JPS6359065B2 - - Google Patents

Info

Publication number
JPS6359065B2
JPS6359065B2 JP57041174A JP4117482A JPS6359065B2 JP S6359065 B2 JPS6359065 B2 JP S6359065B2 JP 57041174 A JP57041174 A JP 57041174A JP 4117482 A JP4117482 A JP 4117482A JP S6359065 B2 JPS6359065 B2 JP S6359065B2
Authority
JP
Japan
Prior art keywords
nickel
plating
film
copper
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57041174A
Other languages
Japanese (ja)
Other versions
JPS58158456A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57041174A priority Critical patent/JPS58158456A/en
Publication of JPS58158456A publication Critical patent/JPS58158456A/en
Publication of JPS6359065B2 publication Critical patent/JPS6359065B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、太陽熱温水器などに用いられる太
陽熱吸収体に関するものである。 太陽エネルギーの吸収体としては、可視領域お
よび近赤外領域の電磁波に対する吸収率が高く、
しかも赤外領域での放射率の低いものが要求され
る。 従来、太陽エネルギーを良好に吸収し、かつ赤
外領域での熱放射が少ない被膜(一般に選択吸収
膜と呼ばれる)を表面に形成してなる太陽熱吸収
体が種々考え出されており、このような選択吸収
膜としては酸化第1銅(Cu2O)被膜や酸化第2
銅(CuO)被膜、もしくは酸化第2銅中に微量の
酸化第1銅が含まれている被膜などの酸化銅被膜
が広く知られている。 しかしながら、上記酸化銅からなる選択吸収膜
を基材表面に形成した従来の太陽熱吸収体は、一
般に耐熱性が悪いため、たとえば使用中、熱媒体
を導通させない状態で太陽光に曝されるなどし
て、ときにより200℃もの高温に達することがあ
り、劣化が起きる。そのため、近赤外領域(波長
0.7〜2.5ミクロン)での吸収率が低下するほか、
下地の銅成分が酸化されて選択吸収膜の膜厚が次
第に増加するため、赤外領域における熱放射が増
大するというような耐熱性の問題を生じることが
多かつた。 この発明は、以上のような事情に鑑みなされた
もので、太陽熱の吸収率が高く、かつ耐熱性にす
ぐれた太陽熱吸収体を提供するものである。これ
について以下に説明する。 太陽熱吸収体においては選択吸収膜の性能のみ
でなく、その下地たる基材の性能も重要である。
このような観点に立ち、発明者らは先に、下地金
属としてニツケルを選ぶことを提案した。すなわ
ち、少なくとも表面がニツケルからなる基材を用
いることを提案した。その後さらに研究を進めた
ところ、このような基材において、ニツケル下地
の表面性状が太陽熱吸収体の吸収特性に大きな影
響を持ち、したがつてニツケル下地の吸収率もし
くは表面粗度が特定の条件を満足するように基材
を選ぶこととすれば、すぐれた太陽熱吸収体を得
ることができることを見出した。 この発明は、このようにして完成されたもので
あり、少なくとも表面がニツケルからなる基材を
そなえ、この基材の表面を下地としてその上に酸
化銅の選択吸収膜が形成された太陽熱吸収体であ
つて、前記基材として、その表面性状が下記の条
件(イ)、(ロ)のいずれかを満足する基材が用いられて
いることを特徴とする太陽熱吸収体をその要旨と
する。 (イ) ニツケル下地の吸収率が、可視領域で0.4以
上、近赤外領域で0.2以上、赤外領域で0.2以下
であること。 (ロ) ニツケル下地の表面粗度が、中心線平均粗さ
でみて0.1〜3ミクロンであること。 以下に、これについて詳しく述べる。 基材としては、全体がニツケルからなるもの、
または、金属等の芯材(ベースメタル)表面にニ
ツケル層が形成されているものが用いられる。こ
のように選択吸収膜の下地としてニツケルを使用
する目的は、太陽熱吸収体の耐蝕性向上および耐
熱性向上のためである。すなわち、黒色クロムや
黒色ニツケル系の選択吸収膜でも膜は非常に多孔
性(ポーラス)であるため、基材の腐食を防ぐこ
とは困難である。また大気中で加熱された等の場
合は基材が酸化されてしまうこともある。たとえ
ば、太陽熱吸収体の使用中、熱媒体を導通させな
い状態で太陽光に曝されるなどすると、ときによ
り200℃もの高温に達することがあり、ために基
材の酸化が起きるのであるが、基材が酸化される
と、選択吸収膜の吸収特性αや放射特性εの性能
低下が起きるのである。その点、化学的および熱
的に安定なニツケルを選択吸収膜の下地金属とし
て用いれば、基材が腐食されたり、酸化されるこ
とがないため、好ましく用いられるのである。 この発明にかかる太陽熱吸収体が選択吸収膜の
下地として用いるニツケル下地はその表面が平坦
でなく粗面となつているところに特徴がある。す
なわち、ニツケル下地の表面が平坦になつている
と、そのニツケル下地自身はほとんど選択吸収特
性を有しない。これに対し、ニツケル下地表面が
微視的にみて著しく凹凸のある粗さをもつ場合、
ニツケル下地自身も選択吸収特性を持つ。この場
合、ニツケル下地表面の粗さの程度は中心線平均
粗度にして0.1〜3ミクロン(μ)になることが
必要である。なお、ニツケル下地表面が凹凸粗面
となる形態としては、下地ニツケル層が葉状ない
し繊維状または粒状あるいは多面体などの結晶か
らなるものがその典型例として挙げられるが、特
にこれらに限定されるというものではない。 以上のような粗表面を持つニツケル下地は、可
視光および近赤外光に対しては表面で多重反射を
起こさせるため、可視光および近赤外光をよく吸
収するが、波長2.5μ以上の赤外光に対しては平面
として働くものと思われ、赤外光をよく反射し、
したがつて放射率が小さい。このような粗表面を
持つニツケル下地上に酸化銅の選択吸収膜を形成
すると、これらの間で相剰効果があらわれ、太陽
熱吸収体の吸収特性が一段と向上する。 上にみたように、粗表面を持つニツケル下地は
それ自体も吸収能を持ち、これがその上に形成さ
れる酸化銅の選択吸収膜に協同して太陽熱吸収体
の性能を高めるものであるから、ニツケル下地の
表面性状については、その吸収率でもつて規定す
ることもできる。このような観点からみるとき、
ニツケル下地の吸収率としては、可視領域(0.3
〜0.7ミクロン)で0.4以上、近赤外領域(0.7〜
2.5ミクロン)で0.2以上で、赤外領域(2.5〜20ミ
クロン)0.2以下であることが要求される。 ニツケル下地は、表面酸化による微量の酸化物
など少量の不純物を含んでいてもよい。 太陽熱吸収体が実用上備えるべき吸収率および
放射率はいくらであるかについて、一般的概念と
して明確に規定された基準はない。しかし、市販
し得る太陽熱吸収体としては、吸収率が0.91以上
あり、放射率が0.3以下であることがひとつの基
準となるであろう。そして、前記した二つの条件
(中心線平均粗さでみた条件と吸収率でみた条件)
のいずれかを満足する基材を用いると、上に述べ
た基準を満たす太陽熱吸収体を確実に得ることが
できるのである。 このような粗表面を持つニツケル下地は、平滑
なニツケル表面を持つ基材の表面を、化学的手
法、機械的手法など適宜の手法により粗化するこ
とによつても得られるが、もつとも普通には芯材
上にニツケル層を形成することにより得られる。
このような下地となるニツケル層(普通は、一種
の膜状物である。)例えば電解メツキ法、無電解
メツキ法、真空蒸着法、スパツタリング法など
種々の方法で形成することができ、その方法は限
定されるものではない。芯材としては鉄板、鋼
板、銅板など種々の金属材料を用いることができ
る。金属以外であつてもよい。鉄板または銅板か
らなる芯材の表面にこのようなニツケルメツキ処
理を行なう場合は、一般に脱脂(必要な場合は電
解脱脂)、酸洗などの前処理を施しておく必要が
ある。芯材としてステンレス鋼板を用い、これに
上記ニツケルメツキを施す場合は、例えば次のよ
うな念入りな前処理が必要であるのが普通であ
る。すなわち、通常の薬品による脱脂および電解
脱脂を行なつたのち、5〜30%硫酸を用いて陰極
電解による活性化処理を施し、ついで次の条件に
よりニツケルのストライクメツキを施するのであ
る。 (処理液組成) 塩化ニツケル 50〜300g/ 塩 酸 50〜200g/ (処理条件) 液温:室温 電流密度: 5〜10A/dm2 処理時間:0.5〜 5分間 このように、必要な前処理を施した芯材に、前
記メツキ法によりニツケルメツキを施せば、芯材
表面に黒灰色ないし灰色を帯びたニツケルメツキ
層が形成される。その際、ニツケルメツキ層の厚
みが0.1〜3μとなるように、前記の範囲内でメツ
キ処理条件を選ぶようにするのが好ましい。な
お、このようにして得られるニツケルメツキ膜
は、葉片状、繊維状もしくは粒状の結晶の群生し
たものからなるため、実際には複雑な凹凸、微細
構造をもつている。したがつて、通常はメツキ厚
測定法などにより測定されるなどのため、上に述
べた膜厚は、これらの凹凸をならし、空隙もない
という状態に換算しての数値であらわされてい
る。 つぎに、このようにして形成されるニツケル下
地の上に、後に述べるように酸化銅の選択吸収膜
を形成することによつて、選択吸収特性にすぐれ
た実用性の高い太陽熱吸収体を得ることができ
る。すなわち、酸化銅系の選択吸収膜をそなえた
太陽熱吸収体は、一般に選択吸収特性にすぐれて
いるものの、耐熱性や耐蝕性に乏しく、長期間の
使用により次第に劣化するという欠点があつた
が、上記ニツケルからなる下地金属層の上にこの
酸化銅からなる選択吸収膜を形成すれば、下地金
属層が熱的・化学的に安定であるため耐久性が一
段と向上するのである。かつ、ニツケル下地自身
も吸収能をもつため、全体に吸収特性が向上す
る。 このような酸化銅からなる選択吸収膜は、例え
ばニツケル下地の上にメツキ法、スパツタリング
法、真空蒸着法などで銅の薄膜層を形成したの
ち、これに化成処理による酸化処理を施す方法な
どによつて形成される。この場合、上記平坦でな
い表面をもつニツケル下地はその上に形成される
酸化銅の選択吸収膜に対する密着性がきわめて良
好で、この酸化銅層をしつかりと保持する作用を
も有する。これは、上記ニツケル下地が微視的に
みてきわめて微細な凹凸面をそなえているため、
この凹凸部と酸化銅の結晶とが複雑に絡み合つて
互いの結合が強固になるものと考えられる。 酸化銅層が微量の酸化第1銅(Cu2O)と、葉
状ないし繊維状の結晶形をもつ酸化第2銅
(CuO)とからなる場合、両成分は互いに混じり
合つていることもあるのであるが、通常はおおむ
ね酸化第1銅層および酸化第2銅層の2層に分か
れている。選択吸収膜となる酸化銅層の全膜厚は
0.05〜0.50μであることが好ましい。膜厚が0.50μ
を超えると熱放射が増大し、0.05μ未満では充分
な黒さが得られず、吸収率が低くなる傾向がある
からである。 このようにして得られた太陽熱吸収体は、ニツ
ケル下地が粗表面を有しているので、選択吸収特
性(太陽光吸収特性、熱放射特性)においてすぐ
れている。かつ、下地への選択吸収膜の密着力が
強く、耐久性、耐熱性にもすぐれている。 つぎに、この発明の実施例を比較例と併せて説
明する。 実施例 1 厚み0.5mmの銅板を芯材として用い、これにア
ルカリ脱脂および3%−HClによる酸洗を施した
後、塩化ニツケル200g/、ホウ酸40g/か
らなるメツキ液を用い、液温60℃、電流密度
2A/dm2、メツキ時間3分間の条件でニツケル
メツキを行なつた。得られたニツケル膜の膜厚は
1μであつた。この時のニツケルメツキ層の表面
性状は、中心線平均粗度(Ra)が0.96μであり、
光学的特性である可視領域の吸収率が0.90、近赤
外領域の吸収率が0.63、赤外領域の吸収率が
0.125であつた。 得られたニツケル膜上に硫酸銅メツキ液を用い
て銅を0.15μの厚みにメツキした。この銅メツキ
層に、亜塩素酸ソーダ80g/、苛性ソーダ60
g/からなる液温70℃の処理液で5分間酸化処
理を行ない、繊維状の黒色結晶からなる酸化第1
銅・酸化第2銅の選択吸収膜を形成した。 その各膜厚は、Cu2O0.01μ、CuO0.13μであり、
吸収率α0.96、放射率ε0.125であつた。 実施例 2 厚み0.3mmのステンレス鋼板を芯材として用い、
これにアルカリ脱脂および電解脱脂を施したの
ち、5%硫酸を用い、室温において電流密度
10A/dm2で30秒間の陰極電解による前処理を行
なつた。つぎに、塩化ニツケル200g/、塩酸
50ml/からなるメツキ液を用い、電流密度
10A/dm2、液温20〜25℃、メツキ時間0.5分の
条件で1次のニツケルメツキを行ない芯材の表面
に1次のニツケル膜を形成した。このメツキ層の
上に引き続き、塩化ニツケル300g/、ホウ酸
50g/からなるメツキ液を用いて、電流密度
2A/dm2、液温60℃、メツキ時間2分の条件で
2次のニツケルメツキを施した。上記1次のニツ
ケルメツキは、ステンレス鋼に対する密着性を向
上させるためのものであり、2次のニツケルメツ
キは粗表面を持つニツケル膜を形成するためのも
のである。得られたニツケル膜の膜厚は1.1μであ
つた。この時のニツケルメツキ層の表面性状は、
中心線平均粗度(Ra)が1.13μであり、光学的特
性である可視領域の吸収率が0.91、近赤外領域の
吸収率が0.65、赤外領域の吸収率が0.11であつ
た。 得られたNi膜上に実施例1と同様にして厚み
0.10μの銅メツキを行なつた。この試片を、亜塩
素酸ナトリウム100g/、苛性ソーダ100g/
の化成処理液(液温50℃)で8分間処理して黒色
選択吸収膜を得た。 この膜の組成と膜厚は、Cu2O0.007μ、
CuO0.08μであり、吸収率α0.96、放射率ε0.11であ
つた。 実施例 3 厚み0.4mmのステンレス鋼板(SUS430)を芯材
として用い、これにアルカリ脱脂、電解脱脂、5
%硫酸による陰極電解を順に施した後、下記の条
件でステンレス鋼用ニツケルストライクメツキを
施した。 (ストライクメツキ液組成) 塩化ニツケル 200g/ 塩 酸 100g/ (処理条件) 温度:25℃ 電流密度: 5A/dm2 時間: 3分間 この表面に、塩化ニツケル250g/、ホウ酸
30g/を示むメツキ液を用い、電流密度3A/
dm2、メツキ液温度40℃、メツキ時間2.5分間の
条件でニツケルを施し、厚み0.7μのニツケルメツ
キ層を形成した。この時のニツケルメツキ層の表
面性状は、中心線平均粗度(Ra)が0.75μであ
り、光学的特性である可視領域の吸収率が0.83、
近赤外領域の吸収率が0.60、赤外領域の吸収率が
0.125であつた。 つぎに、このニツケルメツキ層の表面に硫酸銅
メツキ液で電流密度1A/dm2、メツキ時間1.5分
間の銅メツキを行ない厚み0.20μの銅メツキ層を
形成し、これに苛性ソーダ70g/、亜塩素酸ソ
ーダ90g/を含む化成処理液を用い、化成処理
温度70℃、処理時間3分間の条件で酸化処理を施
して、銅メツキ層を酸化銅層とした。 その組成と膜厚は、Cu2O0.01μ、CuO0.16μで
あり、吸収率α0.96、放射率ε0.125であつた。 実施例 4 厚み0.5mmの銅板を芯材として用い、これにア
ルカリ脱脂を行なつて2%−HClによる酸洗を施
したのち、塩化ニツケル400g/、ホウ酸45
g/からなるメツキ液を用い、液温55℃、電流
密度2A/dm2、メツキ時間3分間の条件でニツ
ケルメツキを行なつた。なお、メツキ処理中はメ
ツキ液の撹拌を十分にした。 得られたNi膜の厚みは約1μであつた。この時
のニツケルメツキ槽の表面性状は、中心線平均粗
度(Ra)が0.53であり、光学的特性である可視
領域の吸収率が0.70、近赤外領域の吸収率が
0.60、赤外領域の吸収率が0.11であつた。 このNiメツキの終了後、更に硫酸銅系のメツ
キ液を用いて銅を0.1μの厚みにメツキした。続い
て、この銅メツキ層を酸化するため、亜塩素酸ソ
ーダ45g/、苛性ソーダ70g/からなる化成
処理液を用い、液温60℃で5分間の酸化処理を施
して、これを、繊維状の黒色結晶からなる酸化第
2銅の選択吸収膜とした。 得られた酸化銅の組成と膜厚は、Cu2O0.008μ、
CuO0.08μであつた。 このようにして得られた太陽熱吸収体の特性
は、吸収率α0.97、放射率ε0.11であつた。 実施例 5 厚み3mmのステンレス鋼(SUS304)板を芯材
として用い、これにアルカリ脱脂および電解脱脂
を施したのち、5%硫酸を用い、室温において電
流密度10A/dm2で30秒間の陰極電解による前処
理を行なつた。つぎに塩化ニツケル200g/、
塩酸50ml/からなるメツキ液を用い、電流密度
10A/dm2、液温20〜25℃、メツキ時間0.5分の
条件で1次のニツケルメツキを行なつた。このメ
ツキ層の上に塩化ニツケル360g/、ホウ酸40
g/からなるメツキ液を用いて、液温55℃、電
流密度2A/dm2、メツキ時間2分の条件で2次
のメツキを施した。 得られたニツケル膜の膜厚は1.1μであつた。こ
の時のニツケルメツキ層の表面性状は、中心線平
均粗度(Ra)が0.55μであり、光学的特性である
可視領域の吸収率が0.72、近赤外領域の吸収率が
0.63、赤外領域の吸収率が0.12であつた。 得られたNi膜上に実施例1と同様にして厚み
0.15μの銅メツキを施し、この試片を亜塩素酸ナ
トリウム40g/、苛性ソーダ60g/の化成処
理液(液温60℃)で6分間処理して、黒色選択吸
収膜を得た。 その組成と膜厚はCu2O0.01μ、CuO0.14μであ
り、吸収率α0.97、放射率ε0.12であつた。 実施例 6 実施例1に準じて芯材上にNiメツキをし、こ
の上に硫酸銅メツキ液を用いて銅を0.19μの厚み
にメツキした。この銅メツキ層に亜塩素酸ソーダ
65g/、苛性ソーダ95g/からなる液温95℃
の処理液で10分間酸化処理を行ない、繊維状の黒
色結晶からなる酸化第2銅選択吸収膜を形成し
た。その膜厚は0.14μであり、吸収率α0.94、放射
率ε0.12であつた。この時のニツケルメツキ層の
表面性状は中心線平均粗度(Ra)が0.42μであ
り、光学的特性である可視領域の吸収率が0.88、
近赤外領域の吸収率が0.62、赤外領域の吸収率が
0.12であつた。 実施例 7 実施例5に準じてNiメツキした基材を用い、
これに厚み0.18μの銅メツキを施し、この銅メツ
キ層に、亜塩素酸ソーダ70g/、苛性ソーダ90
g/からなる液温90℃の処理液で8分間酸化処
理を行ない、繊維状の黒色結晶からなる酸化第2
銅選択吸収膜を形成した。 この酸化第2銅層の膜厚は0.14μであり、吸収
率α0.95、放射率ε0.11であつた。 この時のニツケルメツキ層の表面性状は、中心
線平均粗度(Ra)が0.50μであり、光学的特性で
ある可視領域の吸収率が0.70、近赤外領域の吸収
率が0.62、赤外領域の吸収率が0.11であつた。 比較例 1 厚み0.5mmの銅板を芯材として用い、これにア
ルカリ脱脂および3%−HClによる酸洗を施した
後、硫酸ニツケル260g/、塩化ニツケル35
g/、ホウ酸35g/、硫酸コバルト15g/
、ギ酸25g/、およびホルマリン2g/か
らなるメツキ液を用い、PH4.0、液温60℃、電流
密度3A/dm2、メツキ時間3分間の条件でニツ
ケルメツキを行なつた。この時のニツケルメツキ
層の表面性状は、中心線平均粗度(Ra)が0.05μ
であり、光学的特性である可視領域の吸収率が
0.3、近赤外領域の吸収率が0.2、赤外領域の吸収
率が0.11であつた。 このようにして得られたニツケル下地上に硫酸
銅メツキ液を用いて銅メツキを施した。この銅メ
ツキを亜塩素酸ソーダ80g/、苛性ソーダ60
g/からなる液温70℃処理液で10分間の酸化処
理を行ない、酸化第2銅の選択吸収膜を形成し
た。 膜厚は、Cu2O0、CuO0.14μであり、吸収率
α0.88、放射率ε0.11であつた。 比較例 2 比較例1において、酸化処理浴での酸化処理を
70℃で5分間とした以外は比較例1と同一条件で
ニツケル下地を作成し、かつ選択吸収膜を作成し
た。 選択吸収膜の膜厚は、Cu2O0.01μ、CuO0.13μ
であり、吸収率α0.90、放射率ε0.12であつた。 以上の実施例および比較例を一覧表にして示す
と第1表のようであり、実施例はいずれも比較例
よりすぐれた結果を示している。
The present invention relates to a solar heat absorber used in solar water heaters and the like. As a solar energy absorber, it has a high absorption rate for electromagnetic waves in the visible and near-infrared regions.
Moreover, it is required to have low emissivity in the infrared region. Conventionally, various solar heat absorbers have been devised that have coatings on their surfaces that absorb solar energy well and emit little heat in the infrared region (generally called selective absorption coatings). As a selective absorption film, a cuprous oxide (Cu 2 O) film or a cuprous oxide (Cu 2 O) film is used.
Copper oxide coatings such as copper (CuO) coatings or coatings containing a trace amount of cuprous oxide in cupric oxide are widely known. However, conventional solar heat absorbers in which a selective absorption film made of copper oxide is formed on the surface of a base material generally have poor heat resistance, so that they may be exposed to sunlight during use without conducting heat medium. In some cases, temperatures can reach temperatures as high as 200°C, causing deterioration. Therefore, near-infrared region (wavelength
0.7 to 2.5 microns), the absorption rate decreases, and
Since the underlying copper component is oxidized and the thickness of the selective absorption film gradually increases, problems with heat resistance such as increased heat radiation in the infrared region often occur. This invention was made in view of the above circumstances, and provides a solar heat absorber that has a high solar heat absorption rate and excellent heat resistance. This will be explained below. In solar heat absorbers, not only the performance of the selective absorption film but also the performance of the underlying base material is important.
From this point of view, the inventors previously proposed selecting nickel as the base metal. That is, it was proposed to use a base material whose surface at least is made of nickel. Afterwards, further research revealed that in such base materials, the surface properties of the nickel base have a large effect on the absorption characteristics of the solar heat absorber. It has been found that if the base material is selected satisfactorily, an excellent solar heat absorber can be obtained. This invention was completed in this way, and is a solar heat absorber that is provided with a base material whose surface is made of nickel at least, and on which a selective absorption film of copper oxide is formed using the surface of this base material as a base material. The gist thereof is a solar heat absorber characterized in that the base material is a base material whose surface properties satisfy either of the following conditions (a) and (b). (a) The absorption rate of the nickel base shall be 0.4 or more in the visible region, 0.2 or more in the near-infrared region, and 0.2 or less in the infrared region. (b) The surface roughness of the nickel base shall be 0.1 to 3 microns in terms of center line average roughness. This will be discussed in detail below. The base material is made entirely of nickel,
Alternatively, a material in which a nickel layer is formed on the surface of a core material (base metal) such as metal is used. The purpose of using nickel as the base of the selective absorption film is to improve the corrosion resistance and heat resistance of the solar heat absorber. That is, even with black chromium or black nickel selective absorption membranes, the membrane is extremely porous, so it is difficult to prevent corrosion of the base material. Furthermore, the base material may be oxidized if it is heated in the atmosphere. For example, when a solar heat absorber is used and is exposed to sunlight without conducting heat medium, the temperature can sometimes reach as high as 200°C, which causes oxidation of the base material. When the material is oxidized, the absorption characteristics α and radiation characteristics ε of the selective absorption film deteriorate. In this respect, nickel, which is chemically and thermally stable, is preferably used as the base metal of the selective absorption film because the base material will not be corroded or oxidized. The nickel base used as the base of the selective absorption film in the solar heat absorber according to the present invention is characterized in that its surface is not flat but rough. That is, if the surface of the nickel base is flat, the nickel base itself has almost no selective absorption characteristics. On the other hand, if the surface of the nickel base is microscopically rough and uneven,
The nickel base itself also has selective absorption properties. In this case, the roughness of the nickel base surface needs to be 0.1 to 3 microns (μ) in terms of center line average roughness. Typical examples of the form in which the nickel base surface has an uneven and rough surface include those in which the base nickel layer is made of leaf-like, fibrous, granular, or polyhedral crystals, but the present invention is not particularly limited to these. isn't it. The nickel substrate with a rough surface as described above causes multiple reflections on the surface of visible and near-infrared light, so it absorbs visible light and near-infrared light well, but it absorbs visible light and near-infrared light well, but it absorbs visible light and near-infrared light well. It is thought that it acts as a flat surface for infrared light, and reflects infrared light well.
Therefore, the emissivity is small. When a selective absorption film of copper oxide is formed on a nickel substrate having such a rough surface, a mutual effect appears between these films, and the absorption characteristics of the solar heat absorber are further improved. As seen above, the nickel base with its rough surface has absorption capacity itself, and this cooperates with the copper oxide selective absorption film formed on it to improve the performance of the solar heat absorber. The surface properties of the nickel base can also be defined by its absorption rate. When viewed from this perspective,
The absorption rate of the nickel base is in the visible region (0.3
~0.7 micron) and more than 0.4 in the near-infrared region (0.7 ~
2.5 microns) and 0.2 or more in the infrared region (2.5 to 20 microns). The nickel base may contain small amounts of impurities such as trace amounts of oxides due to surface oxidation. There are no clearly defined standards as a general concept regarding the absorption rate and emissivity that a solar heat absorber should have in practice. However, one of the criteria for a commercially available solar heat absorber would be an absorption rate of 0.91 or more and an emissivity of 0.3 or less. Then, the two conditions mentioned above (conditions based on center line average roughness and conditions based on absorption rate)
By using a base material that satisfies either of the following, it is possible to reliably obtain a solar heat absorber that satisfies the above criteria. A nickel substrate with such a rough surface can also be obtained by roughening the surface of a base material with a smooth nickel surface using an appropriate method such as a chemical method or a mechanical method. is obtained by forming a nickel layer on a core material.
The nickel layer (usually a kind of film-like material) that serves as the base can be formed by various methods, such as electrolytic plating, electroless plating, vacuum evaporation, and sputtering. is not limited. Various metal materials such as iron plate, steel plate, copper plate, etc. can be used as the core material. It may be made of other than metal. When performing such a nickel plating treatment on the surface of a core material made of an iron plate or a copper plate, it is generally necessary to perform pretreatment such as degreasing (electrolytic degreasing if necessary) and pickling. When using a stainless steel plate as the core material and applying the above-mentioned nickel plating to it, the following careful pretreatment is usually required, for example. That is, after degreasing with conventional chemicals and electrolytic degreasing, an activation treatment is carried out by cathodic electrolysis using 5 to 30% sulfuric acid, and then nickel strike plating is carried out under the following conditions. (Processing liquid composition) Nickel chloride 50-300g/Hydrochloric acid 50-200g/ (Processing conditions) Solution temperature: Room temperature Current density: 5-10A/dm 2 Processing time: 0.5-5 minutes In this way, perform the necessary pretreatment. When the core material is nickel-plated by the plating method described above, a black-gray or grayish nickel plating layer is formed on the surface of the core material. At that time, it is preferable to select plating conditions within the above range so that the thickness of the nickel plating layer is 0.1 to 3 μm. The nickel plating film obtained in this manner is composed of clusters of leaf-shaped, fibrous, or granular crystals, so it actually has complex irregularities and a fine structure. Therefore, since it is usually measured by plating thickness measurement method, etc., the film thickness mentioned above is expressed as a value converted to a state in which these unevenness is smoothed out and there are no voids. . Next, by forming a selective absorption film of copper oxide on the nickel base thus formed as described later, a highly practical solar heat absorber with excellent selective absorption properties can be obtained. I can do it. That is, although solar heat absorbers equipped with copper oxide-based selective absorption films generally have excellent selective absorption properties, they have the disadvantage of poor heat resistance and corrosion resistance, and gradually deteriorate after long-term use. If the selective absorption film made of copper oxide is formed on the base metal layer made of nickel, the durability is further improved because the base metal layer is thermally and chemically stable. In addition, since the nickel base itself has absorption capacity, the overall absorption properties are improved. Such a selective absorption film made of copper oxide can be produced by, for example, forming a copper thin film layer on a nickel base using a plating method, sputtering method, vacuum evaporation method, etc., and then subjecting it to oxidation treatment using chemical conversion treatment. It is formed as a result. In this case, the above-mentioned nickel base having an uneven surface has extremely good adhesion to the copper oxide selective absorption film formed thereon, and also has the function of firmly holding the copper oxide layer. This is because the above-mentioned nickel base has extremely fine uneven surfaces when viewed microscopically.
It is thought that the uneven portions and the copper oxide crystals are intricately intertwined and their mutual bond becomes strong. When the copper oxide layer consists of a small amount of cuprous oxide (Cu 2 O) and cupric oxide (CuO), which has a leaf-like or fibrous crystal form, the two components may be mixed with each other. However, it is usually divided into two layers: a cuprous oxide layer and a cupric oxide layer. The total thickness of the copper oxide layer that becomes the selective absorption film is
It is preferably 0.05 to 0.50μ. Film thickness is 0.50μ
This is because if it exceeds 0.05 μm, thermal radiation increases, and if it is less than 0.05 μm, sufficient blackness cannot be obtained and the absorption rate tends to decrease. The solar heat absorber thus obtained has excellent selective absorption properties (sunlight absorption properties, heat radiation properties) because the nickel base has a rough surface. In addition, the selective absorption film has strong adhesion to the substrate, and has excellent durability and heat resistance. Next, examples of the present invention will be described together with comparative examples. Example 1 A copper plate with a thickness of 0.5 mm was used as a core material, and after degreasing with alkaline and pickling with 3% HCl, a plating solution consisting of 200 g of nickel chloride and 40 g of boric acid was used, and the liquid temperature was 60°C. °C, current density
Nickel plating was carried out under the conditions of 2 A/dm 2 and a plating time of 3 minutes. The thickness of the obtained nickel film is
It was 1μ. At this time, the surface quality of the nickel plated layer had a center line average roughness (Ra) of 0.96μ,
The optical properties are that the absorption rate in the visible region is 0.90, the absorption rate in the near-infrared region is 0.63, and the absorption rate in the infrared region is 0.90.
It was 0.125. Copper was plated on the obtained nickel film to a thickness of 0.15μ using a copper sulfate plating solution. Add 80 g of sodium chlorite and 60 g of caustic soda to this copper plating layer.
Oxidation treatment was carried out for 5 minutes with a treatment solution consisting of
A selective absorption film of copper and cupric oxide was formed. The respective film thicknesses are Cu 2 O 0.01μ and CuO 0.13μ,
The absorption rate was α0.96 and the emissivity was ε0.125. Example 2 A stainless steel plate with a thickness of 0.3 mm was used as the core material,
After performing alkaline degreasing and electrolytic degreasing, 5% sulfuric acid was used to remove the current density at room temperature.
Pretreatment was carried out by cathodic electrolysis at 10 A/dm 2 for 30 seconds. Next, nickel chloride 200g/, hydrochloric acid
Using a plating solution consisting of 50 ml, the current density
Primary nickel plating was performed under the conditions of 10 A/dm 2 , liquid temperature of 20 to 25°C, and plating time of 0.5 minutes to form a primary nickel film on the surface of the core material. Continuing on top of this plating layer, nickel chloride 300g/, boric acid
Using a plating liquid consisting of 50 g/m, the current density
Secondary nickel plating was performed under the conditions of 2 A/dm 2 , liquid temperature of 60° C., and plating time of 2 minutes. The primary nickel plating is for improving adhesion to stainless steel, and the secondary nickel plating is for forming a nickel film with a rough surface. The thickness of the obtained nickel film was 1.1μ. The surface properties of the nickel metal layer at this time are as follows:
The centerline average roughness (Ra) was 1.13μ, and the optical properties were 0.91 in the visible region, 0.65 in the near-infrared region, and 0.11 in the infrared region. On the obtained Ni film, the thickness was
0.10μ copper plating was performed. This sample was mixed with 100g of sodium chlorite and 100g of caustic soda.
A black selective absorption membrane was obtained by treatment with a chemical conversion treatment solution (solution temperature: 50°C) for 8 minutes. The composition and thickness of this film are Cu 2 O 0.007μ,
CuO was 0.08μ, absorption rate α0.96, and emissivity ε0.11. Example 3 A stainless steel plate (SUS430) with a thickness of 0.4 mm was used as the core material, and this was subjected to alkaline degreasing, electrolytic degreasing, and
After sequentially performing cathodic electrolysis using % sulfuric acid, nickel strike plating for stainless steel was performed under the following conditions. (Strike plating liquid composition) Nickel chloride 200g/Hydrochloric acid 100g/ (Processing conditions) Temperature: 25℃ Current density: 5A/dm 2 hours: 3 minutes On this surface, add nickel chloride 250g/, boric acid
Using a plating liquid showing 30g/, the current density is 3A/
Nickel was applied under the conditions of dm 2 , plating liquid temperature of 40° C., and plating time of 2.5 minutes to form a nickel plating layer with a thickness of 0.7 μm. The surface properties of the nickel plating layer at this time include a center line average roughness (Ra) of 0.75μ, an optical property of absorption rate in the visible region of 0.83,
The absorption rate in the near-infrared region is 0.60, and the absorption rate in the infrared region is 0.60.
It was 0.125. Next, copper plating was performed on the surface of this nickel plating layer with a copper sulfate plating solution at a current density of 1A/dm 2 and a plating time of 1.5 minutes to form a copper plating layer with a thickness of 0.20 μm. Oxidation treatment was performed using a chemical conversion treatment solution containing 90 g of soda at a chemical conversion temperature of 70° C. for a treatment time of 3 minutes, thereby converting the copper plating layer into a copper oxide layer. Its composition and film thickness were Cu 2 O 0.01 μ and CuO 0.16 μ, and its absorption rate was α 0.96 and emissivity ε 0.125. Example 4 A copper plate with a thickness of 0.5 mm was used as a core material, and after degreasing with alkaline and pickling with 2%-HCl, 400 g of nickel chloride and 45 g of boric acid were used.
Nickel plating was carried out using a plating solution consisting of 50.0 g/g/g/g/g/g under the conditions of a solution temperature of 55 DEG C., a current density of 2 A/ dm.sup.2 , and a plating time of 3 minutes. Note that during the plating process, the plating solution was sufficiently stirred. The thickness of the obtained Ni film was approximately 1 μm. At this time, the surface properties of the Nickel Mekki tank had a center line average roughness (Ra) of 0.53, an optical property of 0.70 in the visible region, and 0.70 in the near-infrared region.
0.60, and the absorption rate in the infrared region was 0.11. After completing this Ni plating, copper was further plated to a thickness of 0.1μ using a copper sulfate based plating solution. Next, in order to oxidize this copper plating layer, an oxidation treatment was performed for 5 minutes at a liquid temperature of 60°C using a chemical conversion treatment solution consisting of 45 g of sodium chlorite and 70 g of caustic soda. A selective absorption film of cupric oxide consisting of black crystals was used. The composition and film thickness of the copper oxide obtained were Cu 2 O 0.008μ,
CuO was 0.08μ. The characteristics of the solar heat absorber thus obtained were an absorption rate α of 0.97 and an emissivity of ε 0.11. Example 5 A stainless steel (SUS304) plate with a thickness of 3 mm was used as the core material, and after being subjected to alkaline degreasing and electrolytic degreasing, cathodic electrolysis was performed at room temperature for 30 seconds at a current density of 10 A/dm 2 using 5% sulfuric acid. Pretreatment was performed using Next, nickel chloride 200g/,
Using a plating solution consisting of 50 ml of hydrochloric acid, the current density
First-order nickel plating was carried out under the conditions of 10 A/dm 2 , liquid temperature of 20 to 25° C., and plating time of 0.5 minutes. On top of this plating layer, nickel chloride 360g/, boric acid 40g
Secondary plating was carried out using a plating solution consisting of 2.5 g/g/g/g/g/g of plating solution at a solution temperature of 55° C., a current density of 2 A/dm 2 , and a plating time of 2 minutes. The thickness of the obtained nickel film was 1.1μ. The surface properties of the nickel plating layer at this time have a center line average roughness (Ra) of 0.55μ, an optical property of absorption in the visible region of 0.72, and absorption in the near-infrared region.
0.63, and the absorption rate in the infrared region was 0.12. On the obtained Ni film, the thickness was
Copper plating with a thickness of 0.15 μm was applied, and the sample was treated with a chemical conversion solution (liquid temperature: 60° C.) containing 40 g of sodium chlorite and 60 g of caustic soda for 6 minutes to obtain a black selective absorption membrane. The composition and film thickness were Cu 2 O 0.01 μ and CuO 0.14 μ, and the absorption rate was α 0.97 and the emissivity ε 0.12. Example 6 Ni plating was applied to the core material in accordance with Example 1, and copper was then plated to a thickness of 0.19 μm using a copper sulfate plating solution. Add sodium chlorite to this copper plating layer.
65g/, caustic soda 95g/, liquid temperature 95℃
An oxidation treatment was carried out for 10 minutes using a treatment solution of 100% to form a cupric oxide selective absorption film consisting of fibrous black crystals. The film thickness was 0.14μ, absorption rate α0.94, and emissivity ε0.12. The surface quality of the nickel plating layer at this time was such that the center line average roughness (Ra) was 0.42μ, and the optical properties of the absorption rate in the visible region were 0.88,
The absorption rate in the near-infrared region is 0.62, and the absorption rate in the infrared region is 0.62.
It was 0.12. Example 7 Using a Ni-plated base material according to Example 5,
Copper plating with a thickness of 0.18μ is applied to this, and this copper plating layer is coated with 70g of sodium chlorite and 90g of caustic soda.
The oxidation treatment was carried out for 8 minutes with a treatment solution consisting of
A copper selective absorption film was formed. The thickness of this cupric oxide layer was 0.14 μm, and the absorption coefficient α was 0.95 and the emissivity was ε 0.11. The surface properties of the nickel plating layer at this time include a center line average roughness (Ra) of 0.50μ, an optical property of 0.70 in the visible region, 0.62 in the near-infrared region, and 0.62 in the infrared region. The absorption rate was 0.11. Comparative Example 1 A copper plate with a thickness of 0.5 mm was used as a core material, and after degreasing with alkaline and pickling with 3% HCl, 260 g of nickel sulfate and 35 g of nickel chloride were added.
g/, boric acid 35g/, cobalt sulfate 15g/
Nickel plating was carried out using a plating solution consisting of 25 g/25 g of formic acid, and 2 g/g formalin under the conditions of pH 4.0, liquid temperature 60° C., current density 3 A/dm 2 , and plating time 3 minutes. At this time, the surface quality of the nickel plated layer has a center line average roughness (Ra) of 0.05μ.
, and the absorption rate in the visible region, which is an optical property, is
0.3, the absorption rate in the near-infrared region was 0.2, and the absorption rate in the infrared region was 0.11. The thus obtained nickel substrate was plated with copper using a copper sulfate plating solution. Add this copper plating to 80g of sodium chlorite and 60g of caustic soda.
An oxidation treatment was performed for 10 minutes using a treatment solution of 70° C. containing 1.5 g/ml of copper oxide to form a selective absorption film of cupric oxide. The film thickness was Cu 2 O0, CuO 0.14 μ, absorption rate α 0.88, and emissivity ε 0.11. Comparative Example 2 In Comparative Example 1, the oxidation treatment in the oxidation treatment bath was
A nickel base was prepared under the same conditions as in Comparative Example 1, except that the temperature was 70° C. for 5 minutes, and a selective absorption membrane was also prepared. The film thickness of the selective absorption film is Cu 2 O 0.01μ, CuO 0.13μ
The absorption rate was α0.90 and the emissivity was ε0.12. The above Examples and Comparative Examples are listed in Table 1, and the Examples all show better results than the Comparative Examples.

【表】【table】

〔試験方法〕〔Test method〕

膜厚:定電流還元法に基き、還元に要した電気量
より膜厚を算出した。したがつて、この膜厚
は、空隙のない緻密なもしくは凹凸のない平ら
な膜の厚みとしてあらわされている。第1銅層
および第2銅層の各厚みを出すにあたつては、
X線回折法も併用した。 表面粗度:ニツケル下地の表面粗度は、JIS
BO601に基き、小坂式表面粗さ計で測定した。 吸収率:可視領域、近赤外領域は蒸着アルミミラ
ーを対象とする。 可視領域(α)=∫0.70.3α〓・I〓dλ/∫0.70
.3
I〓dλ 近赤外領域(α)=∫2.50.7α〓・I〓dλ/∫2.5
0.7I〓dλ ここで、 α;吸収率 α〓;波長λでの吸収率 I〓;太陽光の波長λの放射強度 赤外領域のαは放射率(ε)に相当するので、
これは下記のようにあらわされる。 赤外領域(ε)=∫202.5S〓T=150・ε〓dλ/∫20
2.5S〓T=150 dλ ここで、 ε;放射率(黒体放射全エネルギーに対する) S〓T=150;150℃の黒体からの波長λの放射強度 ε〓;波長λの放射率(黒体に対する) なお、赤外分光光度計で赤外域の反射率P〓を測
定し、ε〓=1−P〓とした。
Film thickness: Based on the constant current reduction method, the film thickness was calculated from the amount of electricity required for reduction. Therefore, this film thickness is expressed as the thickness of a dense film with no voids or a flat film with no irregularities. When determining the thickness of the first copper layer and the second copper layer,
X-ray diffraction method was also used. Surface roughness: The surface roughness of the nickel base is JIS
Measured using a Kosaka surface roughness meter based on BO601. Absorption rate: Visible region and near-infrared region are for vapor-deposited aluminum mirrors. Visible area (α) = ∫ 0.7 / 0.3 α〓・I〓dλ/∫ 0.7 / 0
.3
I〓dλ Near-infrared region (α) = ∫ 2.5 / 0.7 α〓・I〓dλ/∫ 2.5
/ 0.7 I〓dλ Where, α; Absorption rate α〓; Absorption rate at wavelength λ I〓; Radiation intensity of sunlight at wavelength λ Since α in the infrared region corresponds to emissivity (ε),
This is expressed as follows. Infrared region (ε)=∫ 20 / 2.5 S〓 T=150・ε〓dλ/∫ 20 /
2.5 S〓 T=150 dλ Where, ε: Emissivity (relative to the total energy radiated by the black body) S〓 T=150 ; Radiation intensity at wavelength λ from a black body at 150°C ε〓; Emissivity at wavelength λ (black In addition, the reflectance P〓 in the infrared region was measured using an infrared spectrophotometer, and it was set as ε〓=1−P〓.

Claims (1)

【特許請求の範囲】 1 少なくとも表面がニツケルからなる基材をそ
なえ、この基材の表面を下地としてその上に酸化
銅の選択吸収膜が形成された太陽熱吸収体であつ
て、前記基材として、その表面性状が下記の条件
(イ)、(ロ)のいずれかを満足する基材が用いられてい
ることを特徴とする太陽熱吸収体。 (イ) ニツケル下地の吸収率が、可視領域で0.4以
上、近赤外領域で0.2以上、赤外領域で0.2以下
であること。 (ロ) ニツケル下地の表面粗度が、中心線平均粗さ
でみて0.1〜3ミクロンであること。
[Scope of Claims] 1. A solar heat absorber comprising a base material at least the surface of which is made of nickel, on which a selective absorption film of copper oxide is formed using the surface of the base material as a base material, wherein the base material is , whose surface properties meet the following conditions:
A solar heat absorber characterized by using a base material that satisfies either (a) or (b). (a) The absorption rate of the nickel base shall be 0.4 or more in the visible region, 0.2 or more in the near-infrared region, and 0.2 or less in the infrared region. (b) The surface roughness of the nickel base shall be 0.1 to 3 microns in terms of center line average roughness.
JP57041174A 1982-03-15 1982-03-15 Solar heat absorbing body Granted JPS58158456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041174A JPS58158456A (en) 1982-03-15 1982-03-15 Solar heat absorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041174A JPS58158456A (en) 1982-03-15 1982-03-15 Solar heat absorbing body

Publications (2)

Publication Number Publication Date
JPS58158456A JPS58158456A (en) 1983-09-20
JPS6359065B2 true JPS6359065B2 (en) 1988-11-17

Family

ID=12601058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041174A Granted JPS58158456A (en) 1982-03-15 1982-03-15 Solar heat absorbing body

Country Status (1)

Country Link
JP (1) JPS58158456A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637374A (en) * 1982-09-08 1987-01-20 Sharp Kabushiki Kaisha Selective absorption film of a solar heat collector
JPH0646776B2 (en) * 1984-06-05 1994-06-15 キヤノン株式会社 Decompression device for compression code

Also Published As

Publication number Publication date
JPS58158456A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
CA1074647A (en) Solar collector panel
US4055707A (en) Selective coating for solar panels
US3920413A (en) Panel for selectively absorbing solar thermal energy and the method of producing said panel
US4511614A (en) Substrate having high absorptance and emittance black electroless nickel coating and a process for producing the same
US4177325A (en) Aluminium or copper substrate panel for selective absorption of solar energy
US4111763A (en) Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
US4104134A (en) Method for making an aluminum or copper substrate panel for selective absorption of solar energy
US4392920A (en) Method of forming oxide coatings
JPS5819950B2 (en) Manufacturing method of solar heat selective absorption board
JPS6359065B2 (en)
US4082907A (en) Thin molybdenum coatings on aluminum for solar energy absorption
NO144365B (en) SELECTIVE ABSORPTION SURFACE, FOR SOLAR COLLECTOR, AND PROCEDURES IN THE PREPARATION OF THIS
JP3194064B2 (en) Solar heat absorber
JPS6138783B2 (en)
JPS621512B2 (en)
JPS6122222B2 (en)
JPS621513B2 (en)
US4904353A (en) Optically black cobalt surface
US4104136A (en) Process for applying thin molybdenum containing coatings on aluminum for solar energy absorption
John et al. Black cobalt solar absorber coatings
JPS6220473B2 (en)
John et al. Blackening of electroless nickel deposits for solar energy applications
JPS58190651A (en) Collecting plate for solar heat
JPS6138784B2 (en)
JPS6311429B2 (en)