JPS58218118A - Inspection of light exposure pattern - Google Patents

Inspection of light exposure pattern

Info

Publication number
JPS58218118A
JPS58218118A JP57100947A JP10094782A JPS58218118A JP S58218118 A JPS58218118 A JP S58218118A JP 57100947 A JP57100947 A JP 57100947A JP 10094782 A JP10094782 A JP 10094782A JP S58218118 A JPS58218118 A JP S58218118A
Authority
JP
Japan
Prior art keywords
pattern
exposure
compensation
electron beam
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57100947A
Other languages
Japanese (ja)
Inventor
Yasuhide Machida
町田 泰秀
Shigeru Furuya
茂 古谷
Noriaki Nakayama
中山 範明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57100947A priority Critical patent/JPS58218118A/en
Publication of JPS58218118A publication Critical patent/JPS58218118A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To be able to varify easily the results of compensation for proximity effect and thereby attempt increased accuracy of pattern by electron beam exposure by calculation all over the picture drawing area based on the light exposure data of the phenomenon energy intensity distribution in the case of light exposure to an electron beam and seeking an area that has a specified phenomenon energy intensity from the phenomenon energy intensity distribution. CONSTITUTION:Design pattern data is read out from a memory 2 by the instruction of a CPU1 to carry out compensation calculation based on compensation method that is beforehand determined in a compensation calculation circuit 3, and a value of compensation is calculated. For example, regarding each of patterns K-M a sample point is set up on each side to calculate the effects of individual patterns. The sample point is selected at the bisector point of each side, for example. Compensation is made by dividing a pattern into simple rectangular patterns for a pattern of complex shape as in a pattern L. By the instruction from CPU1, the logic calculation circuit 5 reads out exposure pattern data from a first buffer memory 4 and the design pattern data is read out from a main memory 2. Exclusive Or (EOR) of both readings is sought.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は電子ビーム露光による露光パターンの検査方法
に関し、特に近接効果の補正結果の事前評価方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for inspecting an exposure pattern by electron beam exposure, and more particularly to a method for prior evaluation of correction results for proximity effects.

(b)従来技術と問題点 電子ビーム露光により高精度のパターンを形成するには
、所謂近接効果を補正することが不可欠である。
(b) Prior Art and Problems In order to form a highly accurate pattern by electron beam exposure, it is essential to correct the so-called proximity effect.

周知の如く近接効果は、被露光物上に塗布されたレジス
ト膜中での電子ビーム散乱(前方散乱)及び被露光物で
ある基板からの電子ビーム散乱(後方散乱)によって、
描画後のレジストパターンが電子ビーム照射パターンよ
り大きく広がるという現象である。このためパターン間
の間隔が凡そ2〔μm〕以下になると結果的にパターン
形状の著しい歪が生じ、パターン精度が低下する。
As is well known, the proximity effect is caused by electron beam scattering (forward scattering) in the resist film coated on the exposed object and electron beam scattering (backward scattering) from the substrate, which is the exposed object.
This is a phenomenon in which the resist pattern after drawing expands more than the electron beam irradiation pattern. For this reason, if the distance between the patterns is approximately 2 [μm] or less, significant distortion of the pattern shape will result, resulting in a decrease in pattern accuracy.

そこで露光パターン毎に、電子ビーム散乱強度分布とパ
ターン形状及び隣接パターンからの影響を考慮して、最
適な照射量を予め各パターン毎に設定したり、或いは描
画パターンを変形しておくという方法により近接効果を
補正している。
Therefore, for each exposure pattern, the optimal irradiation amount is set in advance for each pattern, taking into account the electron beam scattering intensity distribution, pattern shape, and influence from adjacent patterns, or the drawing pattern is modified. Corrects the proximity effect.

一方露光バクーンの微細化、複雑化につれて、近接効果
の補正が確実になされているが、目標のパターン精度が
得られているかを検証する必要がますます増大している
On the other hand, as exposure backgrounds become finer and more complex, the proximity effect can be reliably corrected, but there is an increasing need to verify whether the target pattern accuracy is being achieved.

しかしながら、パターン数が105〜106個のオーダ
ーの大規模且つパターン形状の複雑な集積回路装置(I
C)のパターンを、人手により検証することは不可能で
ある。
However, large-scale integrated circuit devices (I
It is impossible to manually verify pattern C).

(c)発明の目的 本発明の目的はかかる事情に鑑みて、近接効果が適切に
補正され目標のパターン精度が得られているか否かを事
前に比較的簡単に検証し得る電子ビーム露光パターンの
検査方法を提供することにある。
(c) Purpose of the Invention In view of the above circumstances, the purpose of the present invention is to develop an electron beam exposure pattern that allows relatively easy verification in advance whether the proximity effect is appropriately corrected and the target pattern accuracy is obtained. The objective is to provide an inspection method.

(d)発明の構成 本発明の特徴は、所定の設計パターンデータに基づいて
近接効果を補正した露光データを決定し、該露光データ
に基いて電子ビーム露光を行なった場合の現像エネルギ
強度分布を描画領域全域にわたって算出し、該現像エネ
ルギ強度分布から所定の現像エネルギ強度を有する領域
を求めることにより前記露光データに基いて電子ビーム
露光を行なった場合に得られる露光パターンを算出し、
該露光パターンを示す露光パターンデータと前記設計パ
ターンデータとの排他的論理和を算出し、その演算結果
より露光パターンの設計パターンからの差異を知り、前
記電子ビームの露光データを評価することにある。
(d) Structure of the Invention A feature of the present invention is that exposure data corrected for the proximity effect is determined based on predetermined design pattern data, and the development energy intensity distribution when electron beam exposure is performed based on the exposure data is determined. calculating an exposure pattern obtained when electron beam exposure is performed based on the exposure data by calculating over the entire drawing area and determining a region having a predetermined development energy intensity from the development energy intensity distribution;
The purpose is to calculate the exclusive OR of exposure pattern data indicating the exposure pattern and the design pattern data, find out the difference between the exposure pattern from the design pattern from the calculation result, and evaluate the exposure data of the electron beam. .

(e)発明の実施例 以下本発明の一実施例を図面を用いて具体的に説明する
(e) Embodiment of the Invention An embodiment of the present invention will be specifically described below with reference to the drawings.

第1図は上記一実施例に用いた電子ビーム露光装置の制
御システムの要部を示すブロック図で、1は中央処理装
置(CPU)、2は設計パターンデータを格納する主記
憶装置(メモリ)、3は近接効果を補正するための露光
データを生成する補正演算回路、4は上記露光データに
基づいて露光を行なった場合に得られるシミュレーショ
ン・パターンデータを格納するための第1のバッファメ
モリ(バッファI)、5は上記シミュレーション・パタ
ーンデータと前述の設計パターンデータとの排他的論理
和(EOR)を算出する論理演算回路、6は上記論理演
算回路5の出力を格納するための第2のバッファメモリ
(バッファ■)、7は表示装置である。
FIG. 1 is a block diagram showing the main parts of the control system of the electron beam exposure apparatus used in the above embodiment, in which 1 is a central processing unit (CPU), and 2 is a main storage device (memory) for storing design pattern data. , 3 is a correction calculation circuit that generates exposure data for correcting the proximity effect, and 4 is a first buffer memory (4) for storing simulation pattern data obtained when exposure is performed based on the exposure data. Buffer I), 5 is a logic operation circuit for calculating the exclusive OR (EOR) of the simulation pattern data and the design pattern data, and 6 is a second logic operation circuit for storing the output of the logic operation circuit 5. Buffer memory (buffer ■), 7 is a display device.

第2図〜第6図は本発明の原理を示す図で、以下第1図
を参照しながら本実施例を説明する。
FIGS. 2 to 6 are diagrams showing the principle of the present invention, and the present embodiment will be described below with reference to FIG. 1.

第2図において、実線は設計パターンを示し、この設計
パターン・データは予めメモリ2に格納しておく。破線
のパターンは上記設計パターンを得るために近接効果を
補正し、実際に電子ビームを照射する領域(以下これを
照射パターンと略記する)を示す。
In FIG. 2, solid lines indicate design patterns, and this design pattern data is stored in the memory 2 in advance. The broken line pattern indicates the area where the proximity effect is corrected and the electron beam is actually irradiated (hereinafter referred to as the irradiation pattern) in order to obtain the above-mentioned designed pattern.

本実施例の露光パターン検査を行うには、まずCPU1
の指令によりメモリ2から上記設計パターンデータを読
み出し、補正演算回路3において予め定められた補正方
法に基づいて補正演算を行い、補正量を算出する。例え
ば各パターンK〜Mのそれぞれについて、各辺上にサン
プル点を設定し、他のパターンからの影響を算出する。
To perform the exposure pattern inspection of this embodiment, first the CPU 1
The design pattern data is read out from the memory 2 according to the command, and the correction calculation circuit 3 performs correction calculation based on a predetermined correction method to calculate the correction amount. For example, sample points are set on each side of each of the patterns K to M, and the influence from other patterns is calculated.

サンプル点としては、例えば各辺の2等分点を選ぶ。こ
のときパターンLのように形状の複雑なパターンは、単
純な矩形パターンに分割して補正を行う。
As the sample points, for example, bisecting points on each side are selected. At this time, a pattern with a complicated shape like pattern L is corrected by dividing it into simple rectangular patterns.

即ちパターンLの場合は、パターンL1及びパターンL
2とに分割し、それぞれについて上述の如く各辺上にサ
ンプル点を設定する。
In other words, in the case of pattern L, pattern L1 and pattern L
2, and sample points are set on each side of each as described above.

電子ビーム散乱強度分布f(r)は周知の如く、外部か
ら照射するビームの中心からの距離rの関数として、 で表される。(1)式において、第1項目は前方散乱を
、第2項目は後方散乱を示す。上式中、A〜Cはそれぞ
れレジストの感度や厚さ、あるいは基板材料等の条件に
よって定まる定数であり、予め与えられている。
As is well known, the electron beam scattering intensity distribution f(r) is expressed as follows as a function of the distance r from the center of the beam irradiated from the outside. In equation (1), the first term indicates forward scattering, and the second term indicates backward scattering. In the above formula, A to C are constants determined by conditions such as the sensitivity and thickness of the resist, or the substrate material, and are given in advance.

この(1)式によって他のパターンからの影響分を算出
し、各サンプル点での露光強度が一定になるように、連
立方程式を解く等により寸法及び照射量に対する補正量
を求める。
The influence from other patterns is calculated using equation (1), and the amount of correction for the dimensions and irradiation amount is determined by solving simultaneous equations or the like so that the exposure intensity at each sample point is constant.

第2図の実線で示す設計パターンを上記補正量を用いて
補正することにより、破線で示す照射パターンが得られ
る。
By correcting the design pattern shown by the solid line in FIG. 2 using the above correction amount, the irradiation pattern shown by the broken line is obtained.

各パターンの現像エネルギ強度Eは、電子ビームの照射
量をQ〔C/cm2〕とすると、Qと(1)式を描画パ
ターン全域にわたって積分したものとの積で求められる
。即ち、 ここでsは描画パターンの面積である。
The development energy intensity E of each pattern is determined by the product of Q and the equation (1) integrated over the entire area of the drawn pattern, where the electron beam irradiation amount is Q [C/cm2]. That is, here s is the area of the drawing pattern.

そこで上記照射パターンに従って露光を行なった場合に
得られるパターン(以下これを露光パターンの略記する
)を、補正演算回路3において、(2)式に従ってある
等エネルギ強度E0になるパターン形状を算出する。こ
のようにして求めた露光パターンを、第3図に一点鎖線
で示す。
Therefore, the correction calculation circuit 3 calculates the pattern shape of a pattern obtained when exposure is performed according to the above-mentioned irradiation pattern (hereinafter referred to as exposure pattern) to have a certain equal energy intensity E0 according to equation (2). The exposure pattern thus obtained is shown in FIG. 3 by a chain line.

ここまでは前述した如く、パターンLのように複雑なパ
ターンは単純な矩形パターンL1、L2に分割して取り
扱ってきた。そこで露光パターンの論理和(OR)を求
めることにより上記分割したパターンを合成する。かく
することにより、近接効果を補正して電子ビームを照射
した場合に得られる露光パターンを求めることが出来る
。第4図はこのようにしてシミュレートした露光パター
ンを示す。
Up to this point, as described above, a complex pattern like pattern L has been treated by being divided into simple rectangular patterns L1 and L2. Therefore, the divided patterns are synthesized by calculating the logical sum (OR) of the exposure patterns. By doing so, it is possible to obtain an exposure pattern obtained when the electron beam is irradiated with the proximity effect corrected. FIG. 4 shows the exposure pattern simulated in this manner.

この露光パターンのパターンデータは、第1のバッファ
メモリ4に格納される。
The pattern data of this exposure pattern is stored in the first buffer memory 4.

以上の操作を終了した後、CPU1からの指令により、
論理演算回路5は上記露光パターンデータを第1のバッ
ファメモリ4から読み出し、主記憶装置2から読み出し
た設計パターンデータとの排他的論理和(EOR)を求
める。
After completing the above operations, according to a command from CPU1,
The logic operation circuit 5 reads out the exposure pattern data from the first buffer memory 4 and calculates an exclusive OR (EOR) with the design pattern data read out from the main storage device 2.

上述の本実施例の近接効果の補正は、各辺について一個
のサンプル点を選び、このサンプル点を各辺の代表点と
して補正量を決定したも平均的な補正方法である。従っ
て各パターンの全域にわたって適切に補正されていると
は限らない。例えば第4図においてパターンLの左側の
辺は、上部はパターンKが近接して存在するが、下部は
平行するパターンが存在しない。従って上部は近接効果
の影響が大きいため 平均的な補正では上部は下部より
パターンが太くなる等、得られた露光パターンは一般に
設計パターンとは異なる。
The proximity effect correction in this embodiment described above is an average correction method in which one sample point is selected for each side and the amount of correction is determined using this sample point as the representative point of each side. Therefore, it is not always the case that the entire area of each pattern is appropriately corrected. For example, in FIG. 4, on the left side of pattern L, pattern K exists close to it in the upper part, but there is no parallel pattern in the lower part. Therefore, since the influence of the proximity effect is large in the upper part, the pattern obtained in the upper part is generally different from the designed pattern, for example, the pattern becomes thicker in the upper part than in the lower part with average correction.

そこで上述の如く両者の排他的論理和を求めることによ
り、第5図の実線で示す設計パターンと一点鎖線で示す
露光パターンとが一致しない部分が摘出される。第6図
のパターンNはこのようにして検出された設計パターン
とシミュレートされた露光パターンとの誤差を示す。
Therefore, by calculating the exclusive OR of the two as described above, the portions where the design pattern indicated by the solid line in FIG. 5 and the exposure pattern indicated by the dashed-dotted line do not match are extracted. Pattern N in FIG. 6 shows the error between the design pattern thus detected and the simulated exposure pattern.

上記パターンNのデータは第2のバッファメモリ6に格
納される。
The data of the pattern N is stored in the second buffer memory 6.

上述のようにして得られてパターンNは表示装置7に表
示される。この表示装置7には必要に応じて設計パター
ン、照射パターン、露光パターン等を表示させることも
勿論可能である。
The pattern N obtained as described above is displayed on the display device 7. It is of course possible to display design patterns, irradiation patterns, exposure patterns, etc. on this display device 7 as necessary.

上記パターンN或いは露光パターンの寸法や位置等を検
査することにより、近接効果の補正が適切か否か、即ち
目標の精度を有するパターンが得られるか否かを、電子
ビーム露光を実施する前に検証することが出来る。
By inspecting the dimensions and position of the pattern N or the exposure pattern, it is possible to check whether the proximity effect correction is appropriate, that is, whether a pattern with the target accuracy can be obtained before performing electron beam exposure. It can be verified.

このように本実施例によれば比較的容易に近接効果の補
正結果を検証出来る。従ってもし精度が不十分な場合に
は、上述のシミュレーションを繰り返すことにより、高
精度を有するパターンを描画し得る電子ビーム露光条件
を求めることが出来る。
In this way, according to this embodiment, the proximity effect correction result can be verified relatively easily. Therefore, if the accuracy is insufficient, by repeating the above simulation, it is possible to find electron beam exposure conditions that can draw a pattern with high accuracy.

なお上記一実施例において、近接効果の補正を各辺毎に
それぞれ1個のサンプル点について行なったが、これは
各パターン全域にわたって補正を行うと、所要時間が厖
大なものとなり、実用的でないためである。しかし、補
正方法は上述の方法に限定されるものではなく、通常用
いられる如何なる補正方法によってもよい。
In the above embodiment, the proximity effect was corrected for one sample point on each side, but this is not practical because if the correction was performed over the entire area of each pattern, it would take an enormous amount of time. It is. However, the correction method is not limited to the above-mentioned method, and any commonly used correction method may be used.

(f)発明の効果 以上説明した如く本発明によれば、近接効果の補正結果
を容易に検証することが出来、従って電子ビーム露光に
よるパターン精度が向上する。
(f) Effects of the Invention As described above, according to the present invention, it is possible to easily verify the correction result of the proximity effect, thereby improving pattern accuracy by electron beam exposure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に使用した電子ビーム露光装
置の制御システムの要部を示すブロック図、第2図〜第
6図は上記一実施例を示す要部上面図である。 図において、1は中央処理装置(CPU)、2は主記憶
装置、3は補正演算回路、4は第1のバッファメモリ、
5は排他的論理和(EOR)演算を行う論理演算回路、
6は第2のバッファメモリ、7は表示装置、K、L、L
1、L2、Mはそれぞれパターンを示す。 代理人 弁理士 松岡宏四郎 第1内 第2図 1 第3問
FIG. 1 is a block diagram showing the main parts of a control system of an electron beam exposure apparatus used in an embodiment of the present invention, and FIGS. 2 to 6 are top views of the main parts of the above embodiment. In the figure, 1 is a central processing unit (CPU), 2 is a main storage device, 3 is a correction calculation circuit, 4 is a first buffer memory,
5 is a logic operation circuit that performs an exclusive OR (EOR) operation;
6 is a second buffer memory, 7 is a display device, K, L, L
1, L2, and M each indicate a pattern. Agent Patent Attorney Koshiro Matsuoka No. 1, No. 2, Figure 1, Question 3

Claims (1)

【特許請求の範囲】[Claims] 所定の設計パターンデータに基づいて近接効果を補正し
た露光データを決定し、該露光データに基いて電子ビー
ム露光を行なった場合の現像エネルギ強度分布を描画領
域全域にわたって算出し、該現像エネルギ強度分布から
所定の現像エネルギ強度を有する領域を求めることによ
り前記露光データに基いて電子ビーム露光を行なった場
合に得られる露光パターンを算出し、該露光パターンを
示す露光パターンデータと前記設計パターンデータとの
排他的論理和を算出し、その演算結果より露光パターン
の設計パターンからの差異を知り、前記電子ビームの露
光データを評価することを特徴とする露光パターンの検
査方法。
Determine exposure data with the proximity effect corrected based on predetermined design pattern data, calculate the development energy intensity distribution over the entire drawing area when electron beam exposure is performed based on the exposure data, and calculate the development energy intensity distribution. An exposure pattern obtained when electron beam exposure is performed based on the exposure data is calculated by determining a region having a predetermined development energy intensity from A method for inspecting an exposure pattern, comprising calculating an exclusive OR, determining the difference between the exposure pattern and the design pattern from the result of the calculation, and evaluating the exposure data of the electron beam.
JP57100947A 1982-06-11 1982-06-11 Inspection of light exposure pattern Pending JPS58218118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100947A JPS58218118A (en) 1982-06-11 1982-06-11 Inspection of light exposure pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100947A JPS58218118A (en) 1982-06-11 1982-06-11 Inspection of light exposure pattern

Publications (1)

Publication Number Publication Date
JPS58218118A true JPS58218118A (en) 1983-12-19

Family

ID=14287542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100947A Pending JPS58218118A (en) 1982-06-11 1982-06-11 Inspection of light exposure pattern

Country Status (1)

Country Link
JP (1) JPS58218118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123301A (en) * 1985-11-25 1987-06-04 Fujitsu Ltd Inspector for semiconductor exposure pattern data
JPS62273719A (en) * 1986-05-22 1987-11-27 Toshiba Corp Data verification in charged particle beam exposure equipment
KR20160037839A (en) * 2013-04-29 2016-04-06 아셀타 나노그라픽 Method of lithography with combined optimization of the energy radiated and of the geometry applicable to complex shapes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123301A (en) * 1985-11-25 1987-06-04 Fujitsu Ltd Inspector for semiconductor exposure pattern data
JPS62273719A (en) * 1986-05-22 1987-11-27 Toshiba Corp Data verification in charged particle beam exposure equipment
KR20160037839A (en) * 2013-04-29 2016-04-06 아셀타 나노그라픽 Method of lithography with combined optimization of the energy radiated and of the geometry applicable to complex shapes
JP2016519437A (en) * 2013-04-29 2016-06-30 アセルタ ナノグラフィクス Lithographic method with combined optimization of radiant energy and shape applicable to complex forming

Similar Documents

Publication Publication Date Title
KR100846018B1 (en) Method and Device for Determining the Properties of an Integrated Circuit
US6691052B1 (en) Apparatus and methods for generating an inspection reference pattern
US6581193B1 (en) Apparatus and methods for modeling process effects and imaging effects in scanning electron microscopy
JP2000003028A (en) Mask pattern correcting system and its correcting method
US8681326B2 (en) Method and apparatus for monitoring mask process impact on lithography performance
JP4856047B2 (en) Mask pattern dimension inspection method and mask pattern dimension inspection apparatus
KR970002450A (en) Manufacturing method of photomask and manufacturing method of semiconductor integrated circuit device using the photomask
JPS62209304A (en) Method for measuring dimension
KR102451533B1 (en) Verification method of mask for microlithography
US6760892B2 (en) Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device
KR970075841A (en) Critical dimension measurement system of the sample
US7093226B2 (en) Method and apparatus of wafer print simulation using hybrid model with mask optical images
CN103439869B (en) The method of measurement pattern density
CN112015046B (en) Method for detecting pattern development condition
US8165383B2 (en) Method, system and computer program product for edge detection
JPS58218118A (en) Inspection of light exposure pattern
ES2241092T3 (en) PROCEDURE FOR DETECTION OF DEVIATION OF THE FORM OF A SURFACE OF A FORM GIVEN BY TREATMENT WITH AN ARTIFICIAL NEURONAL NETWORK.
CN103869604A (en) Light shield and its designing method
JPS609121A (en) Evaluation of exposure pattern data
JP3267587B2 (en) Pattern shape correction method, pattern shape calculation method
KR20090106890A (en) Method for verification OPC layout
CN106610564A (en) Exposure process check method and system, and test mask
JP2004061720A (en) Method and device for generating process model
JP2005116594A (en) Verification method of proximity effect correction in electron beam drawing
JPS60117623A (en) Inspecting method for exposure pattern