JPS5821879B2 - Chiyo Onpa Souji Yuhaki - Google Patents

Chiyo Onpa Souji Yuhaki

Info

Publication number
JPS5821879B2
JPS5821879B2 JP5091574A JP5091574A JPS5821879B2 JP S5821879 B2 JPS5821879 B2 JP S5821879B2 JP 5091574 A JP5091574 A JP 5091574A JP 5091574 A JP5091574 A JP 5091574A JP S5821879 B2 JPS5821879 B2 JP S5821879B2
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
radiation
vibration
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5091574A
Other languages
Japanese (ja)
Other versions
JPS50143567A (en
Inventor
新井康夫
箕原喜代美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP5091574A priority Critical patent/JPS5821879B2/en
Publication of JPS50143567A publication Critical patent/JPS50143567A/ja
Publication of JPS5821879B2 publication Critical patent/JPS5821879B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は指向特性の優れた超音波送受波器を得ること
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to obtaining an ultrasonic transducer with excellent directional characteristics.

例えばドプラーソナーにおいては第1図に示すように、
船底1に複数個の送受波器2A、2B。
For example, in Doppler sonar, as shown in Figure 1,
A plurality of transducers 2A and 2B are installed on the bottom 1 of the ship.

2Cが各放射面がθだけ傾斜して取り付けられている。2C is installed with each radiation surface inclined by θ.

そして、各放射面の平行間隔DAB、DBCが超音波の
波長の整数倍になるように配列間隔DI、D2を設定し
て各送受波器の送受波信号を合成するとθ方向の合成指
向特性を得ることができる。
Then, by setting the array spacing DI, D2 so that the parallel spacing DAB, DBC of each radiation surface is an integral multiple of the wavelength of the ultrasonic wave, and combining the transmitted and received signals of each transducer, the combined directivity in the θ direction is obtained. Obtainable.

従来は各送受波器を上記のように機械的に配置している
ため、送受波器の取付時において、放射面の傾斜θや配
列間隔DI、D2等の調整が非常に困難で長時間の取付
作業が必要であった。
Conventionally, each transducer is mechanically arranged as described above, so when installing the transducer, it is extremely difficult and time consuming to adjust the inclination θ of the radiation surface, the array spacing DI, D2, etc. Installation work was required.

この発明は、従来のような取付作業を必要とせず、所定
の指向特性が容易に得られる超音波送受波器を提供する
ものである。
The present invention provides an ultrasonic transducer that does not require the conventional installation work and can easily obtain predetermined directivity characteristics.

以下図面の実施例について説明する。The embodiments shown in the drawings will be described below.

第2図において、3は振動子で電気的振動と機械的振動
の変換を行う。
In FIG. 2, 3 is a vibrator that converts electrical vibration and mechanical vibration.

そして、振動子3の振動面上に複数個の放射器4A、4
B、4C・・・・が所定間隔で配列されている。
A plurality of radiators 4A, 4 are arranged on the vibration surface of the vibrator 3.
B, 4C, . . . are arranged at predetermined intervals.

各放射器4A、4B。4C・・・・は昏波伝播速度が極
めて大きい材質が用いられている。
Each radiator 4A, 4B. 4C... is made of a material with an extremely high coma wave propagation velocity.

放射器4A、4B、4Cの各々は、第3図に示すように
、各々の放射面5A、5B、5C・・・・が振動子3の
振動面に対してθだけ傾斜しており、その傾斜高りが超
音波の放射媒体中における音波の1波長に設定されてい
る。
As shown in FIG. 3, each of the radiators 4A, 4B, 4C has a radiation surface 5A, 5B, 5C, etc., which is inclined by θ with respect to the vibration surface of the vibrator 3. The slope height is set to one wavelength of the sound wave in the ultrasonic radiation medium.

そして、放射器4A。4B、4C・・・・は各々の放射
面5A、5B、5C・・・・が互いに平行で、かつその
平行間隔りが超音波の放射媒体中における音波の波長の
整数倍になるように配列されている。
And radiator 4A. 4B, 4C... are arranged so that the respective radiation surfaces 5A, 5B, 5C... are parallel to each other, and the parallel interval is an integral multiple of the wavelength of the sound wave in the ultrasonic radiation medium. has been done.

又、各放射器4A、4B。4C・・・・の間隙部6A、
6B、6C・・・・には音波の非伝播材質が挿入されて
いる。
Also, each radiator 4A, 4B. 4C... Gap 6A,
A sound wave non-propagating material is inserted in 6B, 6C, . . . .

従って、振動子3の振動波は各放射器の放射面5A、5
B、5C・・・・を介して放射され、又、外部から到来
した音波は放射面5A、5B、5C・・・・を介して振
動子3へ伝達される。
Therefore, the vibration waves of the vibrator 3 are transmitted to the radiation surfaces 5A and 5 of each radiator.
B, 5C, . . . and sound waves arriving from the outside are transmitted to the vibrator 3 via the radiation surfaces 5A, 5B, 5C, .

振動子3に生じた振動波は各々の放射器中を伝播して各
々の放射面5A、5B、5C・・・・に達する。
The vibration waves generated in the vibrator 3 propagate through each radiator and reach the respective radiation surfaces 5A, 5B, 5C, . . . .

ここで、放射面5A、5B、5C・・・・は上記したよ
うにθだけ傾斜しているため、振動子3の。
Here, since the radiation surfaces 5A, 5B, 5C, . . . are inclined by θ as described above,

振動波は放射面の各部に同時には到達せず厳密には微少
時間差を有して到達する。
The vibration waves do not reach each part of the radiation surface at the same time, but strictly speaking, they arrive with slight time differences.

ところが、放射面の傾斜高りは超音波の放射媒体中にお
ける1波長に設定されており、各放射器4A、4B、4
C・・・・の中の音波の伝播速度は上記放射媒体中の音
波伝播速度に比して十分に大きいから、上記の微少時間
差は無視し得る程度に小さい。
However, the slope height of the radiation surface is set to one wavelength in the ultrasonic radiation medium, and each radiator 4A, 4B, 4
Since the propagation velocity of the sound waves in C... is sufficiently higher than the propagation velocity of the sound waves in the radiation medium, the minute time difference mentioned above is so small that it can be ignored.

従って、振動子3の振動波は放射面の各部にほぼ同相で
到達するものと考えてよい。
Therefore, it can be considered that the vibration waves of the vibrator 3 reach each part of the radiation surface in substantially the same phase.

次に、放射面5A、5B、5C・・・・の各々から放射
される超音波の指向特性について考える。
Next, consider the directivity characteristics of the ultrasonic waves radiated from each of the radiation surfaces 5A, 5B, 5C, . . . .

各放射[n5A、5B、5C・・・・の傾斜高りは超音
波の放射媒体中における1波長に設定されている。
The slope height of each radiation [n5A, 5B, 5C... is set to one wavelength in the ultrasonic radiation medium.

従って、任意の放射面51についてみると、放射面51
から振動子3の振動面と直角方向に放射される音波は互
いに相殺されるから、この直角方向に対して音波は送受
波されない。
Therefore, when considering an arbitrary radiation surface 51, the radiation surface 51
Since the sound waves emitted in the direction perpendicular to the vibration surface of the vibrator 3 cancel each other out, the sound waves are not transmitted or received in this direction.

従って、放射面51から送受波される音波は振動子3の
振動方向に対してθ方向に送受波される。
Therefore, the sound waves transmitted and received from the radiation surface 51 are transmitted and received in the θ direction with respect to the vibration direction of the vibrator 3.

そして、各放射[n5A、5B、5C・・・・は放射面
の平行間隔りが、音波の放射媒体中における波長の整数
倍に設定されている。
For each radiation [n5A, 5B, 5C, . . . , the parallel spacing between the radiation surfaces is set to be an integral multiple of the wavelength in the sound wave radiation medium.

従って、放射面5A、 5B、5C・・・・の各々から
振動子3の振動方向とθ方向に送受波される音波は同相
で送受波される結果、とのθ方向に尖鋭な合成指向特性
が形成される。
Therefore, the sound waves transmitted and received from each of the radiation surfaces 5A, 5B, 5C, etc. in the θ direction and the vibration direction of the vibrator 3 are transmitted and received in the same phase, resulting in a composite directivity characteristic that is sharp in the θ direction. is formed.

又、放射面の各部に到来する音波は、前記したように、
振動子3にほぼ同相で伝達されるから、結果的には振動
子3の指向特性が上記θ方向に形成されることになる。
Also, as mentioned above, the sound waves arriving at each part of the radiation surface are
Since the light is transmitted to the vibrator 3 in substantially the same phase, the directional characteristic of the vibrator 3 is formed in the above-mentioned θ direction.

そして、この指向特性は各放射器の合成指向特性として
与えられるから、振動子3の複数個を用いて形成するの
と等測的な尖鋭な指向特性が得られる。
Since this directional characteristic is given as a composite directional characteristic of each radiator, it is possible to obtain a sharp directional characteristic that is isometric when formed using a plurality of oscillators 3.

このように本発明においては、個々の振動子毎に所定方
向の尖鋭な指向特性が得られるから、この振動子を船底
に装備する場合は、従来のように振動子間隔、振動子の
傾斜等をその都度調整する必要はなく、個々の振動子を
単に平面方向に配列するだけでよい。
In this way, in the present invention, a sharp directivity characteristic in a predetermined direction can be obtained for each individual transducer, so when this transducer is installed on the bottom of a ship, the spacing between the transducers, the inclination of the transducer, etc. It is not necessary to adjust each time, and it is sufficient to simply arrange the individual vibrators in a plane direction.

従って振動子の取付作業が従来に比して著しく簡略化さ
れる。
Therefore, the work of installing the vibrator is significantly simplified compared to the conventional method.

なお、第2図において、放射器4A、4B、4C・・・
・は個々の放射器を振動子上に配列するごとく説明した
が、第4図に示すように、金属体7の斜線部を切削加工
して放射器4A、4B、4C・・・・を形成すると、各
放射器の配列、取付が非常に容易になる。
In addition, in FIG. 2, radiators 4A, 4B, 4C...
- has been explained as if the individual radiators were arranged on the vibrator, but as shown in Fig. 4, the diagonally shaded portions of the metal body 7 are cut to form the radiators 4A, 4B, 4C, etc. This makes it very easy to arrange and install each radiator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波送受波器の合成指向特性を説明するだめ
の原理図、第2図乃至第4図は本発明の実施例を示す。
FIG. 1 is a principle diagram for explaining the combined directivity characteristics of an ultrasonic transducer, and FIGS. 2 to 4 show embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波の放射面(受波面)が電気的振動を機械的振
動に変換する振動子の振動面に対して所定角度たけ傾斜
し該傾斜高が上記超音波の放射媒体中における音波の1
波長に設定されてなる超音波放射器を上記振動子の振動
面上に複数個各放射器の上記放射面(受波面)が互いに
平行でかつ該平行間隔が上記超音波の放射媒体中におけ
る音波の波長の整数倍になるように配置1ルてなる超音
波送受波器。
1. The ultrasonic radiation surface (wave receiving surface) is inclined by a predetermined angle with respect to the vibration surface of the vibrator that converts electrical vibration into mechanical vibration, and the slope height is 1 of the sound wave in the ultrasonic radiation medium.
A plurality of ultrasonic radiators are arranged on the vibrating surface of the vibrator, and the radiating surfaces (receiving surfaces) of each radiator are parallel to each other, and the parallel interval is set to the wavelength of the ultrasonic wave in the ultrasonic radiation medium. An ultrasonic transducer arranged so that the wavelength is an integer multiple of the wavelength.
JP5091574A 1974-05-07 1974-05-07 Chiyo Onpa Souji Yuhaki Expired JPS5821879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091574A JPS5821879B2 (en) 1974-05-07 1974-05-07 Chiyo Onpa Souji Yuhaki

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091574A JPS5821879B2 (en) 1974-05-07 1974-05-07 Chiyo Onpa Souji Yuhaki

Publications (2)

Publication Number Publication Date
JPS50143567A JPS50143567A (en) 1975-11-19
JPS5821879B2 true JPS5821879B2 (en) 1983-05-04

Family

ID=12872066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091574A Expired JPS5821879B2 (en) 1974-05-07 1974-05-07 Chiyo Onpa Souji Yuhaki

Country Status (1)

Country Link
JP (1) JPS5821879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145170U (en) * 1986-03-07 1987-09-12
JPH0523389B2 (en) * 1984-10-01 1993-04-02 Olympus Optical Co

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523389B2 (en) * 1984-10-01 1993-04-02 Olympus Optical Co
JPS62145170U (en) * 1986-03-07 1987-09-12

Also Published As

Publication number Publication date
JPS50143567A (en) 1975-11-19

Similar Documents

Publication Publication Date Title
US3347335A (en) Acoustic-wave apparatus
US3924259A (en) Array of multicellular transducers
US3243768A (en) Integral directional electroacoustical transducer for simultaneous transmission and reception of sound
JP3995270B2 (en) Two-dimensional array transducer and beamformer
US8213262B2 (en) Transducer array arrangement and operation for sodar applications
US4314098A (en) Reversible electroacoustic transducer device having a constant directivity characteristic over a wide frequency band
US4644214A (en) Probe for electronic scanning type ultrasonic diagnostic apparatus
US3873866A (en) Piezoelectric transducer assembly and method for generating an umbrella shaped radiation pattern
US5303208A (en) Side looking sonar transducer
US2844809A (en) Compressional wave transducers
US4320474A (en) Saturation limited parametric sonar source
JPS5821879B2 (en) Chiyo Onpa Souji Yuhaki
De Jong et al. Vibration modes, matching layers and grating lobes
US3114848A (en) High efficiency sonic generator
JP2972741B1 (en) Composite oscillator
JPH10510697A (en) High gain directional transducer array
US6661739B1 (en) Filigree electrode pattern apparatus for steering parametric mode acoustic beams
JPH07294631A (en) Wave transmitter for sonar device
US2823355A (en) Ultrasonic delay line
JPS5824785Y2 (en) Array-shaped ultrasonic probe
US3285362A (en) Sound wave radiator devices
JPS60106294A (en) Ultrasonic transducer array
SU564739A1 (en) Acoustic waves radiator
JPS60158367A (en) Active sonar
SU496051A1 (en) Electro-acoustic transducer bending vibrations