JPS58218650A - アルミニウム基金属溶湯中の水素含有量測定方法およびその装置 - Google Patents

アルミニウム基金属溶湯中の水素含有量測定方法およびその装置

Info

Publication number
JPS58218650A
JPS58218650A JP57101375A JP10137582A JPS58218650A JP S58218650 A JPS58218650 A JP S58218650A JP 57101375 A JP57101375 A JP 57101375A JP 10137582 A JP10137582 A JP 10137582A JP S58218650 A JPS58218650 A JP S58218650A
Authority
JP
Japan
Prior art keywords
molten
hydrogen
gas
halogenide
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57101375A
Other languages
English (en)
Inventor
Ryoichi Kondo
近藤 良一
Masaro Saito
斉藤 正郎
Shinji Fukuda
福田 伸二
Hiroshi Maeda
浩 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Industries KK
Showa Keikinzoku KK
Original Assignee
Showa Aluminum Industries KK
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Industries KK, Showa Keikinzoku KK filed Critical Showa Aluminum Industries KK
Priority to JP57101375A priority Critical patent/JPS58218650A/ja
Publication of JPS58218650A publication Critical patent/JPS58218650A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、アルミニウム基金属溶湯中に含まれろ水素ガ
ス量の測定方法およびその測定装置に係り、とくに溶解
炉前、あるいは注湯取鍋等鋳造工程におけるアルミニウ
ム基金属溶湯を対象とする水素含有量測定方法およびそ
の装置に関する。
本発明において、アルミニウム基金属とは、アルミニウ
ムまたはアルミニウム合金を指す。アルミニウム基金属
の溶湯中には、水素を主成分とするガスが含まれており
、このガスの存在は、鋳造の際の巣等の原因となるので
、高品質の鋳体を製乏 造するためには、この含有量蕩制御することは、極めて
重要である。
溶解炉前等での簡便な測定方法としては、インライトレ
ンガ鋳型によるピンホール試験法があり、従来から広〈
実施されている。この方法は、イソライトレンガ鋳型に
溶解炉より採取した少量の溶湯を注入し、その溶湯が凝
固する際に、表面に浮上する気泡により生ずるピンホー
ルの数により、溶湯中に含まれる水素ガス量を求めるも
のである。
しかし、この方法は、イソライトレンガの予熱の程度が
、ピンホール発生に大きく影響すること、判定が、測定
者の肉眼観察によるものであり、測定者の個人差による
バラツキがあるなどの欠点がある。
金属溶湯中に含まれている水素ガス量を定量的に測定す
る代表的な方法には、いわゆるイニシャルバブル法とテ
レガス法とがある。
イニシャルバブル法は、例えば、特開昭51−1184
92に示される如く、金属溶湯を真空タンク内に入れて
減圧し、最初の気泡発生時における温度と圧力より、金
属溶湯中の水素ガス量を求めるものである。この方法は
、減圧途中で発生する最初の気泡を、測定者の肉眼で観
察判定するので、測定者の熟練度が要求されること、気
泡の発生核の有無によって気泡発生時の圧力にバラツキ
があることなどの測定精度上の欠点がある。さらに、こ
の原理を利用した測定装!には、真空系が必要であり、
高価なものとなる。
テレガス法は、例えば、英国特許第6848’65号お
よび英国特許第1510957号に示される如く、金属
溶湯中に、アルゴン・窒素などの不活性ガスを注入し、
循環させて、金属溶湯と平衡になったところで、このガ
ス中に含まれている水素ガス濃度を、気体の熱伝導車番
測定して求め、この値より金属溶湯中の水素含有量を算
出するものである。この方法は、データのバラツキが小
さく、測定精度が良いと云われているが、不活性ガスの
注入・循環及びその熱伝導率の測定の原理がら云って、
測定グローブの長さ・形状に制限があるので、被測定体
の金属溶湯への移動範囲が限定されるという欠点がある
。さらに、不活性ガスを扱うことと気体の熱伝導率測定
用の測定装置が必要なことなどから、この原理での測定
装置は、がなり高価なものとなっている。
本発明は、これらの方法の上記のような欠点を解消し、
簡易な装置により、アルミニウム基金属溶湯中に含まれ
ている水素ガスを、定量的に測定する方法及び装置を提
供するものである。         ゛本発明者は、
ハロゲン化水素が、特定の試薬と呈色反応することに着
目し、この原理を応用して(3) アルミニウム基金属溶湯中の水素含有量を測定する方法
について種々検討を重ね本発明を完成するに至った。本
発明は、一定量のアルミニウム基金属溶湯に、塩化物、
フッ化物などのハロゲン化合物を反応させ、発生するハ
ロゲン化水素ガス量をハロゲン化水素ガス検知管により
定量し、アルミニウム基金属溶湯中に含まれている水素
ガス量を算出するものである。
検知管とけ、被検気体と反応して特有の発色を示す試薬
を、吸着活性粒子など適当な担体に含浸せしめ、これを
透明管体に充填したものを云い、該充填層に被検気体を
導通した場合の上記発色層の長さまたは着色度により、
被検気体含有量を測定するものである。
以下本発明の内容を、ハロゲン化合物として、塩化物を
使用した例について、図面に従って、具体的に説明する
第1図は、測定装置の模式的断面図である。
筒状反応室1は、アルミニウム基金属溶湯内に浸漬され
るので、耐熱性、耐熱衝撃性、耐酸化性(4) 機械的強度に優れ、金属溶湯に溶解しない材質が要求さ
れ、例えば黒鉛質などが好ましい。反応室内には一定量
の塩化物2が、空気中で水分等により変質しないように
、包装されて装填されている。
塩化物としては、アルミニウム基金属溶湯により熱分解
し易いものが好ましい。例えば、20%KC7?閂 と80%即C12混合物の融点は670℃であり、馳 アルミニウム基金属溶湯により、魯解し、発生した塩素
が容易に溶湯中の水素と反応し、塩化水素を生成する。
溶湯を、筒状隔室4に吸い上げない為に、例えばコージ
ライト質気孔体などのセラミックフィルターとステンレ
スフレルターとの組み合わせの耐熱沢渦層3を、装填す
る。
定容積の筒状隔室4は、反応室1で発生した塩化水素ガ
スを、吸引ポンプ5で吸引し保持するもので、吸引ガス
の冷却、測定者と溶湯表面との距離を保つ上にも必要で
ある。
筒状隔室内の水蒸気、塩化水素ガス等による汚朦を浄化
するために、バイパス8を設けることが望ましい。測定
前に、必要に応じて三方コック9を調節し、筒状隔室内
の空気を、数回、吸引ポンプ操作して置換することが望
ましい、濾過層6は試料ガス中の不純物、特に塩化アル
ミニウムを除去するためのもので、ステンレスフィルタ
ーと綿フィルターの組み合わせ等がよい。塩化アルミニ
ウムの昇華温度は、183℃と高いので、塩化アルミニ
ウムは、隔室及びステンレスフィルターの部分で冷却さ
れ、完全に凝縮し、ステンレスフィルター及び綿フィル
ターの部分で、完全に除去される。塩化アルミニウムは
、塩化水素ガス検知管の試薬と反応することが多く、塩
化水素の測定を著しく困難にするので、予め除去してお
く必要がある。
塩化水素ガス検知管7には、塩化水素ガスと呈色反応を
する試薬が、一定量、一定の長さ及び一定の径の透明な
管体に、適当な担体を介して充填されている。代表的な
試薬として例えばメチルイエローがある。試料ガス中の
塩化水素ガス含有量によって変色する長さが変わるので
、この変色域の長さを測定し、試料ガス中の塩化水素ガ
スの濃度を求めることができる。また、塩化水素ガスの
量によって、試薬の色が変化するものも利用できる。こ
の場合、反応後、試薬の色を、予め用意した標準の色と
比較し、塩化水素ガスの濃度を算出する。
本発明になる測定装置を使っての測定の手順を簡単に記
述する。
(1)バイパスを使って、筒状隔室内の空気を置換する
(2)反応室を金属溶湯中に浸漬し、塩化物を金属溶湯
中の水素と反応させる。
(3)反応ガスを、吸引ポンプで吸引し、検知管の試薬
と反応させる。
(4)検知管の続みより、金属溶湯中の水素ガス量を算
出する。検知管の目盛を、金属溶湯中の水素ガス量に換
算したものにしておくことにより、水素ガス量を直読で
きる。
尚、当然の事ではあるが、塩化物2及び検知管7は、測
定の都度交換する。また、耐熱沢渦層3(7) および沢渦層6は、有効性が薄れたら随時交換する。
次に、本測定装置による測定例について説明する。第1
図に示す測定装置を使用して、アルミニウム基金属溶湯
中の水素ガス含有量を測定した。
測定装置の反応室、隔室の容積は、30Crn3.10
0crn3であり、気体定容吸引ポンプの吸引量は10
0m3である。ハロゲン化物として、20重量%KC/
?、80重量%v(J?、、(7)混合物1.5gを用
いた。
JISアルミニウム合金AC7Aのインゴットを黒鉛ル
ツボ中において、(1)溶解、(2)保持、(3)プラ
ントエア(無除湿の圧縮エアー)吹込み (4)脱ガス
処理 (5)処理後20分保持 の過程における水素ガ
ス含有量の測定結果を、第1表に示す。
(8) 第    1    表 尚、水素ガス含有量は、真空抽出法によって測定した。
この検知管の観測値(HCJ の濃度)と、水素ガス含
有量との関係は、第2図に示すように1、 極めてよい
相関関係にあり、予め検量線を作成しておけば、この方
法により正確に、金属溶湯中の水素ガス含有量を測定で
きることが判る。
以上、具体的に説明したように、本発明は、アルミニウ
ム基金属溶湯中の水素含有量を、きわめて簡便、かつ定
量的に測定する方法および装置を提供するものである。
【図面の簡単な説明】
第1図は、本発明になる測定装置の一例の模式的断面図
であり、第2図は、本発明による測定の一例の、検知管
のよみと金属溶湯中の水素含有量との関係を示す図であ
る。 1・・・・・・筒状反応室、  2・・・・・・塩化物
、3・・・・・・耐熱沢渦層、 4・・・・・・筒状隔
室、5・・・・・・気体定容吸引ポンプ、 6・・・・・・f渦層 7・・・・・・塩化水素ガス検知管。 特許出願人 昭和軽金属株式会社 代理人 弁理士菊地精−

Claims (2)

    【特許請求の範囲】
  1. (1)一定量のアルミニウム基金属溶湯にハロゲン化合
    物を反応せしめ、発生するハロゲン化水素量を定量し、
    この定量値から上記溶湯中の水素含有量を求めることを
    特徴とするアルミニウム基金属溶湯中の水素含有量測定
    方法。
  2. (2)下方に開口し、上方に内装したハロゲン化合物と
    、それについで耐熱f渦層と、さらに頂部に突出した気
    体吸引管口を有する筒状反応室と、該気体吸引管口に定
    容積の筒状隔室と、ついでハロゲン化水素ガス検知管と
    を介して、気体定容吸引ポンプを気密に連接してなるこ
    とを特徴とするアルミニウム基金属溶湯中の水素含有量
    測定装置。
JP57101375A 1982-06-15 1982-06-15 アルミニウム基金属溶湯中の水素含有量測定方法およびその装置 Pending JPS58218650A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57101375A JPS58218650A (ja) 1982-06-15 1982-06-15 アルミニウム基金属溶湯中の水素含有量測定方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57101375A JPS58218650A (ja) 1982-06-15 1982-06-15 アルミニウム基金属溶湯中の水素含有量測定方法およびその装置

Publications (1)

Publication Number Publication Date
JPS58218650A true JPS58218650A (ja) 1983-12-19

Family

ID=14299055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57101375A Pending JPS58218650A (ja) 1982-06-15 1982-06-15 アルミニウム基金属溶湯中の水素含有量測定方法およびその装置

Country Status (1)

Country Link
JP (1) JPS58218650A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292055A (ja) * 1985-06-19 1986-12-22 Nippon Kokan Kk <Nkk> 溶鋼の迅速分析方法
JPS62172262A (ja) * 1986-01-27 1987-07-29 Nippon Kokan Kk <Nkk> 不活性ガス導入炉外精錬炉の溶湯直接分析方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292055A (ja) * 1985-06-19 1986-12-22 Nippon Kokan Kk <Nkk> 溶鋼の迅速分析方法
JPH0546501B2 (ja) * 1985-06-19 1993-07-14 Nippon Kokan Kk
JPS62172262A (ja) * 1986-01-27 1987-07-29 Nippon Kokan Kk <Nkk> 不活性ガス導入炉外精錬炉の溶湯直接分析方法
JPH0521506B2 (ja) * 1986-01-27 1993-03-24 Nippon Kokan Kk

Similar Documents

Publication Publication Date Title
Magnusson et al. Density and solidification shrinkage of hypoeutectic aluminum-silicon alloys
Mitrasinovic et al. On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis
RU2478954C2 (ru) Устройство для сбора газов в металлических расплавах и способ измерения содержания газа в них
JP2606734B2 (ja) 液体金属のガス含有量を測定する為の装置及び方法並びにそこで使用されるプローブ
US3813944A (en) Molten metal sampling device
WO2002066956A1 (en) Method and apparatus for testing material utilizing differential temperature measurements
JPS58218650A (ja) アルミニウム基金属溶湯中の水素含有量測定方法およびその装置
KR101318831B1 (ko) 용융금속 및 슬래그 건전시료를 동시에 채취하는 복합프로브
JPH02218958A (ja) 溶融金属及び金属マトリツクス複合体中のガス濃度を定量するための方法ならびに装置
Fu et al. Surface tension driven kinetics of the triple line of a liquid metal free surface
GB1350248A (en) Method and apparatus for the determination of the oxygen content of metal melts
Anyalebechi Techniques for determination of the Hydrogen Content in Aluminium and its Alloys—A Review
US5345808A (en) Gas analyzer for molten metals
Chen et al. Comparing hydrogen testing methods for wrought aluminum
JPS642210B2 (ja)
JPH01158352A (ja) アルミニウム基金属溶湯中の水素含有量の測定方法および装置
JP2648925B2 (ja) 溶鋼中の水素分析方法および装置
JP2582997Y2 (ja) 溶融金属試料採取プローブ
Orlenius et al. Gas absorption in grey cast iron during mould filling
RU1772167C (ru) Способ экспрессного определени закиси железа в шлаке
Zeng et al. A New Vacuum Degassing Process for Molten Aluminum
JP2005134296A (ja) アルミニウム溶湯中の介在物量測定方法及びその装置
Chen et al. Measuring hydrogen content in molten aluminium alloys using the CHAPEL technique
Zeng et al. New process of elimination of hydrogen from melt aluminum
RU2052810C1 (ru) Способ определения содержания газов в жидких металлах