JPS58219359A - Manufacture of solar heat absorption body - Google Patents
Manufacture of solar heat absorption bodyInfo
- Publication number
- JPS58219359A JPS58219359A JP57103547A JP10354782A JPS58219359A JP S58219359 A JPS58219359 A JP S58219359A JP 57103547 A JP57103547 A JP 57103547A JP 10354782 A JP10354782 A JP 10354782A JP S58219359 A JPS58219359 A JP S58219359A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- nickel
- solar heat
- alloy
- chemical conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
- C23C22/63—Treatment of copper or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/25—Coatings made of metallic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、太陽熱温水器などに用いられる太陽熱吸収
体の製法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solar heat absorber used in solar water heaters and the like.
太陽エネルギーの吸収体としては、可視光域および近赤
外領域の電磁波に対する吸収率が高く、しかも赤外領域
での放射率の低いものが要求される。A solar energy absorber is required to have a high absorption rate for electromagnetic waves in the visible light region and near-infrared region, and a low emissivity in the infrared region.
従来、太陽エネルギーを良好に吸収し、かつ赤外領域で
の熱放射が少ない被膜(一般に選択吸収膜と呼ばれる)
を表面に形成1−でなる太陽熱吸収体が種々考え出され
ており、このような選択吸収膜としては酸化@1銅(C
uzO) 被膜や酸化第2銅(CuO)被膜などの酸
化銅被膜が広く知られている。Conventionally, coatings that absorb solar energy well and emit little heat in the infrared region (generally called selective absorption coatings)
A variety of solar heat absorbers have been devised that are formed on the surface of 1-copper oxide (C).
Copper oxide coatings such as uzO) coatings and cupric oxide (CuO) coatings are widely known.
しかしながら、上記酸化鋼からなる選択吸収膜を基材表
面に形成した従来の太陽熱吸収体は、一般に耐熱性が悪
込ため、たとえば使用中、熱媒体を導通させない状態で
太陽光に曝されるなどのため、ときにより200℃もの
高温に達することがあり、劣化が起きる。そのため、近
赤外域(波長0.7〜2.5ミクロン)での吸収率が低
下するほか、下地の銅成分が酸化されて選択吸収膜の膜
厚が次第に増加するため、赤外領域における熱放射が増
大するというような問題を生ずることが多かった。However, conventional solar heat absorbers in which a selective absorption film made of the above-mentioned oxidized steel is formed on the surface of the base material generally have poor heat resistance. As a result, temperatures can sometimes reach temperatures as high as 200°C, causing deterioration. Therefore, in addition to decreasing the absorption rate in the near-infrared region (wavelength 0.7 to 2.5 microns), the underlying copper component is oxidized and the thickness of the selective absorption film gradually increases. This often resulted in problems such as increased radiation.
この発明は、以上のような事情に鑑みなされたもので、
太陽熱の吸収率が高くて径時変化がなく、かつ耐熱性お
よび耐蝕性にもすぐれた太陽熱吸収体の製法を提供する
ものである。これにつめて以下に説明する。This invention was made in view of the above circumstances,
The present invention provides a method for producing a solar heat absorber that has a high solar heat absorption rate, does not change over time, and has excellent heat resistance and corrosion resistance. This will be explained below.
この発明は、酸化銅の選択吸収膜を備えた太陽熱吸収体
を酸化処理によって得る方法であって、選択吸収膜を製
造する素材として鏑−ニッケルの合金を用いることを特
徴とする太陽熱吸収体の製法を要旨と1−ている。The present invention is a method for obtaining a solar heat absorber equipped with a copper oxide selective absorption film by oxidation treatment, and the solar heat absorber is characterized in that a black-nickel alloy is used as a material for manufacturing the selective absorption film. The manufacturing method is summarized in 1-.
この発明の方法によって得られる太陽熱吸収体は、表層
が選択吸収特性をもつ酸化銅、中層が耐久性にすぐれた
ニッケル、および内層または下層が銅−ニッケルの合金
で構成される3層構造部分を持つのが普通である。The solar heat absorber obtained by the method of the present invention has a three-layer structure in which the surface layer is made of copper oxide with selective absorption characteristics, the middle layer is made of nickel with excellent durability, and the inner layer or lower layer is made of a copper-nickel alloy. It is normal to have one.
この発明は、選択吸収膜を製造する素材として銅−ニッ
ケルの合金を用い、銅−ニッケル合金を化成処理等酸化
処理することによって酸化銅を得ている。具体的には、
銅−ニッケル合金の粉粒を別に用意した基材上に接着剤
などを介1−て固着させ、その後、化成処理するか、ま
たは銅−ニッケル合金の粉粒化したものを酸化処理した
後、基材上に接着剤などを介して固着させるかする。さ
らには、銅−ニッケルの合金板を基材としてその表面を
化成処理するようにする。In this invention, a copper-nickel alloy is used as a material for manufacturing a selective absorption film, and copper oxide is obtained by subjecting the copper-nickel alloy to oxidation treatment such as chemical conversion treatment. in particular,
Copper-nickel alloy powder is fixed onto a separately prepared base material using an adhesive or the like, and then subjected to chemical conversion treatment, or after oxidation treatment of the copper-nickel alloy powder, It is fixed onto the base material using an adhesive or the like. Furthermore, a copper-nickel alloy plate is used as a base material, and its surface is subjected to chemical conversion treatment.
この発明にかかる太陽熱吸収体を製造するのに使用する
銅−ニッケル合金は、通常、白銅として市販されている
ものを用いることができる。白銅はニッケル(Ni )
含有量9.0〜33.04であって、その他に約1係の
鉄(Fe) 、約1係の亜鉛(Zn) 、 0.2〜1
.0 ’Zのマンガン(Mn)、 0.005’1以下
の鉛(Pb)を含み、残りは銅(Cu) で構成され
るものが一般であるが、Niのさらに高含有量のもので
あってもよho
次に、基材としては化学的、熱的に安定なものであれば
特に限定されるものではなく、例えば、ガラス板、ステ
ンレス鋼板および銅板などが好ましく使用される。その
他、前記白銅板も使用することができる。なお、基材は
後述の化成処理を促進するために表面を清浄にすること
が好ましい。As the copper-nickel alloy used to manufacture the solar heat absorber according to the present invention, one that is normally commercially available as cupronickel can be used. Cupronickel is nickel (Ni)
The content is 9.0 to 33.04, and also about 1 part iron (Fe), about 1 part zinc (Zn), 0.2 to 1 part
.. Generally, it contains manganese (Mn) of 0'Z, lead (Pb) of 0.005'Z or less, and the rest is copper (Cu), but there are some that contain even higher Ni content. Next, the base material is not particularly limited as long as it is chemically and thermally stable, and for example, glass plates, stainless steel plates, copper plates, etc. are preferably used. In addition, the cupronickel plate described above can also be used. Note that the surface of the base material is preferably cleaned in order to promote the chemical conversion treatment described below.
清浄処理は酸化処理に先立ち、脱脂後、酸などで表面を
活性化し、その後、洗浄、中和および水洗などすること
によって行なわれる。Prior to the oxidation treatment, the cleaning treatment is performed by degreasing, activating the surface with an acid or the like, and then washing, neutralizing, washing with water, etc.
基材に銅−ニッケル合金の粉末を固着させるだめの固着
剤としては、例えばポリエチレンなどのようなプラスチ
ック成形材料等の樹脂材料、または、シリコン系、フッ
素系また#iBTレジンなどの耐熱性の接着剤あるいは
水ガラス系などの無機系接着剤等を使用できるが、特に
これらに限定されるものではない。As a fixing agent for fixing the copper-nickel alloy powder to the base material, for example, a resin material such as a plastic molding material such as polyethylene, or a heat-resistant adhesive such as silicone-based, fluorine-based, or #iBT resin is used. or an inorganic adhesive such as a water glass adhesive, but is not particularly limited to these.
固着方法としては、銅−ニッケルの合金粉末を樹脂材料
中に混入練り込み、これを基材にスプレ方式などで付着
させる方法、または基材上に接着剤を刷毛などで塗布、
あるいは基材を接着剤液に浸漬などして基材表面に接着
剤を付着させた状態で銅−ニッケル合金粉末を散布して
付着させるなどの方法が行われる。混入、練り込み方法
では、後の化成処理工程で酸化されにくく、酸化にばら
つきを来し易りので散布方式が好まし^。なお、基材に
銅−ニッケルの合金粉末を接着剤などを介して付着させ
た後は、硬化処理して完全に固着させる。The fixing method is to mix and knead copper-nickel alloy powder into the resin material and attach it to the base material using a spray method, or to apply adhesive onto the base material with a brush or the like.
Alternatively, a method may be used in which the adhesive is adhered to the surface of the substrate by immersing the substrate in an adhesive liquid, and then the copper-nickel alloy powder is spread and adhered to the surface of the substrate. The mixing and kneading method is less likely to be oxidized in the subsequent chemical conversion treatment process and tends to cause variations in oxidation, so the spraying method is preferable. Note that, after the copper-nickel alloy powder is attached to the base material via an adhesive or the like, it is hardened to be completely fixed.
なお、銅−ニッケル合金板などを粉粒化する場合の粒子
の大きさは特に限定されな^が、200μ以下にすると
好結果が得られるので好ましい。これは粒子が200μ
以下の小粒であると、表層の酸化第2銅(Cub)、中
層の多孔質ニッケルの持つ選択性能に併せて、金属粒子
個有の物理的構造に伴う多重反射効果が加わるためと考
えられる。The size of the particles when pulverizing a copper-nickel alloy plate or the like is not particularly limited, but it is preferable to set it to 200 μm or less because good results can be obtained. This means that the particles are 200μ
This is considered to be due to the fact that when the particles are smaller than the following, a multiple reflection effect is added due to the physical structure unique to the metal particles, in addition to the selective performance of cupric oxide (Cub) in the surface layer and porous nickel in the middle layer.
白銅板を使用する場合は、白銅板表面を清浄処理した後
、酸化処理を行なえばよい。When using a cupronickel plate, the surface of the cupronickel plate may be cleaned and then oxidized.
銅−ニッケル合金は極めて酸化を受けに〈(、耐蝕性に
すぐれている。したがって、その酸化処理として行なう
化成処理は、銅などに対するよりもかなりきびしカ条件
で行なう必要がある。Copper-nickel alloys are extremely susceptible to oxidation and have excellent corrosion resistance. Therefore, the chemical conversion treatment performed as oxidation treatment must be performed under conditions that are much more severe than those for copper.
酸化処理用の化成処理液は、酸化剤とアルカリ添加剤と
の混合水浴液であり、酸化剤としては、亜塩素酸ナトリ
ウム(NaC10z)、次亜塩素酸ナトリウム(NaC
10) 、過硫酸カリウム(KzSzOa)*過硫酸ナ
トリウム(NaC10z)、過硫酸アンモニウム((N
H4’)25208) などの亜塩素酸塩、次亜塩素
酸塩または過硫酸塩が用いられ、アルカIJ ?に加削
としては水酸化ナトリウム(NaOH) 、水酸化カリ
ウム(KOH)などが用いられる。酸化剤としてNaC
lO2を、またアルカリ添加剤としてNaOHを用いる
のが実用的に最もすぐれて^る。The chemical conversion treatment liquid for oxidation treatment is a mixed bath liquid containing an oxidizing agent and an alkaline additive, and the oxidizing agent includes sodium chlorite (NaC10z), sodium hypochlorite (NaC
10), Potassium persulfate (KzSzOa) * Sodium persulfate (NaC10z), Ammonium persulfate ((N
H4') 25208) are used, as are chlorites, hypochlorites or persulfates such as alkali IJ? For machining, sodium hydroxide (NaOH), potassium hydroxide (KOH), etc. are used. NaC as oxidizing agent
It is practically best to use lO2 and NaOH as an alkaline additive.
酸化作用を促進するために、これら化成処理液中へ銅イ
オンを添加してもよい。たとえば硫酸銅(CuSO4)
、硝酸銅(Cu(NOa)2) 、塩化銅(CuC1
z’)など銅塩の水溶液を微量添加するという方法によ
ってもよく、また金属銅を化成処理液中に浸漬し、この
液で処理することによって銅イオンを増加させるという
方法によってもよい。化成処理液中の銅イオンの濃度は
lO〜200 ppmとするのが効果的である。Copper ions may be added to these chemical conversion treatment solutions in order to promote the oxidation action. For example, copper sulfate (CuSO4)
, copper nitrate (Cu(NOa)2), copper chloride (CuC1
A method may be employed in which a trace amount of an aqueous solution of a copper salt such as z') is added, or a method may be employed in which metallic copper is immersed in a chemical conversion treatment solution and treated with this solution to increase copper ions. It is effective to set the concentration of copper ions in the chemical conversion treatment solution to 10 to 200 ppm.
化成処理に際しては、AgNO3水溶液でも同様の効果
が得られる。In the chemical conversion treatment, a similar effect can be obtained using an AgNO3 aqueous solution.
このような化成処理液を用いて酸化処理を施せば、銅−
ニッケル合金は、表面が酸化されて、おおよその形態と
して表層に繊維状ないし葉状を呈する酸化第2銅(Cu
O)結晶からなる選択吸収膜、その下(中層)に化成処
理でCuがCuOに変化することにより銅の稀薄となっ
たニッケル層(微量のCuは存在する)、さらにその下
(下層もしくは内層)に酸化を受けていない銅−ニッケ
ルの6金層が存在する本のとなる。もつとも、この構造
は、各層をつくってhる成分が多少互いに混在した状態
でこのような構成分布を示している場合もある。If oxidation treatment is performed using such a chemical conversion treatment solution, copper-
The surface of the nickel alloy is oxidized to form cupric oxide (Cu), which has a fibrous or leaf-like shape on the surface.
O) A selective absorption film made of crystals, below that (middle layer) is a nickel layer in which copper is diluted by changing Cu to CuO through chemical conversion treatment (a trace amount of Cu exists), and further below that (lower layer or inner layer). ) has a copper-nickel 6-gold layer that has not undergone oxidation. However, this structure may exhibit such a compositional distribution in a state where the components of each layer are mixed to some extent.
オージェ電子分光法により逆スパツタリングを行ないな
がら表層の酸化銅膜より中層、下層または内層にかけて
組成分析を行なったところ、中層以下は第1図の如き組
成変化を示していることが確認された。すなわち、表面
からの深さでみて50〜1000Aにわたる中層はほと
んどニッケル層で形成され、中層から下層または内層に
かけて次第にニッケル成分が減少すると共に銅成分が増
大し、下層または内層に達すると当初の銅−ニッケル合
金の組成範囲に戻っているのである。なお、オー1各
ジエ電子分光法の場合、分析誤差は104程度と考えら
れるので、ニッケル層には極く微量のCuが残存してb
る可能性もあるが、この程度の微量のCuは、後述する
実施例の結果からみても耐熱性に悪影響を及ぼすものと
は認められない。第2図は素材が白銅板の、第3図は素
材が白銅粒子の場合の各構造を模式的にあられしている
。図中、lはCuO層、2はNiリッチ層、3はCu−
Ni合金層をあられす。When the composition was analyzed by Auger electron spectroscopy from the surface copper oxide film to the middle, lower, or inner layers while performing reverse sputtering, it was confirmed that the middle and lower layers exhibited compositional changes as shown in Figure 1. In other words, the middle layer, which ranges from 50 to 1000 A in depth from the surface, is formed mostly of nickel, and from the middle layer to the lower or inner layer, the nickel content gradually decreases and the copper content increases, and when the lower or inner layer is reached, the original copper is lost. - It is back to the composition range of nickel alloys. In addition, in the case of O-1 Dier electron spectroscopy, the analysis error is considered to be about 104, so a very small amount of Cu remains in the nickel layer.
However, such a small amount of Cu is not recognized to have an adverse effect on heat resistance, even from the results of Examples described later. Fig. 2 schematically shows each structure when the material is a cupronickel plate, and Fig. 3 when the material is cupronickel particles. In the figure, l is a CuO layer, 2 is a Ni-rich layer, and 3 is a Cu-
Spray the Ni alloy layer.
通常の酸化銅系選択吸収膜の場合、下地が銅であるため
、150℃以上の熱を受けると、下地の銅が酸化され、
酸化銅層の厚みが増加していく。In the case of ordinary copper oxide-based selective absorption films, the underlying copper is copper, so if it is exposed to heat of 150°C or higher, the underlying copper will oxidize.
The thickness of the copper oxide layer increases.
その結果、可視光域(0,3〜0.7μ)の吸収率は変
化しないが、近赤外域(0,7〜2.5μ)の吸収率が
低下し、放射率が増加する。As a result, the absorption rate in the visible light range (0.3-0.7μ) does not change, but the absorption rate in the near-infrared range (0.7-2.5μ) decreases and the emissivity increases.
これに対し、この発明にかかる方法によって作られた太
陽熱吸収体は、太陽光の波長範囲(0,3〜2.5μ)
の中、可視域(0,3〜0.7μ)のものは酸化第2銅
(Cub)膜で吸収され、近赤外域(0,7〜2.5μ
)のものは酸化第2銅(Cub’)の微細構造とニッケ
ルの微細構造の多重反射により吸収されて、結局、太陽
光の吸収率ωが通常の場合0.93以上と高い値を示す
。他方、放射率(ε)は、ニッケルの微細構造が極めて
小さく、赤外光に対し、フラットな表面とみることがで
きる状況を呈するため、小さくなる。しかも、酸化第2
銅(CuO)の下はニッケル層なので耐熱性にすぐれ、
劣化することがない。したがって−吸収率ωおよび放射
率(ε)の経口変化が生じない。その上、最下層または
内層は銅−ニッケル合金で構成されるので耐蝕性に一段
とすぐれる。特に、銅−ニッケル合金の粉末を基材に固
着させて得た太陽熱吸収体は、基材上の粒体が一個毎に
選択吸収面と1−で働くので、前記効果が顕著である。On the other hand, the solar heat absorber made by the method according to the present invention has a wavelength range of sunlight (0.3 to 2.5μ).
Among them, those in the visible range (0.3 to 0.7μ) are absorbed by the cupric oxide (Cub) film, and those in the near-infrared region (0.7 to 2.5μ) are absorbed by the cupric oxide (Cub) film.
) is absorbed by multiple reflections of the cupric oxide (Cub') microstructure and the nickel microstructure, and as a result, the absorption rate ω of sunlight usually shows a high value of 0.93 or more. On the other hand, the emissivity (ε) is small because the fine structure of nickel is extremely small and presents a situation where it can be seen as a flat surface to infrared light. Moreover, the second oxidation
There is a nickel layer under the copper (CuO), so it has excellent heat resistance.
Never deteriorates. Therefore - no oral changes in absorption rate ω and emissivity (ε) occur. Moreover, since the bottom layer or inner layer is made of a copper-nickel alloy, it has even better corrosion resistance. Particularly, in a solar heat absorber obtained by fixing copper-nickel alloy powder to a base material, the above effect is remarkable because each particle on the base material acts as a selective absorption surface.
また、従来のように、基材上にニッケルメッキし、この
ニッケル表tiヲ持つ基材に銅メッキを行ない、さらに
酸化処理するという複雑な製造工程を経て太陽熱吸収体
を得ることに比較すれば、この発明は、選択吸収膜の製
造に際し、銅−ニッケル合金を素材としてこれを酸化処
理するだけでよ込から、メッキ工程などが著しく短縮さ
れ、簡略化されたものとなっている。Also, compared to the conventional method of obtaining a solar heat absorber through a complicated manufacturing process of nickel plating on a base material, copper plating on the base material with a nickel surface, and further oxidation treatment, According to the present invention, when producing a selective absorption film, the plating process and the like are significantly shortened and simplified by simply oxidizing a copper-nickel alloy as a raw material.
以下、実施例について比較例と併せて説明する。Examples will be described below along with comparative examples.
〔実施例1〜6〕 、〔比較例1〜2〕ニッケルー銅合
金素材として、神戸製鋼(株)の下記2種の白銅板を使
用1−だ。[Examples 1 to 6], [Comparative Examples 1 to 2] The following two types of cupronickel plates manufactured by Kobe Steel, Ltd. were used as nickel-copper alloy materials.
白銅板C7060(白銅1種):ニッケル含有量9.0
〜11,0俤
白銅板C7150(白銅2種):ニッケル含有旨29、
O〜33.0係
上記白銅板をあらかじめ機械的に粗粒子化したのち、ス
テンレス族のボットミルで粉砕し、粒度の異なる3種の
タイプの粉末を得た。Cupronickel plate C7060 (class 1 cupronickel): Nickel content 9.0
~11,0 yen Cupronickel plate C7150 (2 types of cupronickel): Contains nickel 29,
The cupronickel plate having a ratio of 0 to 33.0 was mechanically coarsened in advance, and then ground in a stainless steel bot mill to obtain three types of powders having different particle sizes.
第 1 表
〈実施例1〉
ストレートシリコンワニスKR−177N ((N越
化学社)をキシレンで稀釈して得た固形分濃度10重量
係のペースト状物を、予め表面を清浄にしてあったガラ
ス板表面に刷毛を用いて塗布した。その表面にC70f
iOのタイプA粉末を散布した後、100℃、15分間
加熱して樹脂分を硬化させた。Table 1 <Example 1> A paste-like material obtained by diluting straight silicone varnish KR-177N (N-Etsu Chemical Co., Ltd.) with xylene and having a solid content concentration of 10% by weight was applied to a glass whose surface had been cleaned in advance. C70f was applied to the surface of the board using a brush.
After sprinkling iO type A powder, the resin was cured by heating at 100° C. for 15 minutes.
硬化後NaCl0z 90g/l 、 NaOH90
11/l の処理液で100℃、3分間化成処理を行
なった。After curing NaCl0z 90g/l, NaOH90
Chemical conversion treatment was performed at 100° C. for 3 minutes using a treatment solution of 11/l.
〈実施例2〉
シリコンワニスTBS−400(日本コルコート社)ヲ
イソブロビルアルコールで稀釈して得だ固形分濃度20
重量係のワニスに、固形分の2倍重量のC7150タイ
プA粉末を混入させてペースト状物を得、予め表面を清
浄にしてあったガラス板表面にこれをスプレー塗布した
。これを100℃、10分間加熱して樹脂分を硬化させ
た後、実施例1と同じ化成処理液を用いて100℃、1
5分間化成処理を行なった。<Example 2> Silicone varnish TBS-400 (Nippon Colcoat Co., Ltd.) was diluted with isobrobyl alcohol to obtain a solid content concentration of 20.
C7150 type A powder in an amount twice the weight of the solid content was mixed into a weight varnish to obtain a paste, which was spray applied onto the surface of a glass plate whose surface had been previously cleaned. This was heated at 100°C for 10 minutes to harden the resin, and then heated at 100°C for 10 minutes using the same chemical conversion treatment solution as in Example 1.
Chemical conversion treatment was performed for 5 minutes.
〈実施例3ン
BT2170(三菱瓦斯化学社)20部、カルボン酸含
有アクリ、ル樹脂80部、アセト酢酸エチル □5
00部の塗料配合ペースト状物を、予め、脱脂処理して
あった厚み0.5 mmのステンレス鋼(304)表面
に刷毛を用りて塗布l−た。その表面にC7150のタ
イプB粉末を散布した後、140℃、20分間焼付けを
行なった。その後、K2S2O8101/ l 。<Example 3> 20 parts of BT2170 (Mitsubishi Gas Chemical Co., Ltd.), 80 parts of carboxylic acid-containing acrylic resin, ethyl acetoacetate □5
Using a brush, 0.00 parts of the paint-containing paste was applied onto the surface of stainless steel (304) with a thickness of 0.5 mm, which had been previously degreased. After scattering C7150 type B powder on the surface, baking was performed at 140° C. for 20 minutes. Then K2S2O8101/l.
NaOH50,!i+// の処理液で100℃、3
分間化成処理を行なった。NaOH50,! i+// treatment solution at 100℃, 3
A minute chemical conversion treatment was performed.
〈実施例4〉
フッ素系コーテイング材フロラードFC−721(住友
スリーエム社)をキシレンで稀釈して得た固形分濃度1
5重量係のワニスに、固形分の3倍重量のC7060タ
イプB粉末を混入させて混合ペースト状物を得、これを
、予め表面を脱脂処理してあった厚み0.5 mmのス
テンレス鋼(304)表面にスプレー塗布した。これを
100℃、15分間加熱して樹脂分を硬化させた後、実
施例3と同じ化成処理液を用いて100℃、15分間化
成処理を行なった。<Example 4> Solid content concentration 1 obtained by diluting fluorine-based coating material Florard FC-721 (Sumitomo 3M) with xylene
A mixed paste was obtained by mixing C7060 type B powder with a weight of 3 times the weight of the solid content into a varnish weighing 5 weight, and this was mixed onto a 0.5 mm thick stainless steel plate (the surface of which had been degreased in advance). 304) Sprayed on the surface. This was heated at 100° C. for 15 minutes to harden the resin, and then chemical conversion treatment was performed at 100° C. for 15 minutes using the same chemical conversion treatment solution as in Example 3.
〈実施例5〉
3号水ガラスを固形分10重重量圧なるように精製水で
稀釈して得た液に、予め表面を脱脂処理してあったJI
SH3100の銅板(厚み0.3 mm)を浸漬した。<Example 5> A liquid obtained by diluting No. 3 water glass with purified water to a solid content of 10 g/w was mixed with JI whose surface had been previously degreased.
A SH3100 copper plate (thickness 0.3 mm) was immersed.
その表面にC7150のタイプB粉末を散布した後、5
0℃、10分間予備乾燥し、その後250℃、30分間
加熱して樹脂分を硬化させた。これを実施例1と同一条
件で化成処理を行なった。After scattering C7150 type B powder on the surface, 5
It was pre-dried at 0°C for 10 minutes, and then heated at 250°C for 30 minutes to harden the resin. This was subjected to chemical conversion treatment under the same conditions as in Example 1.
〈実施例6〉
実施例3において銅−ニッケル合金素材とl−てC71
50のタイプC粉末を使用するようにした以外は、実施
例3に準じて行なった。<Example 6> In Example 3, copper-nickel alloy material and C71
The procedure of Example 3 was followed except that 50 Type C powder was used.
〈比較例1〉
実施例1において、基材表面に散布する粉末としてJI
SH3100の銅粉末を使用するようにした以外は、粒
度も含め実施例1に準じて行なった。<Comparative Example 1> In Example 1, JI was used as the powder to be sprinkled on the surface of the base material.
The procedure of Example 1 was followed, including the particle size, except that SH3100 copper powder was used.
〈比較例2〉
実施例5において、基材表面に散布する粉末としてJI
SH3100の銅粉末を使用するようにした以外は、粒
度も含め実施例5に準じて行なった。<Comparative Example 2> In Example 5, JI was used as the powder to be sprinkled on the surface of the base material.
The procedure of Example 5 was followed, including the particle size, except that SH3100 copper powder was used.
実施例1〜6.比較例1〜2で得られた選択吸収膜の性
能は第2表のとおりである。Examples 1-6. The performance of the selective absorption membranes obtained in Comparative Examples 1 and 2 is shown in Table 2.
〔実施例7〜12]、[比較例3〜4〕銅−ニッケル合
金素材として白銅板2種(C7060。[Examples 7 to 12], [Comparative Examples 3 to 4] Two types of cupronickel plates (C7060) as copper-nickel alloy materials.
C7150)を用い、それぞれを48Y脱脂剤(ディッ
プソール社)の4oy/l溶液に50℃〜60℃、1〜
5分間浸漬し、完全脱脂した。脱脂後−充分に洗浄し、
2 % −f(C1中に2分間浸漬して表面の活性化を
行なった。その後充分に洗浄し、2% −NaOHで中
和してさらに水洗した。以後は第3表の処理条件で化成
処理を行なった。得られた選択吸収膜の性能を第4表に
示した。C7150), and each was added to a 4 oy/l solution of 48Y degreaser (Dipsol Co., Ltd.) at 50°C to 60°C for 1 to 10 minutes.
It was soaked for 5 minutes and completely degreased. After degreasing - thoroughly wash,
The surface was activated by immersing it in 2%-F (C1) for 2 minutes. After that, it was thoroughly washed, neutralized with 2%-NaOH, and further washed with water. The performance of the selective absorption membrane obtained is shown in Table 4.
(以 下 余 白)
(15)
第3表
なお、以上の実施例および比較例において試験方法は次
の通りである。(Margin below) (15) Table 3 In addition, the test methods in the above Examples and Comparative Examples are as follows.
(試験方法)
銅メッキ厚: 中央製作所製電解式膜厚測定器を使用し
た。(Test method) Copper plating thickness: An electrolytic film thickness measuring device manufactured by Chuo Seisakusho was used.
CuO、Cu2O膜厚: 定電流還元法とX線回折法を
組合せて測定した。CuO, Cu2O film thickness: Measured using a combination of constant current reduction method and X-ray diffraction method.
ここでα;吸収率(太陽全エネルギーに対する)
αλ;波長λでの吸収率
IA;太陽光の波長λの放射強度
ここでε;放射率(黒体放射全エネルギーに対する)
(18)
SAT= 16゜;150℃の黒体からの波長λの放射
強度
ε、;波長波長数射率(黒体に対す
る)
なお、赤外分光光度計で赤外域の反射率P、を測定し、
t =I Paとした。Here α: Absorption rate (relative to total solar energy) αλ: Absorption rate at wavelength λ IA: Radiation intensity at wavelength λ of sunlight Here ε: Emissivity (relative to total blackbody radiation energy) (18) SAT= 16゜: Radiation intensity ε of wavelength λ from a black body at 150°C; wavelength wavelength number emissivity (relative to a black body) In addition, the reflectance P in the infrared region was measured with an infrared spectrophotometer,
It was set as t=IPa.
λ
以上の実施例1〜12および比較例1〜40対比によっ
て明らかなように、この発明の方法によって作られた太
陽熱吸収体は、200℃、1000時間試験後において
も太陽熱の吸収率ωおよび放射率(ε)は経日変化がな
く良好であり、耐熱性にすぐれたものであった。λ As is clear from the comparison of Examples 1 to 12 and Comparative Examples 1 to 40 above, the solar heat absorber made by the method of the present invention has a high solar heat absorption rate ω and radiation even after testing at 200°C for 1000 hours. The ratio (ε) was good with no change over time, and the heat resistance was excellent.
第1図はこの発明にかかる方法によって得た太陽熱吸収
体の深さ50λ以下の部分の組成変化をあられすグラフ
、第2図は素材が銅−ニッケル合金板である場合の、ま
た第3図は素材が銅−ニッケル合金粒子である場合の、
板および粒子の表向および内部の構造を模式的にあられ
す説明図である。
1・・・CuO層 2・・・Niリッチ膚 3・・・C
u−Ni合金層
特許出願人 松下電工株式会社
代理人 弁理士 松 本 武 彦
(21)
第1図
第2図
第3図Figure 1 is a graph showing the composition change in the portion below a depth of 50λ of a solar heat absorber obtained by the method according to the present invention, Figure 2 is a graph showing the composition change when the material is a copper-nickel alloy plate, and Figure 3 is when the material is copper-nickel alloy particles,
FIG. 2 is an explanatory diagram schematically showing the surface and internal structures of plates and particles. 1...CuO layer 2...Ni-rich skin 3...C
u-Ni alloy layer patent applicant Matsushita Electric Works Co., Ltd. agent Patent attorney Takehiko Matsumoto (21) Figure 1 Figure 2 Figure 3
Claims (4)
処理によって得る方法であって、選択吸収膜を製造する
素材として銅−ニッケルの合金を用いることを特徴とす
る太陽熱吸収体の製法。(1) A method for producing a solar heat absorber equipped with an oxidized steel selective absorption film by oxidation treatment, characterized in that a copper-nickel alloy is used as the material for producing the selective absorption film. .
囲第1項記載の太陽熱吸収体の製法。(2) A method for manufacturing a solar heat absorber according to claim 1, which is an alloy plate of copper alloy and nickel.
せたものである特許請求の範囲第1項記載の太陽熱吸収
体の製法。(3) The method for manufacturing a solar heat absorber according to claim 1, wherein the material is copper-nickel alloy particles fixed on a base material.
下である特許請求の範囲第3項記載の太陽熱吸収体の製
法。(4) The method for manufacturing a solar heat absorber according to claim 3, wherein the average particle size of the copper-nickel alloy particles is 200 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57103547A JPS58219359A (en) | 1982-06-15 | 1982-06-15 | Manufacture of solar heat absorption body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57103547A JPS58219359A (en) | 1982-06-15 | 1982-06-15 | Manufacture of solar heat absorption body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58219359A true JPS58219359A (en) | 1983-12-20 |
Family
ID=14356847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57103547A Pending JPS58219359A (en) | 1982-06-15 | 1982-06-15 | Manufacture of solar heat absorption body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58219359A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0670378A1 (en) * | 1994-03-01 | 1995-09-06 | Carrier Corporation | Copper article with protective coating |
GR980100398A (en) * | 1998-10-30 | 2000-06-30 | Development of a selective surface (selective black copper patina) in a copper band for use as a solar collector |
-
1982
- 1982-06-15 JP JP57103547A patent/JPS58219359A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0670378A1 (en) * | 1994-03-01 | 1995-09-06 | Carrier Corporation | Copper article with protective coating |
GR980100398A (en) * | 1998-10-30 | 2000-06-30 | Development of a selective surface (selective black copper patina) in a copper band for use as a solar collector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2014285C3 (en) | Process for preparing aluminum or aluminum alloy surfaces for electroless nickel plating | |
US2854737A (en) | Copper coated uranium article | |
DE2718288C2 (en) | Method of manufacturing a selective solar energy absorber | |
JPS58219359A (en) | Manufacture of solar heat absorption body | |
US3498823A (en) | Electroless tin plating on electroless nickel | |
JP2003221683A (en) | Coating method onto surface of light metal alloy | |
JPS6230262B2 (en) | ||
JPS6138783B2 (en) | ||
JP3194064B2 (en) | Solar heat absorber | |
CN104325137A (en) | Preparation method for silver-coated aluminium powder | |
CN105755455A (en) | Magnesium alloy AZ31 blackening liquid and blackening method | |
JPH0280582A (en) | Base material having black body film and production of base material fitted with black body film thereof | |
JPS5952748B2 (en) | solar heat absorber | |
CN114134546B (en) | Integrating sphere and preparation method thereof | |
JPS6220473B2 (en) | ||
JPS6359065B2 (en) | ||
JPS5845442A (en) | Solar heat absorbing body | |
DE2947886A1 (en) | Thin cuprous oxide film prodn. on copper surface - by oxidising to (pseudo) halide and hydrolysing | |
KR20180117256A (en) | Conductive metal-coated Al powder and manufacturing method | |
JPS6311429B2 (en) | ||
EP2233609A1 (en) | Light-absorbing member and method for producing the same | |
JP2005187838A (en) | Metal surface treating liquid and metal surface treating method | |
JPH0247552B2 (en) | HOOROOBUTSUPINOYOBISONOSEIZOHOHO | |
JPS5811350A (en) | Manufacture of solar heat absorber | |
JPS5843357A (en) | Manufacture of solar heat absorber |