〜8Nm”/Hが最小限容量であり、したがっ
て、このような吸入圧制御装置でも上記した欠点は解消
されない。
Therefore, even if the capacity of the control valve 42 is set to a maximum of 40 ONm"/H, the minimum capacity is 13 to 8 Nm"/H in a normal range ability of -30 to 50. Therefore, such a suction pressure control device However, the above-mentioned drawbacks cannot be resolved.

本発明の目的は、上記した従来技術の欠点を解制御でき
る定値制御方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a constant value control method that can overcome the drawbacks of the prior art described above.

本発明の特徴は、流体の流量の変動量を一定量内に制御
可能な容量の調節弁が全開又は全閉時のみ、少なくとも
該調節弁の容量との合計で流体の流量の全量を制御可能
な容量の調節弁を開閉作動させることで、流体の流量の
全量が大きくなってもそれを一定量に制御できると共に
、流体の流量の変動量を一定量内に制御できるようにし
たことにある。
A feature of the present invention is that only when a control valve with a capacity that can control fluctuations in the flow rate of fluid within a certain amount is fully open or fully closed, the entire flow rate of fluid can be controlled at least in total with the capacity of the control valve. By opening and closing a control valve with a certain capacity, it is possible to control the total flow rate of the fluid to a constant amount even if it increases, and also to control the amount of fluctuation in the fluid flow rate to within a constant amount. .

本発明の一実施例を第3図により説明する。An embodiment of the present invention will be explained with reference to FIG.

第3図は、本発明を実施した吸入圧制御装置の系統図で
、なお、第3図で、第2図と同一装置。
FIG. 3 is a system diagram of a suction pressure control device embodying the present invention, and FIG. 3 is the same device as FIG. 2.

部品等は同一符号で示し説明を省略する。Parts, etc. are indicated by the same reference numerals and explanations are omitted.

第3図で、導管nは、流体の流量の変動量、この場合は
、吸入流量の変動を一定量内に制御可能な容量の調節弁
4が設けられている。導管nには、調節弁招をバイパス
し導管n′が連結されている。
In FIG. 3, the conduit n is provided with a regulating valve 4 having a capacity capable of controlling the fluctuation amount of the fluid flow rate, in this case, the fluctuation of the suction flow rate, within a certain amount. A conduit n' is connected to the conduit n, bypassing the control valve.

導管ぎには、少なくとも調節弁Cの容量との合計で流体
の流量の全量、この場合は、吸入流量の全量を一定量に
制御可能な容量の調節弁aが設けられている。調節弁葛
は圧力調節計(資)に接続され、また、調節弁舗は、調
節弁招が全開又は全閉時のみ調節弁材を開閉作動させる
機能を有するスイッチ父な介して圧力調節計画に接続さ
れている。
The conduit is provided with a control valve a having a capacity that can control the total flow rate of fluid, in this case, the total amount of suction flow rate, to a constant amount in total with at least the capacity of the control valve C. The control valve is connected to a pressure regulator (equipment), and the control valve is connected to the pressure control plan via a switch that has the function of opening and closing the control valve material only when the control valve is fully open or fully closed. It is connected.

今、圧縮機10の処理風量を120ONm”/Hと仮定
し、また、圧縮機10の吸入圧を、例えば、100關A
q士約50mAqに制御するとすれば、調節弁lの容量
は、レンジアビリティ−を30〜50として最小限容量
が数N m’ / Hとなることが必要で、また、調節
弁祠の容量は、少なくとも調節弁ぐの容量との合計で1
200 Nm”/H必要となる。
Now, assume that the processing air volume of the compressor 10 is 120 ONm"/H, and the suction pressure of the compressor 10 is, for example, 100 ONm"/H.
If the control valve is to be controlled at about 50 mAq, the minimum capacity of the control valve l needs to be several N m'/H with a rangeability of 30 to 50, and the capacity of the control valve shrine is , the total capacity of at least the control valve is 1
200 Nm”/H is required.

まず、流体の流量の全量である吸入流量の全量は次のよ
うにして一定量に制御される。
First, the total amount of suction flow rate, which is the total amount of fluid flow rate, is controlled to a constant amount in the following manner.

供給流量が例えば、80ONm”/Hから5008 m
’ / Hに減量されたとすれば、このままでは、吸入
流量の全量は120ONm’/Hから90ONrrL葛
/Hに減量されてしまい、その結果、吸入圧力が大幅に
低下する。そこで、まず、圧力調節計(9)により調節
弁部を全開させる。しかし、調節弁葛が全開しても圧縮
機10の処理風量と比較し吸入流量の全量が未だ不足す
る場合には、圧力調節計間よりスイッチ父に信号を出力
し、スイッチ父により調節弁Iは、この場合は開作動さ
せられる。こ入流量の全量は圧縮機10の処理風量12
0ONm’/Hとなる。その後、バイパス流量が70O
Nm”/HH以上すなわち、吸入流量の全量が120O
N m” / H以上になると圧力調節計(資)により
調節弁招は閉作動させられ、また、スイッチ父は全開位
置からはずれるため、スイッチ(資)による調節弁偶の
開作動が停止され、調節弁柄は所定弁開度で停止する。
For example, if the supply flow rate is from 80ONm”/H to 5008m
If the amount is reduced to '/H, the total suction flow rate will be reduced from 120ONm'/H to 90ONrrL/H, and as a result, the suction pressure will drop significantly. Therefore, first, the control valve section is fully opened using the pressure regulator (9). However, even if the control valve KUD is fully opened, if the total suction flow rate is still insufficient compared to the processing air volume of the compressor 10, a signal is output from between the pressure regulators to the switch father, and the switch father outputs a signal to the control valve I. is operated to open in this case. The total amount of air flow is equal to the processing air volume 12 of the compressor 10.
0ONm'/H. After that, the bypass flow rate is 70O
Nm”/HH or more, that is, the total suction flow rate is 120O
When the pressure exceeds N m"/H, the pressure regulator (equipment) closes the control valve pair, and since the switch father is removed from the fully open position, the switch (equipment) stops the opening operation of the control valve pair. The control valve handle stops at a predetermined valve opening.

このようにしてバイパス流量は70ONm”/H1すな
わち、吸入流量の全量は120ONm’ / Hに制御
される。
In this way, the bypass flow rate is controlled to 70 ONm''/H1, that is, the total suction flow rate is controlled to 120 ONm'/H.

逆に供給流量が、例えば、800 Nm”/Hから1l
100N”/Hに増量された場合には、上記した操作と
逆操作によりバイパス流量は1100N’/H1すなわ
ち、吸入流量の全量は圧縮機10の処理風量120ON
m’/Hに制御される。
Conversely, if the supply flow rate is, for example, from 800 Nm”/H to 1 liter
When the flow rate is increased to 100N'/H, the bypass flow rate is 1100N'/H1 by the above-mentioned operation and reverse operation, that is, the total suction flow rate is the processing air volume of the compressor 10 of 120ON.
m'/H.

また、供給流量の変動により生じる流体の流量の変動量
である吸入流量の変動量は、圧力調節計間により調節弁
葛な慕又は閉作動させ、バイパス流量を供給流量の変動
量と対流させ調節することで、圧縮拶10の吸入圧力が
所定圧力範囲、例えば、1005關Aq士約50wAQ
となるように制御される。
In addition, the amount of fluctuation in the suction flow rate, which is the amount of fluctuation in the fluid flow rate caused by fluctuations in the supply flow rate, can be adjusted by operating the control valve between the pressure regulators to open or close the valve, and by causing the bypass flow rate to convect with the fluctuation amount in the supply flow rate. By doing this, the suction pressure of the compressor 10 is within a predetermined pressure range, for example, 1005 cm and about 50 w AQ.
It is controlled so that

本実施例のような定値制御方法は、供給流量が減量又は
増量されたとしても、それに対応してバイパス流量を増
量又は減量させることで吸入流量の全量を圧縮機の処理
風量に制御できると共に、供給流量の変動量に対応して
バイパス流量を調節することで吸入流量の変動量を圧縮
機の吸入圧が所定圧範囲となるように制御することがで
きる。
In the constant value control method as in this embodiment, even if the supply flow rate is decreased or increased, by increasing or decreasing the bypass flow rate accordingly, the total amount of the suction flow rate can be controlled to the processing air volume of the compressor, and By adjusting the bypass flow rate in accordance with the amount of variation in the supply flow rate, it is possible to control the amount of variation in the suction flow rate so that the suction pressure of the compressor falls within a predetermined pressure range.

本発明は、以上説明したように、流体の流量の変動量を
一定量内に制御可能な容量の調節弁が全開又は全閉時の
み、少なくとも該調節弁の容量との合計で流体の流量の
全量を制御可能な容量の調節弁を開閉作動させるという
ことで、流体の流量の全量に影響されることなく流体の
流量の変動量を制御できるので、流体の流量の全量が大
きくなっても、それを一定量に制御できると共に、流体
の流量の変動量を一定量内に制御できる効果がある。
As explained above, only when a control valve having a capacity that can control the fluctuation amount of the fluid flow rate within a certain amount is fully open or fully closed, the flow rate of the fluid is reduced at least in total with the capacity of the control valve. By opening and closing a control valve with a capacity that can control the total flow rate, it is possible to control the amount of fluctuation in the fluid flow rate without being affected by the total flow rate of the fluid, so even if the total flow rate of the fluid increases, This has the effect of being able to control it to a constant amount and also controlling the amount of fluctuation in the flow rate of the fluid to within a constant amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、従来の定値制御方法を実施した吸入
圧制御装置の系統図、第3図は、本発明を実施した吸入
圧制御装置の一実施例を示す系統図である。 22、23’・・・・・・導管、加・・面圧力調節計、
葛、44・・・調節弁、刃・・・・・・スイッテ
1 and 2 are system diagrams of a suction pressure control device implementing a conventional fixed value control method, and FIG. 3 is a system diagram showing an embodiment of a suction pressure control device implementing the present invention. 22, 23'... Conduit, pressure controller,
Kudzu, 44...Control valve, Blade...Suite

Claims (1)

【特許請求の範囲】[Claims] 1、流体の流量の全量を一定量暑う、かつ、該流体の流
量の変動量を一定量内に制御する方法において、前記流
体の流量の変動量を一定量内に制御可能な容量の調節弁
が全開又は全閉時のみ、少なくとも該調節弁の容量との
合計で前記流体の流量の全量を一定量に制御可能な容量
の調節弁を開閉作動させることを特徴とする定値制御方
法。
1. In a method for heating the entire flow rate of a fluid by a certain amount and controlling the amount of variation in the flow rate of the fluid within a certain amount, a regulating valve having a capacity that can control the amount of variation in the flow rate of the fluid to be within a certain amount. A constant value control method, characterized in that only when the control valve is fully open or fully closed, a control valve having a capacity that can control the total flow rate of the fluid to a constant amount at least in total with the capacity of the control valve is opened and closed.
JP10205282A 1982-06-16 1982-06-16 Constant value controlling method Granted JPS58219617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10205282A JPS58219617A (en) 1982-06-16 1982-06-16 Constant value controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10205282A JPS58219617A (en) 1982-06-16 1982-06-16 Constant value controlling method

Publications (2)

Publication Number Publication Date
JPS58219617A true JPS58219617A (en) 1983-12-21
JPH0529925B2 JPH0529925B2 (en) 1993-05-06

Family

ID=14316990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10205282A Granted JPS58219617A (en) 1982-06-16 1982-06-16 Constant value controlling method

Country Status (1)

Country Link
JP (1) JPS58219617A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299969A (en) * 1976-02-18 1977-08-22 Hitachi Ltd Condensation desalting apparatus
JPS56100701U (en) * 1979-12-27 1981-08-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299969A (en) * 1976-02-18 1977-08-22 Hitachi Ltd Condensation desalting apparatus
JPS56100701U (en) * 1979-12-27 1981-08-08

Also Published As

Publication number Publication date
JPH0529925B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
US5798941A (en) Surge prevention control system for dynamic compressors
US4255089A (en) Method of controlling series fans driving a variable load
US4844059A (en) Method and apparatus for enriching respiratory gas with oxygen and delivering it to a patient
JPH01285698A (en) Adjusting method avoiding surge of turbocompressor by blow-off
JPS58219617A (en) Constant value controlling method
US6379122B1 (en) System and method for automatic thermal protection of a fluid compressing system
US4867195A (en) Vapor pressure control system
US3226011A (en) Commandair control system
GB2082798A (en) Compressor
CN109914518A (en) A kind of device promoting large excavator power Dynamic Matching
US6622489B1 (en) Integrated gas booster modulation control method
US1344921A (en) Air-suction regulator
US5074719A (en) Method of regulating the overflow from a cyclone, hydrocyclone or similar device
CN107859872A (en) A kind of fixed diameter throttling cellular type automatic pressure-reducing device
GB822084A (en) Apparatus for maintaining a constant pressure at varying capacity or a constant capacity at variable pressure in a centrifugal compressor
TW202407245A (en) Pressure sensing and regulating system
SU670305A2 (en) Pressure chamber
JPH064394U (en) Compressor control device
JPH0658295A (en) Controller for compressor
US775393A (en) Regulator for compressors or the like.
SU849160A1 (en) Gas pressure gauge
JPH04116296A (en) Compressor
JPH05118297A (en) Control device of compressor
JPH04303199A (en) Control method and apparatus for compressor