JPS58218831A - Power factor improving device - Google Patents

Power factor improving device

Info

Publication number
JPS58218831A
JPS58218831A JP57101003A JP10100382A JPS58218831A JP S58218831 A JPS58218831 A JP S58218831A JP 57101003 A JP57101003 A JP 57101003A JP 10100382 A JP10100382 A JP 10100382A JP S58218831 A JPS58218831 A JP S58218831A
Authority
JP
Japan
Prior art keywords
circuit
comparison
reactive power
delay
power factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57101003A
Other languages
Japanese (ja)
Inventor
西田 好次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57101003A priority Critical patent/JPS58218831A/en
Publication of JPS58218831A publication Critical patent/JPS58218831A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明ね複数のコンテンツを用いて電力の力率を改善す
る力率改善装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power factor improvement device that improves the power factor of electric power using a plurality of contents.

従来、この種の力率改善装置とし′″C目第1図Aに示
す回路方式が提案さnている。図において、1り負荷り
の負荷電流を検出する変流器、(以下CTと略称するり
、2ね負荷端子電圧を検出する電圧変成器、(以1、P
Tと略称する〕、3り前記の負荷電流と負荷端子電圧と
より負荷りの無効電力を検出する無効電力検出回路、4
ね負荷りの無効電力の増減にエリコンテンツ6を開閉す
る開閉装置5にエリ開閉さするコンテンツ制御回路であ
る。
Conventionally, the circuit system shown in Figure 1A has been proposed as this type of power factor correction device. A voltage transformer that detects the load terminal voltage (hereinafter referred to as 1, P
(abbreviated as T); 3) a reactive power detection circuit that detects the reactive power of the load based on the load current and the load terminal voltage; 4)
This is a content control circuit that causes the opening/closing device 5 to open/close the content 6 in response to an increase or decrease in reactive power.

この様に構成さn′fc従米の従来改善装置の動作につ
いて以T[明する。負荷りの無効電力ね、CT1で検出
さnた負荷電流と、PT2で検出さn′fc狛荷端子電
圧とを無効電力検出回路3に取込み稍舞する串によって
検出さnる。積涛さjた結果りコンテンツ制御回路4に
エリコンテンツ開閉器5への開閉偏角として出力さn、
(の出力佃七によってコンテンツ開閉器5を開閉し、コ
ンテンツ6で必要な進相無効電力を得る。
The operation of the conventional improved device constructed in this way will be explained below. The reactive power on the load is detected by a skewer which inputs the load current detected by CT1 and the load terminal voltage n'fc detected by PT2 into the reactive power detection circuit 3. The result of the accumulation is output to the content control circuit 4 as the opening/closing angle to the content switch 5,
(The content switch 5 is opened and closed by the output Tsukuda 7, and the phase leading reactive power required by the content 6 is obtained.

次に第1図Aの回路の制御力法について駅間する。?J
j 16のコンテンツを用いて無効電力を補償する場合
、たとえば第1図Aのようにコンテンツ6の進相容量の
比を1:2:2に選足したとすると(nぞ1のコンテン
ツを開放、またね投入する事に工って、第1図Bに示す
工うに5段の進相@童を制御する事が可能とηる6従米
の力率改善装置においてね第1図Bのように、負荷の遅
相無効電力の急増にエリ第5段階の進相容量を投入する
同にす、iず進相@量q1を投入し、込いでq2を投入
し、送いでq3という工うに、いくつかの投入段階を経
て最終の進相容量q5に達するものであった。又、遅相
無効電力がq5からqOに急減し7IC騎にね、前記投
入の場合と同様に、いくつ刀1の段階を経て、進相容量
をqOに切替える。第1図cb前記負荷りの遅相無効電
力の変動に対し、従来の力率改善装置が前記、遅相無効
電力の変動を補償する場合の進相無効電力の変化を示す
ものでT3tj負荷の遅相無効電力を補償するのに必要
力所要補償−間である。このようにして従来の力率改善
装置り遅相無効−電力を補償し、力率改善を杓っていた
Next, we will discuss the control force method for the circuit shown in Figure 1A. ? J
j When compensating for reactive power using 16 contents, for example, if the ratio of phase advance capacity of content 6 is selected to be 1:2:2 as shown in Fig. In addition, it is possible to control a five-stage phase advance @ device as shown in Fig. 1B by using a power factor correction device with a six-stage power factor as shown in Fig. 1B. At the same time, the phase advance capacity of the fifth stage is inputted to the rapid increase in the lagging phase reactive power of the load. , the final phase leading capacity q5 was reached through several input stages.In addition, the lagging phase reactive power suddenly decreased from q5 to qO, resulting in 7 ICs. The phase advance capacity is switched to qO after the steps of . It shows the change in the leading phase reactive power and is the power required to compensate for the lagging reactive power of the T3tj load.In this way, the conventional power factor correction device compensates the lagging reactive power. , they were trying to improve the power factor.

従って、従来の力率改善装置ね負荷の遅相無効電力の変
動に対する応答性が緩慢で段階を経て進相容量を得る為
、開閉装部の開閉頻度が高くカリ、追従特性が遅延する
等の太き力欠瘍があった。
Therefore, the response of conventional power factor correction devices to fluctuations in the slow-phase reactive power of the load is slow, and the phase-advance capacity is obtained in stages, resulting in high frequency of opening and closing of the switching equipment, delay in follow-up characteristics, etc. There was a lack of strength.

本発明ね上記のような欠めを除去する為に々さf′lf
t、もので進相コンテンツを開閉処置によって開閉する
ための開閉信号を出力するコンテンツ制御   ”1回
路内に第1コンパレータと第2コンパレータ、及び第1
四限回路と第2同限回路とを設け、負荷の遅相無効電力
の変動に対する連応性を大幅に向上させ開閉装藺の開閉
頻度が少々い力率改善装置を安価に提供する事を目的と
する。
The present invention is designed to eliminate the above-mentioned defects.
t, content control that outputs opening/closing signals for opening and closing phase-advanced contents by opening/closing procedures. ``A first comparator, a second comparator, and a first
The purpose of this invention is to provide a low-cost power factor correction device that has a four-limit circuit and a second equal-limit circuit, greatly improves the responsiveness to fluctuations in the slow-phase reactive power of the load, and has a low frequency of opening and closing the switchgear. shall be.

以下本発明の一実施例を図についCD明する。An embodiment of the present invention will be explained below with reference to the drawings.

第1図と同一の部分ね同一の符勺以って図示した第2図
において、7及び8り遅相無効電力設定価と比@する2
組の第1及び第2コンパレータで(のうちillコンパ
レータ7ねコンデン−t6のQlの制御を対象とし、第
2コンパレータ8ねコンデン′v6のQl及びQ3の制
御を対象としている。
In FIG. 2, where the same parts as in FIG.
The first and second comparators of the set (among them, the ill comparator 7 and the capacitor t6 are intended to control Ql, and the second comparator 8 and the capacitor 'v6' are intended to control Ql and Q3.

また9及び10ね前記コンパレータの出力がある四定数
以上継続するとコンデン−v6に開閉a勺を出力する第
1及び第2の2組の肋限回路である。
In addition, when the output of the comparator 9 and 10 continues for a certain number of constants or more, there are two sets of first and second limiting circuits that output an opening/closing signal to the capacitor V6.

第11WII−MIl159 tjコンデン−tr6の
Qlの制御を対象とし、第2限萌回12Iioねコンテ
ンツ6のQl、及びQ3の制御を対象とし又いる0 次に、本発明の動作について以fに説明する。
The 11th WII-MIl 159 is targeted at the control of Ql of the tj condenser tr6, and the control of the Ql and Q3 of the 2nd limited edition 12th Iion content 6 is targeted.Next, the operation of the present invention will be explained below. do.

第2図Aにおいて負荷りの無効電力ねC′T1で検出さ
t′17′2.負荷電流とPT2で検出さfまた負荷端
子′電圧とを無効電力検出回路3に導入し積Aする事に
よって検出さj゛る。次いで検出さ1fc無効電力ね第
1コンパレータ7.71&び第2コンパレータ8によっ
て予め設定さf′Iた設定価と比較さnる。(ζで負荷
りの遅相無効電力WI、が増加すると第1コンパレータ
7、及び第2コンパレータ8 tj 動作を開始するが
第1及び第2コンパレータり夫々2レベルの比較レベル
VL1及びVL2が設けら1ている。第1コンパレータ
7ねコンテンツ6のQlの制御を対象とし、第2コンパ
レータ8tjコンデンヤ6のQl及びQ3の制御を対象
とする。
In FIG. 2A, the load reactive power C'T1 is detected at t'17'2. It is detected by introducing the load current, f detected by PT2, and the load terminal' voltage into the reactive power detection circuit 3, and multiplying it by the product A. Then, the detected 1fc reactive power is compared with a preset value f'I by the first comparator 7.71 and the second comparator 8. (When the delayed phase reactive power WI loaded at ζ increases, the first comparator 7 and the second comparator 8 tj start operating, but the first and second comparators are provided with two comparison levels VL1 and VL2, respectively. The first comparator 7 controls Ql of the content 6, and the second comparator 8tj controls Ql and Q3 of the condenser 6.

次に第3図の動作説明図について以下説明する。Next, the operation diagram shown in FIG. 3 will be explained below.

遅相無効電力WLが第1コンパレータ7の設定レベルV
L1を越えると第1コンパレータ7の出力1cpoが第
11限回路9に入力さする。第1コンパレータ7の出力
i cpoが第1町限回路90四定款T1以上継続する
と、コンテンツ6のQlの投入@月が出力さnる。又、
遅相無効電力WLが比較レベルCV2を越えると第2コ
ンパレータ8の出力2CPOが第2町限回路10に入力
さする。第2コンパレータ8の出力2CPOdfi12
11’i限回路10の同定1ffT2以上継9続すると
、コンデンサ6のQl及びQ3の投入@月が出力さnコ
ンデンプ開閉装置5を閉成しコンデンサ6で進相無効電
力を得る。上記ね複数のコンデンサの投入用の回路4に
ついて説明したが、無効電力検出信号の入力極性を逆に
する事にエリ全く同一の動作でコンデンサを遮断する開
放回路とηる。また複数のコンデンサを用いχ遅相無効
電力WLを補償する場合、第2囚Aのようにコンデン−
v6の進相容量の比を例えば1:2:2に選べば同図B
の↓うに(nぞnのコンデンサを開閉する事に工つ15
レベルの進相容量を制御する事が可能と力る。更に、負
荷の無効電力が急増しfc事にエリ進相客量q5を投入
したい閥にねmlコンパレータ7、及び第2コンパレー
タ8が出力さする。(ζで四隅回路の肋定数の設定価が
TI>T2となつ1いるので第2肋限回路10エリコン
jデンヤ6へ投入佃旬カ出力さ1、コンデンサ6のQl
、及びQ3の投入がコンデンサ6のQ1エリ優先さする
。工つ″C3段階の投入で遅相容量レベル5を補償する
事が出来る。又、遅相容量がレベル5からレベル0に急
減しfcqね投入の場合と同様に3段階を軽て進相容量
をqOに戻す。第2図Cね負荷りの遅相無効電力WLの
変動と本発明にエリ(の変動を補償する進相無効電力の
変化を示す囚である。図中、T4tj負荷りの遅相無効
電力WLを補償するのに要する簡閲を示すものである。
The lagging reactive power WL is the setting level V of the first comparator 7
When L1 is exceeded, the output 1cpo of the first comparator 7 is input to the eleventh limit circuit 9. When the output i cpo of the first comparator 7 continues for more than the first town limit circuit 904 articles of incorporation T1, the input @month of Ql of the content 6 is output n. or,
When the delayed phase reactive power WL exceeds the comparison level CV2, the output 2CPO of the second comparator 8 is input to the second town limit circuit 10. Output 2CPodfi12 of second comparator 8
11'i Identification of the limit circuit 10 When 1ffT2 or more continues, the capacitors 6 Ql and Q3 are turned on and the n-condenser switching device 5 is closed, and the capacitor 6 obtains phase-advanced reactive power. The circuit 4 for supplying a plurality of capacitors has been described above, but by reversing the input polarity of the reactive power detection signal, it is possible to create an open circuit that cuts off the capacitors with exactly the same operation. In addition, when compensating for the χ lagging reactive power WL using multiple capacitors, the capacitors are
If the ratio of phase advance capacity of v6 is selected to be 1:2:2, for example, Figure B
↓It took 15 hours to open and close the capacitor
It is possible to control the phase advance capacity of the level. Further, the comparator 7 and the second comparator 8 output an output when the reactive power of the load suddenly increases and it is desired to input an additional amount of customers q5. (At ζ, the setting value of the cost constant of the four corner circuit is TI>T2, so the second cost limit circuit 10 is input to Oerlikon J Denya 6, and the output value is 1, and the Ql of capacitor 6 is
, and the input of Q3 gives priority to the Q1 area of the capacitor 6. It is possible to compensate for the lagging phase capacitance level 5 by turning on the C3 stage.Also, the lagging phase capacitance suddenly decreases from level 5 to level 0, and the leading phase capacitance is reduced by reducing the 3 stages as in the case of fcq-turning. is returned to qO. Figure 2 shows the variation of the lagging reactive power WL under the C load and the change in the leading phase reactive power that compensates for the fluctuation of ELI (in the present invention). In the figure, the It shows a simple review required to compensate for the slow phase reactive power WL.

次に第4図り本発明の他の実施例を示す力率改善装部の
回路構成図である。図中、第2図と同一の部分ね同一の
符号を付したので説明り省略する。
Next, a fourth diagram is a circuit configuration diagram of a power factor correction unit showing another embodiment of the present invention. In the figure, the same parts as in FIG. 2 are designated by the same reference numerals, and the explanation thereof will be omitted.

11及び12リコンデン′v6の投入状態を監視し、コ
ンデンサ6の投入状態偏角とし1全バンク投入又ね開放
で1を出力するコンデン市投入状態監視回路である。又
コンデン−y6の開閉装置5へ与えらするコンデンサ6
の開閉@角ね2組の第1及び第2閥限回89及び10↓
り夫々のコンデンサ投入状態監視回路11及び12を介
しχ、開閉装置5へ与えらする。第1コンデンヤ投入監
視回路11ねコンデンサ6のQ工及びQlの監視を対象
とし第2コンデンプ投入監視回路12ねコンデンサ6の
Q5、及びQ、の監視を対象とする。
This is a capacitor charging state monitoring circuit which monitors the charging state of recondensers 11 and 12 'v6, and outputs 1 when all banks are closed or 1 is opened, as the input state deviation angle of the capacitor 6. Also, a capacitor 6 is supplied to the switchgear 5 of the capacitor y6.
Opening/closing @ 1st and 2nd group of 2 sets of corner screws 89 and 10↓
χ is applied to the switching device 5 via the capacitor closing state monitoring circuits 11 and 12, respectively. The first condenser charge monitoring circuit 11 is designed to monitor Q and Ql of the capacitor 6, and the second capacitor charge monitoring circuit 12 is designed to monitor Q5 and Q of the capacitor 6.

グに、第4囚Aの動作について以下に説明する。The operation of the fourth prisoner A will be explained below.

CT1及びPT3の佃刀にエリ負荷の遅相無効電力WL
を検出し、2組の第1及び第2コンパレーター7及び8
によって既設定価と比較な豹い、2組の第1及び第21
Nla回路9及び10を介してコンデン16の開閉装置
5を開閉し、負荷の遅相無効電力WLを補償して、力率
の改善な杓う。基本動作につい″Cij上記実施例と全
く同一である・本実歴例においてね、エリ精度の高い補
償を行う事を目的とし、上記のようη順序でコンデンf
6を制御するものである。′8力わち、複数のコンデン
′v6のQl・・・Q、を用いて遅相無効電力WLを補
償りようとする場合コンデンサ6の容量を1:1:2:
2に選ぶと第3図Bのように、そf′lそ1のコンデン
−v6を開閉する事によって、6の進相客搦を制御する
事が可能となる。今、負荷の遅相無効電力WLの急増に
エリ進相容量q4を必要とし、コンデン+16のQ、及
びQ、の投入が力さflりとする。烙らに、負荷の遅相
無効電力WLが増し、進相容量q2を必要とし′fc場
合にね、第1コンパレータ7及び第2コンパレータ8が
動作し、十の出力によつ1第1憫限回路9及び第2四限
回w310が動作する。本発明による動作で説明した1
sfl IiタイムT1及びT2すT1>T2と予め設
定しであるので、コンデンサ6のQ、及びQIlが投入
さnているにも刀)刀1わらず第2時限回路10よりコ
ンデンサ6のQ、及びQ4へ投入@角が出力さnる〇そ
こで第2時限回路10が動作した事にエリ第2町限回路
9へ出力さするリセット伯月を第2コンデンヤ投入監視
回路12の監視偏角と第2晩限回路10の出力をNAN
D回8含介す事にエリ停止させる。す4わちコンデン+
)6のQ、7AびQ、がすでに投入さj′″Cいるとい
う条件と第2師限回路10が動作したという条件がどち
らも成立した上で第1四限回k12!9へのリセット伯
〕を停止させることによって第1閥限回路9から第1コ
ンデンヤ投入監視製雪11を介し1コンデンヤ6のQl
及びQlの開閉装置へ開閉偏角を出力させる。又コンデ
ンサ6のQl及びQlがすでに投入さflている場合に
d第1コンデン号投入状態監視領置13よりコンデン号
投入監視信号が出力さnる。次いで第1コンパレータ7
が動作したという柔性をもって第2IM3限回路10を
動作させ、第2コ−ンデンヤ投入監視Mfl12を介し
て、コンテンツ6のQl及びQ2の開閉装置へ、開閉偏
角を出力するものである。第4図Cね負荷の遅相無効電
力の変動と、本実施例によるその変動を補償する進相無
効電力の変化を示す図、第5図り、遅相無効電力の変動
WL及び進相無効電力の変動WHを本実施例による制御
回路の谷部のタイミングチャートについて図示したもの
である。
Lagging phase reactive power WL of Eri load on CT1 and PT3
, and two sets of first and second comparators 7 and 8
By comparison with the preset price, two sets of 1st and 21st
The switching device 5 of the capacitor 16 is opened and closed via the Nla circuits 9 and 10, and the lagging phase reactive power WL of the load is compensated for, thereby improving the power factor. The basic operation is exactly the same as that of the above embodiment. In this actual example, the purpose is to perform compensation with high error accuracy, and the condenser f is set in the η order as described above.
6. In other words, when trying to compensate for the lagging reactive power WL using multiple capacitors Ql...Q, the capacitance of the capacitor 6 should be set to 1:1:2:
If 2 is selected, as shown in FIG. 3B, it becomes possible to control the advance rate of 6 by opening and closing condenser v6 of f'l and so1. Now, the rapid increase in the slow phase reactive power WL of the load requires the phase advance capacitor q4, and the input of the capacitor +16 Q and Q is insufficient. Furthermore, when the lagging reactive power WL of the load increases and the phase advancing capacitance q2 becomes necessary, the first comparator 7 and the second comparator 8 operate, and the output of the first The limit circuit 9 and the second fourth limit circuit w310 operate. 1 explained in the operation according to the present invention
sfl Ii times T1 and T2 are preset as T1>T2, so even though the Q of capacitor 6 and QIl are input, the Q of capacitor 6, Then, when the second time limit circuit 10 operates, the reset count which is output to the second time limit circuit 9 is set as the monitoring deflection angle of the second condenser charge monitoring circuit 12. The output of the second night limit circuit 10 is NAN
Eri stops after D times 8. Su4wachi condensation +
) Reset to the 1st 4th period k12!9 after the conditions that Q, 7A and Q of 6 have already been input j'''C and the condition that the second curfew circuit 10 is activated are satisfied. Ql of the first condenser 6 is transferred from the first dividing circuit 9 to the first condenser input monitoring snow making 11 by stopping the first condenser 6.
and output the opening/closing declination angle to the switching device Ql. Further, when Ql and Ql of the capacitor 6 are already turned on, a condenser input monitoring signal is output from the first capacitor input state monitoring area 13. Then the first comparator 7
The second IM3 limiter circuit 10 is operated with the flexibility of operation, and the opening/closing declination angle is output to the opening/closing devices of Q1 and Q2 of the content 6 via the second condenser input monitoring Mfl12. Figure 4 shows the variation in lagging reactive power of load C and the change in leading reactive power that compensates for the variation according to this embodiment; Figure 5 shows the variation in lagging reactive power WL and leading reactive power FIG. 12 is a diagram illustrating the fluctuation WH of the trough portion of the control circuit according to the present embodiment.

尚、上記笑11、夫々2組のコンパレータと四隅回路を
用い多段の進相@量を制御する場合についtihtnし
たがコンデンヤパンクトコンパレータ、及び肋限回路を
増設する事にエリ負荷の遅相無効電力に対する応答をよ
り速くすることね容易に可能である。又、開閉装置の開
閉頻度もより少なくすることも可能となるものである。
In addition, as mentioned above, when controlling the phase advance @ quantity in multiple stages using two sets of comparators and four corner circuits, adding a condenser puncture comparator and a limiting circuit will invalidate the delay phase of the load. It is easily possible to make the response to power faster. Furthermore, it is also possible to reduce the frequency of opening and closing of the opening/closing device.

以上のように本発明(=工nば、負荷の遅相無効電力の
変動に対する遅相容量の制御応答を速くするため検出さ
f′Ifc無効電力のレベルを比較して動作するコンパ
レータと四隅回路、あるいり進相容量コンデンヤの投入
状態を監視する回路等を用いてタイマー回路(二セット
、又ね、リセット@号を任意のタイミングで与えらnる
ように制御したので、進相コンデン1の開閉装置の開閉
頻度を大幅に減少して装置の長寿命化に寄与すると共に
進相制御の精度が向上L’を信頼性の高い力率改善装置
が得らnる顕著力効果がある。
As described above, the present invention (= engineering) consists of a comparator and a four-corner circuit that operate by comparing the level of the detected f'Ifc reactive power in order to speed up the control response of the lagging capacitor to fluctuations in the lagging reactive power of the load. , I controlled the timer circuit (two sets) using a circuit that monitors the input state of the phase-advancing capacitor 1, and so that the reset @ signal was applied at an arbitrary timing. This significantly reduces the frequency of opening/closing of the switching device, contributing to longer life of the device, and improves the accuracy of phase advance control L', resulting in a significant power factor improvement device with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図り従来の力率改善装備の回路構成図とコンテンツ
の説明図、第2図ね本発明の力率改善装置の回路構成図
とコンテンツの説明図、第3図り第2図の動作説明図、
第4図り本発明の他の実施例を示す力率改善装置の回路
構成図とコンテンツの説明図、第5図り第4図の動作説
明図である。   。 1・・・負荷電流検出用CT、2・・・負荷端予電圧検
   ゛i出用PT、3・・・無効電力検出回路、4・
・・コンテン1制御回路、5・・・コンデンヤ開閉装置
、6・・・コンテンツ、7・・・コンパレータ1.8・
・・コンパレータ2.9・・・四隅回路1.11・・・
第1コンデン号投入監視装置、12・・・第2コンデン
ヤ投入監視装置。 代理人   葛 野 佃 −(は刀)1名)1li1図 83図
Figure 1 is a circuit diagram and explanatory diagram of the contents of the conventional power factor correction equipment, Figure 2 is a circuit diagram and explanatory diagram of the contents of the power factor improvement device of the present invention, and Figure 3 is an explanatory diagram of the operation of the power factor improvement device of the present invention. ,
A fourth diagram is a circuit configuration diagram and an explanatory diagram of contents of a power factor correction device showing another embodiment of the present invention, and a fifth diagram is an explanatory diagram of the operation of FIG. 4. . 1... CT for load current detection, 2... PT for load end pre-voltage detection, i output, 3... Reactive power detection circuit, 4...
... Content 1 control circuit, 5... Condenser opening/closing device, 6... Content, 7... Comparator 1.8.
...Comparator 2.9...Four corner circuit 1.11...
1st condenser charging monitoring device, 12...2nd condenser charging monitoring device. Agent Tsukuda Kuzuno (1 person) 1li1 Figure 83

Claims (1)

【特許請求の範囲】[Claims] (1)複数のコンテンツを投入、又ね遮断して電力系統
の力率改善を杓う力率改善@置においχ、前記電力系統
の無効電力を検出する無効電力検出回路と、前記コンテ
ンツの容量の種類と数量とに対応して夫々異る比較レベ
ルを有する複数の比較回路と、前記比較回路の動作出力
にエリー足の遅延動作を杓う前記複数の比較回路に対応
した複数の遅延回路とを備え、前記無効電力が変化して
前記比較回路の比較レベルを越えた萌、前記、低動作の
比較回路に対応する前記遅延回路を介し対応する前記コ
ンテンツを開閉すると共に作動した前記遅延回路以外の
他の遅延回路にリセットを施し、り七ットを施した前記
遅延回路の遅延部間をコンデンヤパンク各頷の小さい方
力)ら大きい力に順に短くしたことを特命とする力率改
香旧1(21前記検出さまた無効電力の仙が前記比較回
路の所定の比較レベルを越えた場合に、前記比較レベル
に対応するコンテンツバンクが既に全部投入、又ね開放
さjている県件が成立している1にね前記比較回路の比
較レベルに対応したコンデン号以外の他の開閉司能彦コ
ンデンヤを開閉可能にしたことを特徴とする特許請求の
範囲第1項記載の力率改善装置。
(1) A power factor improvement@installation system that applies and shuts off multiple contents to improve the power factor of the power system, a reactive power detection circuit that detects the reactive power of the power system, and the capacity of the content. a plurality of comparison circuits each having a different comparison level corresponding to the type and quantity of the comparison circuits; and a plurality of delay circuits corresponding to the plurality of comparison circuits that apply Erie foot delay operations to the operational outputs of the comparison circuits. , wherein the reactive power changes and exceeds the comparison level of the comparison circuit, and the delay circuit other than the delay circuit operates while opening and closing the corresponding content via the delay circuit corresponding to the comparison circuit with low operation. The special purpose of the power factor modification was to reset the other delay circuits in the circuit, and to shorten the length between the delay sections of the delay circuit, which had been subjected to R7, in order from the smaller force of each condenser puncture to the larger force. 1 (21) If the detected value of the reactive power exceeds a predetermined comparison level of the comparison circuit, the content bank corresponding to the comparison level has already been fully loaded and opened. Power factor improvement according to claim 1, characterized in that, when 1 is satisfied, a condenser other than the condenser number corresponding to the comparison level of the comparison circuit can be opened and closed. Device.
JP57101003A 1982-06-11 1982-06-11 Power factor improving device Pending JPS58218831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57101003A JPS58218831A (en) 1982-06-11 1982-06-11 Power factor improving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57101003A JPS58218831A (en) 1982-06-11 1982-06-11 Power factor improving device

Publications (1)

Publication Number Publication Date
JPS58218831A true JPS58218831A (en) 1983-12-20

Family

ID=14289079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57101003A Pending JPS58218831A (en) 1982-06-11 1982-06-11 Power factor improving device

Country Status (1)

Country Link
JP (1) JPS58218831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221823A (en) * 1986-03-19 1987-09-29 富士電機株式会社 Automatic power factor controller
US8339111B2 (en) 2009-03-18 2012-12-25 Mitsubishi Electric Corporation Reactive power compensator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47369U (en) * 1971-01-22 1972-08-01
JPS4915943A (en) * 1972-06-07 1974-02-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47369U (en) * 1971-01-22 1972-08-01
JPS4915943A (en) * 1972-06-07 1974-02-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221823A (en) * 1986-03-19 1987-09-29 富士電機株式会社 Automatic power factor controller
US8339111B2 (en) 2009-03-18 2012-12-25 Mitsubishi Electric Corporation Reactive power compensator

Similar Documents

Publication Publication Date Title
US5450309A (en) Method and device for switching inverters in parallel
US4447788A (en) Method for optimizing the power input of a plurality of hysteresis motors connected in parallel
US4897593A (en) Reactive power compensator for electric power system
US5625277A (en) Dynamic mechanically switched damping system and method for damping power oscillations using the same
JPS58218831A (en) Power factor improving device
EP1249061A1 (en) Dynamic series voltage compensator and method thereof
US4342063A (en) Memory circuit in a relay protection device
JP2000308263A (en) Power factor controller
EP0760177B1 (en) Recovery of transmitted power in an installation for transmission of high-voltage direct current
JP2002095166A (en) Power flow controller
JPS59216425A (en) Method of controlling stationary reactive power compensator
JPS62104432A (en) Booster source
US4811356A (en) Control circuit for switching power to an induction furnace
JPS63148831A (en) Controller of stational reactive power compensator
JP3441370B2 (en) PWM converter
JPH02114307A (en) Control circuit for static type reactive power compensating device
JPH10243562A (en) Reactive power controller
JPS5947929A (en) Automatic power factor controller
JPS6114734B2 (en)
JP2000224767A (en) Reactive power compensator and its control
JPS59132725A (en) Power factor improving device for power system
JPH04344909A (en) Reactive power compensating device
JPS6194124A (en) Hybrid static reactive power compensator
JPS58144923A (en) Controlling method of reactive power
JPH0524966Y2 (en)