JPS58144923A - Controlling method of reactive power - Google Patents

Controlling method of reactive power

Info

Publication number
JPS58144923A
JPS58144923A JP57028512A JP2851282A JPS58144923A JP S58144923 A JPS58144923 A JP S58144923A JP 57028512 A JP57028512 A JP 57028512A JP 2851282 A JP2851282 A JP 2851282A JP S58144923 A JPS58144923 A JP S58144923A
Authority
JP
Japan
Prior art keywords
reactive power
capacitor
capacity
capacitors
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57028512A
Other languages
Japanese (ja)
Inventor
Junichi Kawaguchi
純一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57028512A priority Critical patent/JPS58144923A/en
Publication of JPS58144923A publication Critical patent/JPS58144923A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To enable control of reactive power for a highly accurate system with the minimum necessary equipment, by controlling the large-capacity capacitor group and the small-capacity capacitor group with different reactive power controllers, respectively. CONSTITUTION:A reactive power controller 7 works when the delayed reactive power increases after the application is through for all switches 8, 9 and 10 of a capacity having small unit capacity. Then a capacitor 17 of large unit capacity is connected to a bus 4 with application of a capacity switch 11. In this case, if the capacity of the capacitor 17 is larger than the increment of the delayed reactive power of a system, the system has the advanced reactive power. Thus a reactive power controller 6 works. As a result, one of capacitors 14, 15 and 16 of small unit capacity which is equivalent to the advanced reactive power is cut off from the bus 4 when one of the switches 8, 9 and 10 is cut off.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は工場等の一般電力需要家の受変電システムにお
ける無効電力制御を精度良く行ない得るようにした無効
電力調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactive power adjustment method that enables highly accurate reactive power control in power receiving and transforming systems of general power consumers such as factories.

〔発明の技術的背景〕[Technical background of the invention]

電力需要家において、負荷設備は一般的に遅れの無効電
力を伴なうが、この遅れ無効電力は系統の力率の低下、
電力損失の増加、電圧の不安定、電力料金の増加等を招
くので、遅れ無効電力を補償してやる必要がある・ 第1図および第2図はこの遅れ無効電力補償のための従
来の無効電力調整装置の一例を示した4のである・図に
おいて、1は受電点、2は計器用変流器、3は計器用変
圧器、4は母線、5は負荷設備、Iは無効電力調整器、
8,9゜10はコンデンサ開閉器% 14.15.16
はコンデンサ、20は直流電源で、図示の如く構成され
ている・ つtυ1図において受電点1よシミ力を受け、母llI
4を通して負荷設備5へ電力を供給している。を良、母
I!4にはコンデンサ開閉器8,9゜10を通して、電
力コンデンサ14 # 151711が接続されている
。無効電力調整器6は計算器用変流器2及び計器用変圧
器3にて検出される系統の電流、電圧信号を受けて無効
電力を計算し、これを予め設定され九無効電力と比較し
て、遅れ無効電力を補償する必要のあるときはその大き
さに応じて無効電力調整器6の内部のコンデンサ開閉器
制御リレー61’、62.6:Iの1接点をオンさせる
事で、コンデンサ開閉器8゜9.10の投入リレーCx
を動作させてコンデンサ開閉器Jl t 9 e J 
Oを投入し、コンデンサ14.15.16が母線4に接
続される・また、進み無効力を補償する必要があるとき
は、無効電力調整器Gの内部コンデンサ開閉器制御リレ
ーg 1 e 6 J −6Jのb像点をオンさせる事
で、コンデンサ開閉器8*9.loのし中断リレー官を
動作させてコンデンサ開閉器s*s、l。
At power consumers, load equipment generally involves delayed reactive power, and this delayed reactive power causes a decrease in the power factor of the grid,
It is necessary to compensate for delayed reactive power because it causes increased power loss, voltage instability, and increased power charges. Figures 1 and 2 show conventional reactive power adjustment to compensate for delayed reactive power. 4 shows an example of the device. In the figure, 1 is a power receiving point, 2 is a voltage transformer, 3 is a voltage transformer, 4 is a bus bar, 5 is a load equipment, I is a reactive power regulator,
8,9゜10 is capacitor switch% 14.15.16
is a capacitor, and 20 is a DC power supply, which is configured as shown in the figure.
Power is supplied to load equipment 5 through 4. Good, mother I! A power capacitor 14 #151711 is connected to the power capacitor 4 through capacitor switches 8 and 9°10. The reactive power regulator 6 receives the system current and voltage signals detected by the calculator current transformer 2 and the instrument transformer 3, calculates reactive power, and compares this with a preset nine reactive power. When it is necessary to compensate for delayed reactive power, one contact of the capacitor switch control relay 61', 62.6:I inside the reactive power regulator 6 is turned on depending on the magnitude of the delayed reactive power, and the capacitor is switched on and off. Closing relay Cx of device 8゜9.10
Operate the capacitor switch Jl t 9 e J
O is turned on, and capacitors 14, 15, and 16 are connected to bus 4. Also, when it is necessary to compensate for advanced reactive force, internal capacitor switch control relay g 1 e 6 J of reactive power regulator G - By turning on the b image point of 6J, the capacitor switch 8*9. Lo is activated and the interrupt relay function is activated to connect the capacitor switch s*s, l.

tし中断し、電力コンデンサ14e15exeなお、第
1図および第2図においては、従来の無効電力調整装置
としてコンデンサ制御点が3点の場合を述べているが、
無効電力調整装置内の設備の形態によシコンデンサ制御
点数は様々である。
t and then interrupt the power capacitor 14e15exe. Note that in FIGS. 1 and 2, a case is described in which there are three capacitor control points as a conventional reactive power adjustment device.
The number of capacitor control points varies depending on the type of equipment in the reactive power adjustment device.

〔背景技術の問題点〕[Problems with background technology]

ところで、電力設備においてその設備容量が大きくなる
と、無効電力の量も増加するため上述し九従来方法のよ
うに%1台の無効電力調整器により制御しようとし九と
き、単位コンデンサの容量を小さいtt不変にしてコン
デンサの数を増すと、コンデンサ、コンデンサ開閉器、
無効電力調整器コンデンサ制御点数を多数必要とする。
By the way, as the installed capacity of power equipment increases, the amount of reactive power also increases, so when attempting to control it with one reactive power regulator as in the conventional method described above, the capacitance of the unit capacitor is reduced to a smaller tt. If you increase the number of capacitors while keeping them unchanged, capacitors, capacitor switches,
A large number of reactive power regulator capacitor control points are required.

を九、逆に単位コンデンサの容量を大きくしてコンデン
サの数を少ないまま不変にすると、無効電力調整の精度
が悪くなる・さらK。
9. Conversely, if you increase the capacity of the unit capacitor and leave the number of capacitors unchanged, the accuracy of reactive power adjustment will deteriorate.

単位容量の大きなコンデンサと単位容量の小さなコンデ
ンサとを併用すると、外部に複@麦・母ターンを有する
シーケンス回路を設けねばならずコストア、ゾとなる。
If a capacitor with a large unit capacitance and a capacitor with a small unit capacitance are used together, a sequence circuit having multiple mother turns must be provided externally, resulting in cost savings.

以上のように1台の無効電力調整器による制御は非常に
難点の多いものである。
As described above, control using one reactive power regulator has many difficulties.

〔発明の目的〕[Purpose of the invention]

発明は上記のような事情に鑑みて成され九もので、その
目的は必要最小限の設備でまた設備増強時設備の有効活
用を容易に図9つつ精度のよい無効電力調整を行なうこ
とができる無効電力調整方法を提供することにある。
The invention was made in view of the above-mentioned circumstances, and its purpose is to make it possible to perform highly accurate reactive power adjustment with the minimum necessary equipment and to facilitate effective use of equipment during equipment expansion. An object of the present invention is to provide a reactive power adjustment method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、複数のコンデン
サが設けられた電力設備内の無効電力と気圧め予定され
た無効電力との差を検出し、これに基づいて上記コンデ
ンサを開閉制御し設備全体の無効電力を無効調整器によ
り調整するようにしたものにおいて、上記コンデンサを
単位容量の小なるコンデンサからなる第1のコンデンサ
群と単位容量の大なるコンデンサからなる第2のコンデ
ンサ群とよシ構成すると共に1上記無効電力詞整器を上
記第1、第2の;ンデンサ群を夫々各別に制御する第1
、第2の無効電力調整器よシ構成し、通常時は上記第1
の無効電力調整器によシ上記第1のコンデンサ群を制御
し1前記第1のコンデンサ群が全て投入または引外し状
態におる時のみ上記第2無効電力調整器より上記第2の
コンデンサ群を制御するようにして行なうことを特徴と
する・ 〔発明の実施例〕 以下、本発明を図面に示す一実施例について説明する・
第3図は、本発明による無効電力調整装置を備えた系統
構成例を示すものであシ、第1図と同一部分には同一符
号を付してその説明を省略する・ つまシ、第3図は第1図に加えてもう1台の無効電力調
整器1と、コンデンサ開閉器11゜12.13とコンデ
ンサ1 F 、 1.8 ’、 19を設備したもので
ある。ここで・無効電力調整器7は無効電力調整器6と
の同一の機能を有するもので、計器変流器1および計器
用変圧器3からの出力を基に、コンデンサ開閉器” *
 12 e13を通して母線4に接続されたコンデンサ
14゜15m1gを開閉制御する本のである。また、コ
ンデンサ14.15.16(第1のコンデンサ群)の容
量は夫々等しく、コンデンサ17゜ismxs(第2の
コンデンサ群)の容量は夫々等しくし、コンデンサ14
.15.16の容量は電力コンデンサ1 / + 18
119に比べて小さくし、かつコンデンサ14.15−
16を加えた容量が電力コンデンサ17の容量に相等す
るか略等しくなるように選定する・ 第4図は、無効電力調整器6.7の具体的な内部接続構
成例を示し友もので、あるー無効電力調整器6内部のコ
ンデンサ開閉器制御リレー61゜gz、63のam点、
b接点がオンしたとき、コンテン1i開閉器11.g、
ioの投入リレーCXsし中断リレーTX i駆動して
、コンデンサ開閉器8、邊、100投入リレーCX、L
中断リレーTXを動作させるように接続損れる・tた、
コンデンサ開閉器8*9elOの入力状態接点1t1,
91゜101のao優点の直列回w1若しくはb接点の
直列回路が形成されたときのみ、無効電力調整器7内部
のコンデンサ開閉器制御リレー11゜rx、vsのa接
点、111接点をオンさせて、コンデンサ開閉器11e
12.1Bの投入リレーCX、L、中断リレーTXを動
作させるように接続する・ ここで、無効電力調整1jz6は無効電力がコンデンサ
14の容量に等しいとき制御指令を出すように設定し、
無効電力調整器1は無効電力差がコンデンサ14よシ大
きくコンデンサ11より小さいとき制御用指令を出すよ
うに設定する・次に、かかる構成に基づく本発明による
無効電力調整方法について述べる。無効電力量調整器6
.1は計器用変流器2、計器用変圧器3より系統の電流
、電圧信号を受けて無効電力を計算し、予め設定され九
無効電力との差に基づいて制御指令を送出する・無効電
力調整器6の場合は、無効電力の差がいづれも同じ容量
のコンデンサ14ellj*ILIK見合ったとき、遅
れ無効電力ま九は進み無効電力の補償のためコンデンサ
開閉器制御リレー61.62.6jlを駆動させる・つ
まり遅れ無効電力補償の場合はコンデンサ開閉器1t、
9.Joの投入リレーCXを駆動させてコンデンサ開閉
器8 e 9 e 10を投入し、進み無効電力の補償
の場合はし中断リレーTXを駆動させてコンデンサ開閉
器8,9゜10をしゃ断することによ)、コンデンサ1
4゜15 * 16を母線4より入切して無効電力を補
償する。
In order to achieve the above object, the present invention detects the difference between the reactive power in a power facility equipped with a plurality of capacitors and the reactive power scheduled to be compressed, and controls the opening and closing of the capacitor based on this. In a device in which the overall reactive power is adjusted by a reactive regulator, the capacitors are combined into a first capacitor group consisting of capacitors with small unit capacitance and a second capacitor group consisting of capacitors with large unit capacitance. a first control unit configured to separately control the reactive power adjuster and the first and second resistor groups;
, and a second reactive power regulator, and under normal conditions, the first
The first capacitor group is controlled by the reactive power regulator, and the second capacitor group is controlled by the second reactive power regulator only when all the first capacitor groups are in the closed or tripped state. [Embodiment of the invention] Hereinafter, an embodiment of the present invention shown in the drawings will be described.
FIG. 3 shows an example of a system configuration equipped with a reactive power adjustment device according to the present invention, and the same parts as in FIG. The figure shows a system equipped with one more reactive power regulator 1, capacitor switches 11°, 12.13, and capacitors 1F, 1.8', and 19 in addition to the one shown in FIG. Here, the reactive power regulator 7 has the same function as the reactive power regulator 6, and based on the outputs from the instrument current transformer 1 and the instrument transformer 3, the capacitor switch
12 This is a book that controls the opening and closing of the capacitor 14°15mlg connected to the bus bar 4 through e13. The capacitors 14, 15, 16 (first capacitor group) have the same capacity, the capacitors 17゜ismxs (second capacitor group) have the same capacity, and the capacitor 14
.. The capacity of 15.16 is the power capacitor 1 / + 18
119, and the capacitor 14.15-
Figure 4 shows a specific example of the internal connection configuration of the reactive power regulator 6. - capacitor switch control relay 61゜gz, 63 am point inside reactive power regulator 6,
When the b contact is turned on, the content 1i switch 11. g,
io's closing relay CXs and interrupting relay TX i are driven, capacitor switch 8, side, 100 closing relay CX, L
If the connection is lost to activate the interrupt relay TX,
Input status contact 1t1 of capacitor switch 8*9elO,
Only when a series circuit w1 or b contact of the ao advantage of 91°101 is formed, the capacitor switch control relay 11°rx, vs a contact and 111 contact inside the reactive power regulator 7 are turned on. , capacitor switch 11e
12. Connect the closing relays CX, L, and interruption relay TX of 1B to operate.Here, the reactive power adjustment 1jz6 is set to issue a control command when the reactive power is equal to the capacity of the capacitor 14,
The reactive power regulator 1 is set to issue a control command when the reactive power difference is larger than the capacitor 14 and smaller than the capacitor 11.Next, a reactive power regulating method according to the present invention based on this configuration will be described. Reactive energy regulator 6
.. 1 receives system current and voltage signals from the instrument current transformer 2 and instrument transformer 3, calculates reactive power, and sends a control command based on the difference from the preset 9 reactive power.Reactive power In the case of regulator 6, when the difference in reactive power is equal to the capacitor 14ellj*ILIK with the same capacity, the lagging reactive power M9 drives the capacitor switch control relay 61.62.6jl to compensate for the leading reactive power. In other words, in the case of delayed reactive power compensation, the capacitor switch 1t,
9. Jo's closing relay CX is driven to close the capacitor switches 8, 9, and 10, and in the case of compensation for advanced reactive power, the interruption relay TX is driven to cut off the capacitor switches 8, 9, and 10. ), capacitor 1
4゜15*16 is turned on and off from bus 4 to compensate for reactive power.

一方、無効電力H整*7の場合はコンデンサ開閉器8.
9..10が全部投入状態か若しくはし中断状態のとき
、すなわちコンデンサ開閉器(4)大切状11級点J1
1.91e101のa接点若しくtibm点のアンド条
件が成立し、かつ実際の無効電力の差がいづれも同じ容
量のコンデンサ171.18.19よりも小さく電力コ
ンデンサ14よ)大きいとき、上記無効電力調整器6と
同様の・母ターンで遅れ無効電力または進み無効電力の
補償のため、コンデンサ開閉器制御リレー71,72.
73を駆動させてコンデンサ11 * I Jl # 
J 9を母線4よシ入または切して無効電力を補償する
〇 次に、全体的な作用について述べる。今、負荷設備6よ
シ発生する遅れ無効電力が増加して来たときは、遅れ無
効電力の増加に伴なって無効電力調整器6が作動し、単
位容量の小さいコンデンサ14elliazr;がコン
デンサ開閉器8+9*1oによシ順に投入され、母線4
に接続されてこれによシ遅れ無効電力を補償する。
On the other hand, in the case of reactive power H adjustment *7, capacitor switch 8.
9. .. 10 is fully closed or suspended, that is, capacitor switch (4) important letter 11 grade J1
1.91e101's A contact or tibm point is satisfied, and when the actual reactive power difference is smaller than the capacitors 171, 18, and 19 of the same capacity and larger than the power capacitor 14), the above reactive power Similar to the regulator 6, capacitor switch control relays 71, 72 .
73 and capacitor 11 * I Jl #
Compensate for reactive power by turning J9 on or off from bus 4.Next, the overall operation will be described. Now, when the delayed reactive power generated by the load equipment 6 increases, the reactive power regulator 6 operates as the delayed reactive power increases, and the capacitor 14elliazr; with a small unit capacity operates as a capacitor switch. 8+9*1o are input in order, and bus 4
This compensates for delayed reactive power.

そして、コンデンサ開閉器8e9elOの全ての投入完
了後、さらに遅れ無効電力が増加してくると無効電力調
整器1が作動し、単位容量の大きなコンデンサ11がコ
ンデンサ開閉11の投入により母線4に接続されている
拳このとき、系統の遅れ無効電力増加量と比較してコン
デンサ17の容量が大きいと、系統は進み無効電力とな
シ無効電力調II器Cが作動して、単位容量の小さいコ
ンデンサ14.15.16のうち進み無効電力に見合っ
た分がコンデンサ開閉器8゜9.100いずれかのし中
断にょシ母線4よシ切離されて進み無効電力を補償する
。さらに、遅れ無効電力が増加すると無効電力調整器6
が作動してコンデンサ14,15.16のすべてがコン
デンサ開閉器8 e 9 e 10の投入により母線4
に接続されて遅れ無効電力を補償する。
Then, after all of the capacitor switches 8e9elO have been closed, when the reactive power increases with further delay, the reactive power regulator 1 is activated, and the capacitor 11 with a large unit capacity is connected to the bus bar 4 by closing the capacitor switches 11. At this time, if the capacitance of the capacitor 17 is large compared to the amount of increase in lagging reactive power in the grid, the grid will advance to reactive power, and the reactive power regulator II C will operate, reducing the capacitor 14 with a small unit capacity. .15.16, a portion commensurate with the advanced reactive power is disconnected from the bus 4 when any of the capacitor switches 8, 9, and 100 is interrupted to compensate for the reactive power. Furthermore, when the delayed reactive power increases, the reactive power regulator 6
operates and all capacitors 14, 15, and 16 are connected to bus 4 by closing capacitor switch 8e9e10.
is connected to compensate for delayed reactive power.

なお、さらに遅れ無効電力が増加すると上記と同様に無
効電力調整器7が再び作動してコンデンサ18が投入さ
れ、コンデンサ18の容量が系統の遅れ無効電力増加量
よりも大きいと系統は進み無効電力とな)、コンデンサ
14.15916のうち進み無効電力に見合った量が母
線4よシ切離されて進み無効電力を補償する。さらに、
系統の遅れ無効電力が増加すると、コンデンサ14.1
5.16はすべて母線4に接続されて系統の遅れ無効電
力を補償する。
Note that when the delayed reactive power increases further, the reactive power regulator 7 operates again in the same manner as described above and the capacitor 18 is turned on, and if the capacitance of the capacitor 18 is larger than the amount of increase in delayed reactive power of the system, the system advances and the reactive power is increased. ), an amount of the capacitor 14.15916 corresponding to the leading reactive power is disconnected from the bus 4 to compensate for the leading reactive power. moreover,
As the delayed reactive power of the system increases, capacitor 14.1
5.16 are all connected to bus 4 to compensate for delayed reactive power in the grid.

次に、負荷設備5よυ発生する系統の進み無効電力が減
少してきたときは、進み無効電力の減少に伴なって無効
電力調整器6が作動して、単位容量の小さいコンデンサ
14m15a16がコンデンサ開閉器11,9.10の
順々のしゃ断によシ、母線4より切離されて進み無効電
力量を補償する。そして、コンデンサ開閉器8゜9.1
0の全てのし中断完了後、さらに進み無効電力が増加し
てくると無効電力調整器7が作動して、単位容量の大き
なコンデンサ17をコンデンサ開閉器11のし中断によ
り母線4より切離す・このとき、系統の進み無効電力増
加量と比較してコンデンサ17の容量が大きいと系統は
遅れ無効電力とな)、無効電力調整器6が作動して単位
容量の小さいコンデンサ14 、15゜16、のうち遅
れ無効電力に見合った分が、コンデンサ開閉器l t 
9 e 10の−いづれかの投入により母線4に接続さ
れて遅れ無効電力を補′償する・さらに進み無効電力が
増加すると、無効電力調整器6が作動して電力コンデン
サJ 4 、J5゜16のすべてが1コンデンサ開閉器
8 、9.10のしゃ断によシ母線4よ)切離されて進
み無効電力を補償する・な□お、さらに進み無効電力が
増加すると上記と同様に、無効電力調整器7が再び作動
してコンデンサ18がし中断され、コンデンサ18の容
量が系統の進み無効電力増加量よりも大きいと系統は遅
れ無効電力となり、コンデンサ14.15.16のうち
遅れ無効電力に見合った量が母線4に接続されて遅れ無
効電力量を補償する・次に、さらに系統の進み無効電力
が増加すると、コンデンサx4.15゜16はすべて母
線4よシ切離されて系統の進み無効電力を補償する。さ
らにまた、系統の進み無効電力が増加するとコンデンサ
19が母線4より切離され、コンデンサ19の容量が系
統の進み無効電力よりも大きいと系統は遅れ無効電力と
なり、コンデンサJ’4’、 L、S 、 Jcのうち
遅れ無効電力に見合った量が母線4に接続されて遅れ無
効電力を補償する。さらにまた、系統の進み無効電力が
増加すると、電力コンデンサ14.15.16はすべて
母線4よシ切離されて系統の進み無効電力を補償する。
Next, when the system's leading reactive power generated by the load equipment 5 decreases, the reactive power regulator 6 operates as the leading reactive power decreases, and the capacitor 14m15a16 with a small unit capacity opens and closes the capacitor. By sequentially shutting off the power converters 11, 9 and 10, the power is disconnected from the bus 4 and proceeds to compensate for the amount of reactive power. And capacitor switch 8゜9.1
0, and as the reactive power increases, the reactive power regulator 7 operates and disconnects the capacitor 17 with a large unit capacity from the bus 4 by interrupting the capacitor switch 11. At this time, if the capacitance of the capacitor 17 is large compared to the amount of increase in reactive power in the system, the system will be delayed in reactive power. Of this, the amount commensurate with the delayed reactive power is the capacitor switch l t
By turning on either of 9 e and 10, it is connected to the bus 4 to compensate for the delayed reactive power.If the reactive power further increases, the reactive power regulator 6 is activated and the power capacitors J4 and J5゜16 are connected. All 1 capacitor switches 8 and 9.10 are cut off (bus line 4) and proceed to compensate for reactive power.In addition, as the reactive power increases further, reactive power adjustment is performed in the same way as above. When the capacitor 7 is activated again and the capacitor 18 is interrupted, and the capacitance of the capacitor 18 is larger than the amount of increase in the reactive power of the system, the system becomes a lagging reactive power, and the capacitors 14, 15, and 16 correspond to the lagging reactive power. is connected to the bus 4 to compensate for the lagging reactive power.Next, when the reactive power of the system further increases, all of the capacitors x4.15゜16 are disconnected from the bus 4 and the system becomes reactive Compensate power. Furthermore, when the leading reactive power of the system increases, the capacitor 19 is disconnected from the bus bar 4, and when the capacitance of the capacitor 19 is larger than the leading reactive power of the system, the system becomes a lagging reactive power, and the capacitors J'4', L, Of S and Jc, an amount commensurate with the delayed reactive power is connected to the bus 4 to compensate for the delayed reactive power. Furthermore, as the system's leading reactive power increases, all power capacitors 14, 15, 16 are disconnected from the bus 4 to compensate for the system's leading reactive power.

かくして、大きな容量のコンデンサ群と、小さな容量の
コンデンサ群を別々の無効電力調整器で制作することで
、コンデンサの無駄な投入、し中断を行なう事なく精度
のよい系統の無効電力制御が可能となる。
In this way, by creating a large capacity capacitor group and a small capacity capacitor group using separate reactive power regulators, it is possible to control the reactive power of the system with high accuracy without unnecessary input or interruption of capacitors. Become.

このように、複数のコンデンサが設けられた電力設備内
の無効電力と、予め設定された無効電力との差を検出し
、これに基づいて上記コンデンサ開閉制御し設備全体の
無効電力を無効電力調整器によ力調整するようにしたも
のにおいて1上記コンデンサを単位容量の小なるコンデ
ンサ14〜16からなる第1のコンデンサ群と単位容量
の大なるコンデンサ17〜19からなる第2のコンデン
サ群とよシ構成すると共に1上記無効電力調整器を上記
第1、第2のコンデンサ群を夫々側に制御する第1、第
2の無効電力増加量6 s Fよシ構成し、通常時は上
記第1の無効電力調整器Cによ)上記第1のコンデンサ
群を制御し、上記Knのコンデンサ群が全て投入または
引外し状態にある時のみ上記第2の無効電力調整器1に
ょシ上記第2コンデンサ群を制御するようにし九もので
ある。
In this way, the difference between the reactive power in a power facility equipped with multiple capacitors and the preset reactive power is detected, and based on this, the opening and closing of the capacitors is controlled and the reactive power of the entire facility is adjusted. In a device in which the force is adjusted by a device, the above capacitors are divided into a first capacitor group consisting of capacitors 14 to 16 with small unit capacitances and a second capacitor group consisting of capacitors 17 to 19 with large unit capacitances. In addition, the reactive power regulator is configured to have first and second reactive power increases of 6 s F for controlling the first and second capacitor groups respectively, and in normal times, the reactive power regulator is The reactive power regulator C) controls the first capacitor group, and the second reactive power regulator C controls the second capacitor group only when all the capacitor groups Kn are in the closed or tripped state. There are 9 things you can do to control the group.

従って、従来の無効電力調整方法では設備のコンデンサ
の総容量を大きくする場合、コンデンサの単位容量を大
きくする事は無効電力制御の精度を悪くシ、また精度管
上げるために単位をコンデンサ容量を小さくしコンデン
サの数を多数にすることはコストアップに継がったもの
が、本無効電力調整方法により必要最小限の設備で従来
よシもはるかに精度のよい無効電力制御を行ない得ると
共に、設備の増強時、設備の有効活用を容易に図ること
が可能となる。
Therefore, in the conventional reactive power adjustment method, when increasing the total capacitance of the equipment's capacitors, increasing the unit capacitance of the capacitor impairs the accuracy of reactive power control, and in order to increase the precision, the capacitor capacitance is reduced. However, increasing the number of capacitors led to an increase in cost, but this reactive power adjustment method allows much more accurate reactive power control than conventional methods with the minimum amount of equipment required, and also reduces the cost of equipment. During reinforcement, it becomes possible to easily utilize equipment effectively.

尚、上記では夫々の無効電力調整器のコンデンサ開閉器
への人力制御点数が3点の場合を述べたが、無効電力調
整器の大切点数が多い場合はより精度の高い無効電力調
整が可能となる。
In addition, above, we have described the case where the number of manual control points for the capacitor switch of each reactive power regulator is 3 points, but if the number of important points of the reactive power regulator is large, more accurate reactive power adjustment is possible. Become.

また、上記実施例の接点回路に限られる事なく、精度の
よい無効電力制御をめざして微調整用無効電力調整器6
の制御を粗調整用無効電力調整器1の制御に優先させ、
かつその方法として微調整用無効電力all!を器6に
よ多制御する微調整用コンデンサ開閉器14〜16の全
てが入状態または切状態のときはじめて粗調整用無効電
力調整器1が調整用コンデンサ開閉器17〜19を制御
し得るような構成の4のであればよいのである・ 〔発明の効果〕 上記説明したように本発明によれば、必要最小限の設備
でまた設備増強時設備の有効活用を容易に図)つつ精度
の良い無効電力調整を行なうことができる極めて信頼度
の高い無効電力調整方法が提供できる・
In addition, without being limited to the contact circuit of the above embodiment, a reactive power regulator 6 for fine adjustment is also available, aiming at highly accurate reactive power control.
Priority is given to the control of the coarse adjustment reactive power regulator 1,
And as a method, use reactive power for fine adjustment all! The coarse adjustment reactive power regulator 1 can control the adjustment capacitor switches 17 to 19 only when all of the fine adjustment capacitor switches 14 to 16, which are controlled by the device 6, are in the ON or OFF state. [Effects of the Invention] As explained above, according to the present invention, it is possible to achieve high accuracy with the minimum necessary equipment and to easily make effective use of equipment during equipment expansion. We can provide an extremely reliable reactive power adjustment method that can perform reactive power adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の無効電力調整装置を示す図
、a13図および第4図は本発明の一実施例を示す構成
図である。 1・・・受電点、2−・計器用変流器、3・・・計器用
変圧器−4・・・母線、S−・・負荷設備、6.7・・
・無効電力調整器、8,9*10,11,12.13・
・・コンデンサ開閉器、i 4 # 15 p 16 
p 17 e1B91G−・コン、デンサ、2o・・・
直流電源、61゜62、σJ・・・無効電力調整器6の
コンデンサ開閉器制御リレー、7J、7j、7j−・・
無効電力1111”器−1のコンデンサ開閉器制御り’
−1ll。 91.101・・・コンデンサ開閉器8*9@100入
力状WIA接点。 出願人代理人  弁理士 鈴 江 武 彦13 第1図 i 第2図 第3図 −1:
FIG. 1 and FIG. 2 are diagrams showing a conventional reactive power adjustment device, and FIG. a13 and FIG. 4 are configuration diagrams showing an embodiment of the present invention. 1... Power receiving point, 2-- Instrument current transformer, 3... Instrument transformer-4... Bus bar, S-... Load equipment, 6.7...
・Reactive power regulator, 8, 9*10, 11, 12.13・
・・Capacitor switch, i 4 # 15 p 16
p 17 e1B91G-・con, capacitor, 2o...
DC power supply, 61゜62, σJ...Capacitor switch control relay of reactive power regulator 6, 7J, 7j, 7j-...
Reactive power 1111" Capacitor switch control of device-1"
-1ll. 91.101...Capacitor switch 8*9@100 input WIA contact. Applicant's agent Patent attorney Takehiko Suzue 13 Figure 1 i Figure 2 Figure 3-1:

Claims (1)

【特許請求の範囲】[Claims] 複数のコンデンサが設けられた電力設備内の無効電力と
、予め設定された無効電力との差を検出し、これに基づ
いて前記コンデンサを開閉制御し設備全体の無効電力を
無効電力調整器により調整するようにしたものにおいて
、前記コデンサ群とより構成すると共に、前記無効電力
調整11を前記III、第2のコンデンサ群を夫々各別
に制御する1I11、第2の無効電力[111器より構
成し、通常時は前記第1の無効電力調整器によ)前記路
1のコンデンサ群を制御し、前記前記第2のコンデンサ
群を制御するようにして行なうことt%黴とする無効電
力調整方法。
Detects the difference between the reactive power in a power facility equipped with multiple capacitors and a preset reactive power, controls the opening and closing of the capacitors based on this, and adjusts the reactive power of the entire facility using a reactive power regulator. wherein the capacitor is configured to include the capacitor group, and the reactive power adjustment unit 11 is configured by the III, the second capacitor group is controlled separately, 1I11, and the second reactive power unit 111, A reactive power adjustment method in which the capacitor group of the path 1 is controlled by the first reactive power regulator during normal times, and the capacitor group of the second capacitor group is controlled.
JP57028512A 1982-02-24 1982-02-24 Controlling method of reactive power Pending JPS58144923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028512A JPS58144923A (en) 1982-02-24 1982-02-24 Controlling method of reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028512A JPS58144923A (en) 1982-02-24 1982-02-24 Controlling method of reactive power

Publications (1)

Publication Number Publication Date
JPS58144923A true JPS58144923A (en) 1983-08-29

Family

ID=12250728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028512A Pending JPS58144923A (en) 1982-02-24 1982-02-24 Controlling method of reactive power

Country Status (1)

Country Link
JP (1) JPS58144923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147546U (en) * 1985-03-01 1986-09-11
JPS6455613A (en) * 1987-08-26 1989-03-02 Mitsubishi Electric Corp Automatic power factor adjusting device
JPS6455616A (en) * 1987-08-26 1989-03-02 Mitsubishi Electric Corp Automatic power factor adjusting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47369U (en) * 1971-01-22 1972-08-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47369U (en) * 1971-01-22 1972-08-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147546U (en) * 1985-03-01 1986-09-11
JPS6455613A (en) * 1987-08-26 1989-03-02 Mitsubishi Electric Corp Automatic power factor adjusting device
JPS6455616A (en) * 1987-08-26 1989-03-02 Mitsubishi Electric Corp Automatic power factor adjusting device

Similar Documents

Publication Publication Date Title
US20060028069A1 (en) Retrofit kit for converting a transfer switch to a switch for soft-load transfer, and soft-load power distribution system and method
US5739594A (en) Controller for automatic transfer switches
US4189649A (en) Control panel for automatic transfer switch
US4540931A (en) Variable transformer and voltage control system
JP2012516674A (en) System and method for limiting losses in an uninterruptible power supply
US6642632B2 (en) Efficient battery transfer circuit
US3999078A (en) Interruption free inverter power supply
JPS58144923A (en) Controlling method of reactive power
DE69207711T2 (en) Coupling device for an external ground power supply with an aircraft
US4438387A (en) Turn-on control system for voltage drop compensators
JPS63213424A (en) Reactive power compensator control system
JPS61161999A (en) Excitation controlling method
JP2815284B2 (en) Voltage control method for power supply system
JPH0353644B2 (en)
EP0328706A1 (en) Safety device for control and regulation systems
SU993385A1 (en) System for automatic regulating voltage and compensating for reactive power in distribution network
JP3003238B2 (en) Output voltage controller for uninterruptible power supply
KR900005430Y1 (en) Over run circuit
JPH07281767A (en) Power unit for dealing with redundancy
SU1416182A1 (en) System for regulating the grinding of two-component mixture
JPH08126203A (en) Stationary voltage regulator
KR20000028378A (en) Excitative system for electric generator doubly controlled in pulse width modulation method and control method thereof
JPS59150908A (en) Turbine control device
JPS5875476A (en) Control device of dc power supply
JPH0295172A (en) Uninterruptible power supply