KR20180117256A - Conductive metal-coated Al powder and manufacturing method - Google Patents

Conductive metal-coated Al powder and manufacturing method Download PDF

Info

Publication number
KR20180117256A
KR20180117256A KR1020170049977A KR20170049977A KR20180117256A KR 20180117256 A KR20180117256 A KR 20180117256A KR 1020170049977 A KR1020170049977 A KR 1020170049977A KR 20170049977 A KR20170049977 A KR 20170049977A KR 20180117256 A KR20180117256 A KR 20180117256A
Authority
KR
South Korea
Prior art keywords
powder
conductive metal
coated
conductive
zinc
Prior art date
Application number
KR1020170049977A
Other languages
Korean (ko)
Inventor
김동현
이성준
윤정환
박영서
Original Assignee
주식회사 엠에스씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠에스씨 filed Critical 주식회사 엠에스씨
Priority to KR1020170049977A priority Critical patent/KR20180117256A/en
Publication of KR20180117256A publication Critical patent/KR20180117256A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • B22F1/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga

Abstract

One aspect of the present invention relates to a conductive metal-coated aluminum powder formed by coating one or more kinds of conductive metals on aluminum powder in a non-electrolytic plating method. At this time, the conductive metal-coated powder has powder characteristics of maximum volume cumulative diameter (D_max) of 70 μm or less in accordance with a laser diffraction scattering particle distribution method, and the conductive metal is one of nickel, copper, gold, silver, palladium, iron, zinc, tin, rhodium, and indium, or an alloy thereof. Moreover, another aspect of the present invention, a method to manufacture a conductive metal-coated aluminum power is advanced through a process of washing a surface of aluminum powder and washing the surface of the aluminum powder with water, a process of roughing the surface and washing the surface with water, a process of forming a zinc-base film on the surface and washing the surface with water, and a step of coating the conductive metal coating on the surface by non-electrolytic plating. Accordingly, in terms of manufacturing or use, one or two or more conductive metals are coated on the aluminum powder by the non-electrolytic plating method, thereby providing an effect of manufacturing the conductive metal-coated powder while pursuing cost reduction by lower cost than that of an existing conductive powder due to use of the aluminum powder, providing the conductive metal-coated aluminum powder with excellent electric conductivity and improved corrosion resistance, and providing a low cost conductive metal-coated aluminum power used for a purpose, such as conductive paste and electromagnetic shield conductive paint using the same.

Description

도전성 금속 피복 Al 분말 및 그 제조방법{Conductive metal-coated Al powder and manufacturing method}≪ Desc / Clms Page number 1 > Conductive metal-coated Al powder and manufacturing method &

본 발명은 도전성 금속 분말에 관한 것으로, 보다 구체적으로는 Al 분말 상 무전해 도금법으로 1종 혹은 2종 이상의 도전성 금속을 피막하여 형성함에 따라, 기존의 도전성 분말 대비 저비용으로 원가 절감을 추구하면서 도전성 금속 분말의 제조가 가능하고, 전기전도도가 양호함은 물론 내식성이 향상되는 도전성 금속 피복 Al 분말 및 그 제조방법에 관한 것이다.The present invention relates to a conductive metal powder, and more specifically, by forming one or more conductive metal films by an electroless plating method on an Al powder, it is possible to reduce the cost of the conductive metal powder, To a conductive metal-coated Al powder capable of producing powder, which is excellent in electrical conductivity as well as in corrosion resistance, and a method for producing the same.

통상, 가전제품이나 전자기기의 보급이 왕성해짐에 따라 전자파 간섭 영향에 따른 전자기기의 오작동 등에 의한 병원기기 및 항공기의 오작동 등이 매우 심각한 실정으로, 특히 인체 영향에 대해서는 아직 불확실하지만 인체에도 영향을 미칠 수 있는 것으로 인식되면서 전자파 차단재료의 개발이 시급하다. In general, as household appliances and electronic appliances become more and more widespread, malfunctions of hospital equipment and aircraft due to malfunction of electronic devices due to electromagnetic wave interference are very serious. Particularly, it is unclear about the human body effect. It is urgent to develop an electromagnetic wave shielding material.

한편, 자동차나 전자기기 등의 조립공정에서는 부품의 접합기술도 볼트, 리벳, 용접과 같은 종래의 물리적 접합기술을 대체하여 열융착, 접착제, 점착제 등을 이용하는 화학적 접합으로 전환해가는 단계에 있다. 이러한 접합기술은 적용제품의 복잡화, 경량화 및 작업의 편이성이나 외형의 감성화에 따라 그 중요성이 크게 부각되고 있다. 전자파 차폐용 도료의 필터로 한쪽으로 집중되던 전자파를 분산시키는 역할을 함으로써 전자파를 흡수ㆍ방전시켜 차단한다.On the other hand, in the assembling process of automobiles and electronic devices, the joining technique of parts is a step of replacing a conventional physical joining technique such as bolts, rivets, and welding, and converting them into chemical joining using heat welding, adhesives, Such bonding technology is becoming more important due to complexity, weight reduction, ease of work, and emotion of appearance. The filter of the electromagnetic shielding coating disperses electromagnetic waves concentrated on one side, thereby absorbing and discharging the electromagnetic waves to be cut off.

최근 에너지 자원의 고갈과 환경오염 등에 의한 지구온난화 문제가 주요 이슈로 부각됨에 따라 수송기기, 특히 자동차의 경량화 요구, 배기가스의 입자제어 등에 지속적인 관심과 연구개발이 요구된다. 에너지 고효율화를 위해서는 철계부품 위주에서 알루미늄ㆍ마그네슘ㆍ티타늄 등 비철분말소재를 이용한 저가격 자동차 부품제조기술이 지속적으로 개발되어야 한다. 이와 함께 배기가스의 미세입자제어, 신 촉매 기술 등 환경오염을 최소화하기 위한 연구개발도 진행되어야 한다.Recently, as global warming due to depletion of energy resources and environmental pollution is highlighted as a major issue, continuous attention and research and development are required for transportation equipment, in particular, demand for lightening of automobiles and particle control of exhaust gas. In order to achieve high energy efficiency, low-cost automotive parts manufacturing technology using non-iron powder materials such as aluminum, magnesium, and titanium should be continuously developed based on iron-based parts. In addition, research and development should be carried out to minimize environmental pollution such as fine particle control of exhaust gas and new catalyst technology.

이러한 추세에 발맞추어 국내 자동차 업체들의 세계 자동차 시장 점유율 향상에 힘입어 이와 관련된 분말업체의 생산량도 크게 증가하고 있다. 특히 자동차 연간 생산량이 증가하면서 기존 주단조 공정을 적용한 부품의 대량생산은 한계성을 가짐에 따라 저가격 대량생산이 가능한 분말공정을 적용하려는 노력이 활발히 진행되고 있다. 이에 따라 주ㆍ단조품을 대체하기 위해 기존보다 고강도ㆍ고밀도의 분말소재 및 부품에 대한 요구가 급증하고 있고 이에 대응하기 위한 연구개발이 활발히 진행되고 있는 실정이다. In response to these trends, the production of powder companies related to this trend is also increasing due to the improvement of the global automobile market share of domestic automakers. Particularly, as the annual production of automobiles increases, mass production of parts using existing main forging process is limited, and efforts are being actively made to apply a powder process capable of mass production at a low price. Accordingly, in order to replace casting and forging products, demands for high-strength and high-density powder materials and parts have been rapidly increasing, and research and development has been actively conducted to cope with such demands.

한국 특허공보 제10-1995-0014640호 "순금속, 합금 및 화합물의 단독 또는 복합 분말입자를 표면 접촉면에 박은 도전재료 상에 고도전성 금속을 도금한 도전재료"(등록일자: 1995. 12. 11.)Korean Patent Publication No. 10-1995-0014640 entitled " Conductive material in which a high-conductive metal is plated on a conductive material having a pure metal, an alloy and a compound alone or in the form of a composite powder particle on a surface contact surface "(registered Nov. ) 한국 등록특허공보 제10-1333342호 "금속 분말의 형성 방법 및 이를 이용한 도전성 페이스트의 제조 방법"(등록일자: 2013. 11. 20.)Korean Patent Registration No. 10-1333342 "Method of Forming Metal Powder and Method of Producing Conductive Paste Using the Same" (Date of Registration: November 20, 2013) 한국 공개특허공보 제10-2016-0047915호 "전극형성용 도전성 금속 분말, 그 제조방법 및 이를 포함하는 전자부품 외부전극용 도전성 페이스트"(공개일자: 2016. 05. 03.)Korean Patent Laid-Open No. 10-2016-0047915 "Conductive Metal Powder for Electrode Formation, Method for Manufacturing the Same, and Electronic Part Containing the Conductive Metal Powder for Electrode Formation" 한국 공개특허공보 제10-2016-0084402호 "탄소 피복 금속분말, 탄소 피복 금속분말을 함유하는 도전성 페이스트 및 이를 이용한 적층 전자부품, 및 탄소 피복 금속분말의 제조방법"(공개일자: 2016. 07. 13.)Korean Patent Laid-Open No. 10-2016-0084402 entitled " Carbon Coated Metal Powder, Conductive Paste Containing Carbon Coated Metal Powder, Laminated Electronic Component Using It, and Method of Making Carbon Coated Metal Powder " 13.)

상기와 같은 종래의 문제점들을 근본적으로 개선하기 위한 본 발명의 목적은, Al 분말 상 무전해 도금법으로 1종 혹은 2종 이상의 도전성 금속을 피막하여 형성함에 따라, Al 분말의 이용으로 기존의 도전성 분말 대비 저비용으로 원가 절감을 추구하면서 도전성 금속 분말의 제조가 가능하고, 전기전도도가 양호함은 물론 내식성이 향상된 도전성 금속 피복 Al 분말을 얻을 수 있는 도전성 금속 피복 Al 분말 및 그 제조방법을 제공하려는데 있다.In order to fundamentally improve the above-described problems, the present invention provides a method of forming a conductive powder by coating one or more conductive metals on an Al powder by an electroless plating method, There is provided a conductive metal-coated Al powder capable of producing a conductive metal powder while achieving cost reduction at a low cost, and capable of obtaining a conductive metal-coated Al powder having improved electrical conductivity as well as improved corrosion resistance, and a manufacturing method thereof.

상기 목적을 달성하기 위한 본 발명의 일면에 의하면, Al 분말 상 무전해 도금법으로 도전성 금속을 1종 혹은 2종 이상의 금속을 피복하여 형성되는 것을 특징으로 한다.According to one aspect of the present invention, an Al powder is formed by coating a conductive metal with one or more metals by an electroless plating method.

본 발명에 따르면 상기 도전성 금속 피복 분말은 레이저 회절 산란식 입도 분포 측정법에 따른 체적 누적 최대입경 Dmax 70.0㎛ 이하의 분체 특성을 가지는 것을 특징으로 한다.According to the present invention, the conductive metal-coated powder has a volume cumulative maximum particle diameter D max according to the laser diffraction scattering particle size distribution measurement method And has a powder property of 70.0 탆 or less.

본 발명에 따르면 상기 도전성 금속은 니켈, 구리, 금, 은, 팔라듐, 백금, 철, 아연, 주석, 로듐, 인듐 중 1종 혹은 이들의 합금을 사용하는 것을 특징으로 한다.According to the present invention, the conductive metal is one selected from the group consisting of nickel, copper, gold, silver, palladium, platinum, iron, zinc, tin, rhodium and indium or an alloy thereof.

또, 본 발명의 다른 일면에 의하면 상기 도전성 금속 피복 Al 분말을 제조하는 방법에 있어서: Al 분말 상 표면 세정 후 수세, 표면 조도화 후 수세, 아연계 피막형성 후 수세를 거쳐 무전해 도금에 의한 도전성 금속 피복 처리하는 과정으로 진행하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method for producing the conductive metal coated Al powder according to another aspect of the present invention, which comprises: washing the surface of an Al powder with water, rinsing the surface after surface roughing, rinsing after forming a zinc- And then proceeding to a metal covering treatment.

본 발명에 따르면 상기 표면 세정 과정은 붕산 1.0-10.0g/l, 중탄산나트륨 0.5-5.0g/l, 인산나트륨 1.0-10.0g/l과 물을 함유하는 것을 특징으로 한다.According to the present invention, the surface cleaning process is characterized by containing 1.0-10.0 g / l of boric acid, 0.5-5.0 g / l of sodium bicarbonate, 1.0-10.0 g / l of sodium phosphate and water.

본 발명에 따르면 상기 표면 조도화 과정은 수산화나트륨 1.0-10.0g/l, 탄산나트륨 1.0-5.0g/l, 인산나트륨 1.0-10.0g/l과 물을 함유하는 것을 특징으로 한다.According to the present invention, the surface roughing process is characterized by containing 1.0-10.0 g / l of sodium hydroxide, 1.0-5.0 g / l of sodium carbonate, 1.0-10.0 g / l of sodium phosphate and water.

본 발명에 따르면 상기 아연계 피막형성 과정은 산화아연 1.0-10g/l, 수산화나트륨 1.0-10g/l, 염화철 0.1-1.0g/L, 글루콘산나트륨 1.0-10.0g/l과 물을 함유하는 것을 특징으로 한다.According to the present invention, the zinc-containing film forming process includes a step of forming a zinc-containing film containing 1.0-10 g / l zinc oxide, 1.0-10 g / l sodium hydroxide, 0.1-1.0 g / l sodium chloride, 1.0-10.0 g / l sodium gluconate, .

한편, 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.It should be understood, however, that the terminology or words of the present specification and claims should not be construed in an ordinary sense or in a dictionary, and that the inventors shall not be limited to the concept of a term It should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be properly defined. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention, and not all of the technical ideas of the present invention are described. Therefore, It is to be understood that equivalents and modifications are possible.

이상의 구성 및 작용에서 설명한 바와 같이, 본 발명에 의한 도전성 금속 피복 Al 분말 및 그 제조방법은 제조나 사용에 있어, Al 분말 상 무전해 도금법으로 1종 혹은 2종 이상의 도전성 금속을 피막하여 형성함에 따라, Al 분말의 이용으로 기존의 도전성 분말 대비 저비용으로 원가 절감을 추구하면서 도전성 금속 분말의 제조가 가능하고, 전기전도도가 양호함은 물론 내식성이 향상된 도전성 금속 피복 Al 분말을 얻을 수 있는 효과를 제공한다. As described above, the conductive metal-coated Al powder and the method for producing the same according to the present invention can be produced and used by coating one or more conductive metals by electroless plating in an Al powder state , The use of Al powder enables the production of conductive metal powder while lowering the cost by lowering the cost compared with the conventional conductive powder, and also provides an effect of obtaining a conductive metal-coated Al powder having improved electrical conductivity as well as improved corrosion resistance .

또한, 이를 이용한 도전성 페이스트 및 전자파 차폐용 도전성 페인트 등의 용도로 활용될 수 있는 저가의 도전성 금속 피복 Al 분말을 제공하는 효과가 있다.In addition, there is an effect of providing a low-cost conductive metal-coated Al powder that can be utilized for applications such as a conductive paste and a conductive paint for shielding electromagnetic waves.

도 1 내지 도 3은 본 발명에 따른 도전성 금속 피복 Al 분말을 주사전자현미경(SEM, Scanning Electron Microscope)으로 관찰한 사진이다.1 to 3 are photographs of a conductive metal-coated Al powder according to the present invention observed with a scanning electron microscope (SEM).

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 Al 분말 상 무전해 도금법으로 1종 혹은 2종 이상의 도전성 금속을 피막하여 형성함으로, 저비용으로 원가 절감을 추구하면서 도전성 금속 분말의 제조가 가능하고, 전기전도도가 양호함은 물론 내식성이 향상되어 도전성 페이스트 및 전자파 차폐용 도전성 페인트 등의 용도로 활용될 수 있는 저가의 도전성 금속 피복 Al 분말에 관하여 제안한다.The present invention relates to a method for manufacturing a conductive metal powder, which is capable of producing a conductive metal powder while reducing cost, by forming one or more kinds of conductive metal by coating with an electroless plating method on an Al powder, thereby improving the electrical conductivity and improving the corrosion resistance Thereby providing an inexpensive conductive metal-coated Al powder that can be utilized for applications such as conductive paste and conductive paint for shielding electromagnetic waves.

본 발명의 일면에 의하면, Al 분말 상 무전해 도금법으로 도전성 금속을 1종 혹은 2종 이상의 금속을 피복하여 형성된다. 여기서, 상기 도전성 금속 피복 분말은 레이저 회절 산란식 입도 분포 측정법에 따른 체적 누적 최대입경 Dmax 70.0㎛ 이하의 분체 특성을 가진다. 이때, 본 발명에 의한 도전성 금속은 니켈, 구리, 금, 은, 팔라듐, 백금, 철, 아연, 주석, 로듐, 인듐 중 1종 혹은 이들의 합금을 사용하는 측면에서 가장 바람직하다.According to one aspect of the present invention, an Al powder is formed by coating one or more metals with a conductive metal by an electroless plating method. Here, the conductive metal-coated powder has a volume cumulative maximum particle diameter D max according to the laser diffraction scattering particle size distribution measurement method And a powder property of 70.0 μm or less. The conductive metal according to the present invention is most preferably used in view of using one of nickel, copper, gold, silver, palladium, platinum, iron, zinc, tin, rhodium and indium or an alloy thereof.

또, 본 발명의 다른 일면에 의하면 상기 도전성 금속 피복 Al 분말을 제조하는 방법에 관하여 제안한다. 이러한 도전성 금속 피복 Al 분말은 도전성 페이스트 및 전자파 차폐용 도전성 페인트 등의 용도로 활용될 수 있다.According to another aspect of the present invention, there is provided a method for producing the conductive metal-coated Al powder. Such conductive metal-coated Al powder can be used for applications such as conductive paste and conductive paint for shielding electromagnetic waves.

본 발명에 따르면 도전성 금속 피복 Al 분말을 제조하는 방법에 있어서: Al 분말 상 표면 세정 후 수세, 표면 조도화 후 수세, 아연계 피막형성 후 수세를 거쳐 무전해 도금에 의한 도전성 금속 피복 처리하는 과정으로 진행한다.According to the present invention, there is provided a method for producing a conductive metal-coated Al powder, comprising the steps of: washing the surface of an Al powder with water, washing with water after surface roughing, washing with water after forming a zinc- Go ahead.

한편, 주요 공정 단계의 예시로서, 표면 세정 과정은 Al 분말 상에 표면을 세정하여 유지분이나 불순물을 제거한 후 수세를 실시하고, 표면 조도화 과정은 표면 전체에 고른 표면을 형성한 후 수세를 실시하고, 아연계 피막형성 과정은 표면에 아연계 피막형성한 후 수세를 거쳐 무전해 도금에 의한 도전성 금속 피복 처리하는 과정으로 진행한다. Meanwhile, as an example of the main process steps, the surface cleaning process is to clean the surface on the Al powder to remove the oil or impurities, and then to rinse the surface. The surface roughing process forms a uniform surface over the surface, And the process of forming a zinc-based coating film proceeds to a process of forming a zinc-based coating film on the surface thereof, washing with water, and then performing a conductive metal coating treatment by electroless plating.

이때, 본 발명의 세부 구성으로서, 표면 세정 과정은 붕산 1.0-10.0g/l, 중탄산나트륨 0.5-5.0g/l, 인산나트륨 1.0-10.0g/l과 물을 함유하고, 상기 표면 조도화 과정은 수산화나트륨 1.0-10.0g/l, 탄산나트륨 1.0-5.0g/l, 인산나트륨 1.0-10.0g/l과 물을 함유하고, 상기 아연계 피막형성 과정은 산화아연 1.0-10g/l, 수산화나트륨 1.0-10g/l, 염화철 0.1-1.0g/L, 글루콘산나트륨 1.0-10.0g/l과 물을 함유한다.As a detailed construction of the present invention, the surface cleaning process comprises 1.0-10.0 g / l of boric acid, 0.5-5.0 g / l of sodium bicarbonate, 1.0-10.0 g / l of sodium phosphate and water, 1.0-10.0 g / l of sodium hydroxide, 1.0-5.0 g / l of sodium carbonate, 1.0-10.0 g / l of sodium phosphate and water. The zinc-containing film forming process is carried out by adding 1.0-10 g / l zinc oxide, 10 g / l of iron chloride, 0.1 to 1.0 g / l of iron chloride, 1.0 to 10.0 g / l of sodium gluconate and water.

이와 같이, 본 발명은 Al 분말 상 표면 세정 후 수세, 표면 조도화 후 수세, 아연계 피막형성 후 수세를 거쳐 무전해 도금에 의한 도전성 금속 피복 처리하는 과정을 거쳐 도전성 금속 피복 Al 분말을 확보함에 따라, Al 분말 상 무전해 도금법으로 1종 혹은 2종 이상의 도전성 금속을 피막하여 형성하여 Al 분말의 이용으로 기존의 도전성 분말 대비 저비용으로 원가 절감을 추구하면서 도전성 금속 분말의 제조가 가능하고, 전기전도도가 양호함은 물론 내식성이 향상된 도전성 금속 피복 Al 분말을 얻을 수 있고, 이를 이용한 도전성 페이스트 및 전자파 차폐용 도전성 페인트 등의 용도로 활용될 수 있다.As described above, according to the present invention, after washing the surface of the Al powder, rinsing the surface after surface roughing, rinsing after forming the zinc coating, washing with conductive metal by electroless plating, securing the conductive metal coated Al powder , Al powder is formed by coating one or more kinds of conductive metal by electroless plating method, and by using Al powder, it is possible to manufacture conductive metal powder while seeking cost reduction at low cost compared to conventional conductive powder, and electric conductivity It is possible to obtain a conductive metal coated Al powder which is excellent in corrosion resistance and can be used for a conductive paste using the same and a conductive paint for shielding electromagnetic waves.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시한다. 그러나 하기의 실시예 및 실험예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments and experimental examples are provided to facilitate understanding of the present invention. However, the following examples and experimental examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

[실시예 1][Example 1]

먼저, 표면세정 용액을 붕산 5.0g/l, 중탄산나트륨 2.5g/l, 인산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨 후 가열하여 온도를 40도로 유지시킨다. 그리고 표면 조도화 용액을 수산화나트륨 5.0g/l, 탄산나트륨 2.5g/l, 인산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨 후 온도를 25도로 유지시킨다. 그리고 아연계 피막형성 용액을 산화아연 5.0g/l, 수산화나트륨 5.0g/l, 염화철 0.5g/L, 글루콘산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨다. First, 5.0 g / l of boric acid, 2.5 g / l of sodium hydrogencarbonate and 5.0 g / l of sodium phosphate are mixed with the surface cleaning solution, and the solution is stirred and dissolved. Then, the surface roughing solution was mixed with 5.0 g / l of sodium hydroxide, 2.5 g / l of sodium carbonate and 5.0 g / l of sodium phosphate, and the mixture was stirred and dissolved. Then, the zinc-containing film forming solution was mixed with 5.0 g / l of zinc oxide, 5.0 g / l of sodium hydroxide, 0.5 g / l of ferric chloride and 5.0 g / l of sodium gluconate and stirred to dissolve.

이를 통하여 제조되어진 용액을 바탕으로 Al 분말 상으로 하기의 [표 1]과 같이 무전해 도금을 실시하였다.Based on the solution thus prepared, electroless plating was performed on the Al powder as shown in Table 1 below.

Figure pat00001
Figure pat00001

이러한 물성 평가를 위해 [표 1]을 이용하여 제조되어진 도전성 금속 피복 Al 분말을 도 1처럼 15g를 이용하여 글라스프릿과 매제 및 분산제를 가하여 20분간 혼합하고 Thinky mixer를 이용하여 2000rpm/2min 교반 후, 세라믹 기판상 Screen Printing을 하고 N2 gas 분위기 전기로를 이용하여 550/hr 30min 소결 후 도전성 금속 피복 Al 분말 페이스트를 제조하였다.For the evaluation of the physical properties, 15 g of the conductive metal-coated Al powder prepared by using Table 1 was mixed with glass frit, binder and dispersant for 20 minutes, stirred at 2000 rpm / 2 minutes using a Thinky mixer, Screen printing was performed on a ceramic substrate and the substrate was heated at 550 ° C / hr for 30 minutes using an N 2 gas atmosphere electric furnace After sintering, a conductive metal coated Al powder paste was prepared.

[실시예 2][Example 2]

표면 세정 용액을 붕산 5.0g/l, 중탄산나트륨 2.5g/l, 인산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨 후 가열하여 온도를 40도로 유지시킨다. 그리고 표면 조도화 용액을 수산화나트륨 5.0g/l, 탄산나트륨 2.5g/l, 인산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨 후 온도를 25도로 유지시킨다. 그리고 아연계 피막형성용액을 산화아연 5.0g/l, 수산화나트륨 5.0g/l, 염화철 0.5g/L, 글루콘산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨다. The surface cleaning solution was mixed with 5.0 g / l of boric acid, 2.5 g / l of sodium bicarbonate and 5.0 g / l of sodium phosphate, and the mixture was stirred to dissolve and then heated to maintain the temperature at 40 ° C. Then, the surface roughing solution was mixed with 5.0 g / l of sodium hydroxide, 2.5 g / l of sodium carbonate and 5.0 g / l of sodium phosphate, and the mixture was stirred and dissolved. Then, the zinc-containing film forming solution was mixed with 5.0 g / l of zinc oxide, 5.0 g / l of sodium hydroxide, 0.5 g / l of ferric chloride and 5.0 g / l of sodium gluconate and stirred to dissolve.

이를 통하여 제조되어진 용액을 바탕 Al 분말 상으로 하기의 [표 2]와 같이 무전해 도금을 실시하였다.The solution thus prepared was subjected to electroless plating on the base Al powder as shown in Table 2 below.

Figure pat00002
Figure pat00002

이러한 물성 평가를 위해 [표 2]를 이용하여 제조되어진 도전성 금속 피복 Al 분말을 도 1처럼 15g를 이용하여 글라스프릿과 매제 및 분산제를 가하여 20분간 혼합하고 Thinky mixer를 이용하여 2000rpm/2min 교반 후 세라믹 기판상 Screen Printing을 하고 N2 gas 분위기 전기로를 이용하여 550/hr 30min 소결 후 도전성 금속 피복 Al 분말 페이스트를 제조하였다.For evaluation of the physical properties, the conductive metal-coated Al powder prepared in [Table 2] was mixed with glass frit, binder and dispersant using 15 g as shown in FIG. 1, and the mixture was stirred for 20 minutes using a Thinky mixer at 2000 rpm / Screen printing was performed on the substrate and the substrate was heated at 550 ° C / hr for 30 min using an N 2 gas atmosphere electric furnace After sintering, a conductive metal coated Al powder paste was prepared.

[실시예 3][Example 3]

표면 세정 용액을 붕산 5.0g/l, 중탄산나트륨 2.5g/l, 인산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨 후 가열하여 온도를 40도로 유지시킨다. 그리고 표면 조도화 용액을 수산화나트륨 5.0g/l, 탄산나트륨 2.5g/l, 인산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨 후 온도를 25도로 유지시킨다. 그리고 아연계 피막형성 용액을 산화아연 5.0g/l, 수산화나트륨 5.0g/l, 염화철 0.5g/L, 글루콘산나트륨 5.0g/l과 물을 가하여 교반하고 용해시킨다. The surface cleaning solution was mixed with 5.0 g / l of boric acid, 2.5 g / l of sodium bicarbonate and 5.0 g / l of sodium phosphate, and the mixture was stirred to dissolve and then heated to maintain the temperature at 40 ° C. Then, the surface roughing solution was mixed with 5.0 g / l of sodium hydroxide, 2.5 g / l of sodium carbonate and 5.0 g / l of sodium phosphate, and the mixture was stirred and dissolved. Then, the zinc-containing film forming solution was mixed with 5.0 g / l of zinc oxide, 5.0 g / l of sodium hydroxide, 0.5 g / l of ferric chloride and 5.0 g / l of sodium gluconate and stirred to dissolve.

이를 통하여 제조되어진 용액을 바탕 Al 분말 상으로 하기의 [표 3]과 같이 무전해 도금을 실시하였다.The solution thus prepared was subjected to electroless plating on a base Al powder as shown in [Table 3] below.

Figure pat00003
Figure pat00003

이러한 물성 평가를 위해 [표 3]을 이용하여 제조되어진 도전성 금속 피복 Al 분말을 도 3처럼 15g이용하여 글라스프릿과 매제 및 분산제를 가하여 20분간 혼합하고 Thinky mixer를 이용하여 2000rpm/2min 교반 후 세라믹 기판상 Screen Printing을 하고 N2 gas 분위기 전기로를 이용하여 550/hr 30min 소결 후 도전성 금속 피복 Al 분말 페이스트를 제조하였다.For evaluation of the physical properties, 15 g of conductive metal-coated Al powder prepared by using Table 3 was mixed with glass frit, binder and dispersant for 20 minutes, stirred at 2000 rpm / 2 minutes using a Thinky mixer, Screen printing was performed, and an N 2 gas atmosphere electric furnace was used at 550 ° C / hr for 30 min After sintering, a conductive metal coated Al powder paste was prepared.

[비교예 1][Comparative Example 1]

물성 평가를 위해 니켈파우더 15g를 이용하여 글라스프릿과 매제 및 분산제를 가하여 20분간 혼합하고 Thinky mixer를 이용하여 2000rpm/2min 교반 후 세라믹 기판상 Screen Printing을 하고 N2 gas 분위기 전기로를 이용하여 550/hr 30min 소결 후 Ni페이스트를 제조하였다.For evaluation of the physical properties by using the nickel powder 15g mixed 20 minutes was added to the glass frit and brother-in-law and dispersing agents and Thinky mixer using 2000rpm / 2min stirring ceramic substrate Screen Printing a and 550 / using an N 2 gas atmosphere furnace hr 30 min After sintering, Ni paste was prepared.

[비교예 2][Comparative Example 2]

물성 평가를 위해 구리파우더 15g를 이용하여 글라스프릿과 매제 및 분산제를 가하여 20분간 혼합하고 Thinky mixer를 이용하여 2000rpm/2min 교반 후 세라믹 기판상 Screen Printing을 하고 N2 gas 분위기 전기로를 이용하여 550/hr 30min 소결 후 Ni페이스트를 제조하였다.By using copper powder 15g for property evaluation mixed 20 minutes was added to the glass frit and brother-in-law and dispersing agents and Thinky mixer using 2000rpm / 2min stirring ceramic substrate Screen Printing a and 550 / using an N 2 gas atmosphere furnace hr 30 min After sintering, Ni paste was prepared.

한편, 상기 실시예 1,2,3 및 비교예 1,2에 대해 다음과 같은 시험을 실시하여 특성을 평가하였다. 그 평가결과는 하기 표 4와 같다.On the other hand, the following tests were carried out on the above Examples 1, 2, 3 and Comparative Examples 1 and 2 to evaluate their properties. The evaluation results are shown in Table 4 below.

[전기저항의 측정][Measurement of electric resistance]

세라믹 기판상 페이스트화 된 도전성 금속 피복 Al을 이용하여 30㎛로 도막화 시켜 건조한 다음, 이의 저항을 측정하였다.Coated with conductive metal-coated Al on a ceramic substrate, dried to form a film having a thickness of 30 mu m, and then its resistance was measured.

Figure pat00004
Figure pat00004

이상의 결과와 같이, 실시예 1 내지 3은 Al 분체에 Ni 및 Cu 도금 후 Paste를 제작하여 저항 측정을 한 결과로서 측정 결과 비교예 1 및 2 보다 약 0.0005Ω내외로 우수하게 결과가 나옴을 알 수 있다.As is apparent from the above results, Examples 1 to 3 show that the Ni powder and the Cu powder have been made into paste after the Al powder was subjected to the resistance measurement, and the results of the measurements show excellent results of about 0.0005? have.

본 발명은 기재된 실시예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined by the appended claims. It is therefore intended that such variations and modifications fall within the scope of the appended claims.

Claims (7)

Al 분말 상 무전해 도금법으로 도전성 금속을 1종 혹은 2종 이상의 금속을 피복하여 형성되는 것을 특징으로 하는 도전성 금속 피복 Al 분말.Wherein the conductive metal-coated Al powder is formed by coating an electrically conductive metal with one or more metals by an electroless plating method on an Al powder. 제1항에 있어서,
상기 도전성 금속 피복 분말은 레이저 회절 산란식 입도 분포 측정법에 따른 체적 누적 최대입경 Dmax 70.0㎛ 이하의 분체 특성을 가지는 것을 특징으로 하는 도전성 금속 피복 Al 분말.
The method according to claim 1,
The conductive metal-coated powder had a volume cumulative maximum particle diameter D max according to the laser diffraction scattering particle size distribution measurement method Wherein the powder has a powder characteristic of 70.0 탆 or less.
제1항에 있어서,
상기 도전성 금속은 니켈, 구리, 금, 은, 팔라듐, 백금, 철, 아연, 주석, 로듐, 인듐 중 1종 혹은 이들의 합금을 사용하는 것을 특징으로 하는 도전성 금속 피복 Al 분말.
The method according to claim 1,
Wherein the conductive metal is one of nickel, copper, gold, silver, palladium, platinum, iron, zinc, tin, rhodium and indium or an alloy thereof.
청구항 1의 도전성 금속 피복 Al 분말을 제조하는 방법에 있어서:
Al 분말 상 표면 세정 후 수세, 표면 조도화 후 수세, 아연계 피막형성 후 수세를 거쳐 무전해 도금에 의한 도전성 금속 피복 처리하는 과정으로 진행하는 것을 특징으로 하는 도전성 금속 피복 Al 분말의 제조방법.
A method for producing the conductive metal coated Al powder of claim 1, comprising:
The surface of the Al powder is washed with water, rinsed with water after surface roughing, rinsed with water after the formation of the zinc coating, and then subjected to a conductive metal coating treatment by electroless plating.
제1항에 있어서,
상기 표면 세정 과정은 붕산 1.0-10.0g/l, 중탄산나트륨 0.5-5.0g/l, 인산나트륨 1.0-10.0g/l과 물을 함유하는 것을 특징으로 하는 도전성 금속 피복 Al 분말의 제조방법.
The method according to claim 1,
Wherein the surface cleaning process comprises 1.0-10.0 g / l of boric acid, 0.5-5.0 g / l of sodium bicarbonate, 1.0-10.0 g / l of sodium phosphate and water.
제1항에 있어서,
상기 표면 조도화 과정은 수산화나트륨 1.0-10.0g/l, 탄산나트륨 1.0-5.0g/l, 인산나트륨 1.0-10.0g/l과 물을 함유하는 것을 특징으로 하는 도전성 금속 피복 Al 분말의 제조방법.
The method according to claim 1,
Wherein the surface roughing process comprises the steps of: providing 1.0-10.0 g / l of sodium hydroxide, 1.0-5.0 g / l of sodium carbonate, 1.0-10.0 g / l of sodium phosphate and water.
제1항에 있어서,
상기 아연계 피막형성 과정은 산화아연 1.0-10g/l, 수산화나트륨 1.0-10g/l, 염화철 0.1-1.0g/L, 글루콘산나트륨 1.0-10.0g/l과 물을 함유하는 것을 특징으로 하는 도전성 금속 피복 Al 분말의 제조방법.
The method according to claim 1,
Wherein the zinc-containing film forming process comprises a step of forming a zinc-containing film on a surface of a substrate, wherein the zinc-containing film comprises 1.0-10 g / L of zinc oxide, 1.0-10 g / L of sodium hydroxide, 0.1-1.0 g / L of sodium chloride, 1.0-10.0 g / L of sodium gluconate, Method of manufacturing metal coated Al powder.
KR1020170049977A 2017-04-18 2017-04-18 Conductive metal-coated Al powder and manufacturing method KR20180117256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170049977A KR20180117256A (en) 2017-04-18 2017-04-18 Conductive metal-coated Al powder and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170049977A KR20180117256A (en) 2017-04-18 2017-04-18 Conductive metal-coated Al powder and manufacturing method

Publications (1)

Publication Number Publication Date
KR20180117256A true KR20180117256A (en) 2018-10-29

Family

ID=64101417

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170049977A KR20180117256A (en) 2017-04-18 2017-04-18 Conductive metal-coated Al powder and manufacturing method

Country Status (1)

Country Link
KR (1) KR20180117256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318688A (en) * 2020-03-24 2020-06-23 昆明理工大学 Preparation method and application of aluminum-based conductive powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318688A (en) * 2020-03-24 2020-06-23 昆明理工大学 Preparation method and application of aluminum-based conductive powder

Similar Documents

Publication Publication Date Title
CN106169386B (en) The method for being used to prepare the electrical contact material of the Ag CNTs containing plating
CN102554222B (en) Preparation method of silver-coated copper composite powders
EP1560227A1 (en) Conductive paste
JPWO2014156638A1 (en) All solid state secondary battery
TW201511296A (en) Core-shell based nickel particle metallization layers for silicon solar cells
JP2013076127A (en) Silver plating material and production method therefor
CA2574173A1 (en) Nickel coated copper powder and process for producing the same
CN104112608A (en) Switch contact with refractory metal alloy coating layer and preparation method thereof
CN104801709A (en) Nickel-coated copper clad metal powder and preparation method and application thereof
CN104112609A (en) Arc ablation resistance switch contact and production method thereof
JP2014218701A (en) Silver-coated nickel particles and method of manufacturing the same
CN103817323A (en) Nickel-coated graphite electric conduction powder used for electric conduction rubber and manufacturing method thereof
CN111318688A (en) Preparation method and application of aluminum-based conductive powder
KR20180117256A (en) Conductive metal-coated Al powder and manufacturing method
JP6698059B2 (en) Method for preparing high conductivity base metal thick film conductor paste
JP5576318B2 (en) Copper particles
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
CN106903325A (en) The preparation method of silver-tin contact material and its contact material being made
CN110636693A (en) Method for electroplating graphene-metal composite material coating by using complex pulse, PCB and motor
JP5576319B2 (en) Copper particles
CN114105494B (en) Coupling agent compounded ionic nickel palladium-free activation solution and method for preparing conductive basalt fiber
CN113199024B (en) Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof
CN101760734A (en) Tin-nickel chemical plating prescription and process on surface of glass fiber
Xu et al. Preparation and properties of silver-coated copper powder with Sn transition layer
CN108213415A (en) The production method of corrosion-resistant and high-temperature resistant silver-bearing copper coated composite powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application