JPS58218021A - Vertical magnetic head - Google Patents

Vertical magnetic head

Info

Publication number
JPS58218021A
JPS58218021A JP10189182A JP10189182A JPS58218021A JP S58218021 A JPS58218021 A JP S58218021A JP 10189182 A JP10189182 A JP 10189182A JP 10189182 A JP10189182 A JP 10189182A JP S58218021 A JPS58218021 A JP S58218021A
Authority
JP
Japan
Prior art keywords
head
bit
magnetic flux
core
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10189182A
Other languages
Japanese (ja)
Inventor
Akio Otsubo
秋雄 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10189182A priority Critical patent/JPS58218021A/en
Publication of JPS58218021A publication Critical patent/JPS58218021A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the space loss of a reproduced output, by providing a soft magnetic core while sandwiching a gap of corresponding to about the shortest recording bit length and a medium running-out side face of a head core, in a vertical single magnetic pole head. CONSTITUTION:A magnetic flux 8 from a bit 6 of opposite phase adjacent to a bit 5 gives an interference to a magnetic flux 7 flowed from the bit 5. In providing a ''resolution core'' 9 of the soft magnetism acting a role absorbing this interference magnetic flux 8 via the single magnetic pole head 1 and a gap 10, the interference magnetic flux from the adjacent bit 6 is absorbed as 11 from the edge tip 9, and the spacing loss of the reproducing sensitivity of the single magnetic pole head is almost equal to that of a ring head. Since a wider gap (g) is not effective at the reproduction of a short wavelength and the too narrow gap short-circuits the magnetic flux between the adjacent bits at the reproduction and the shape of the magnetic field at the edge peak of the head is not sharpened at the recording, then the (g) is taken as about the shortest bit length.

Description

【発明の詳細な説明】 本発明は、垂直磁化記録方式において、再生出力のスペ
ース損失の小さい片側単磁極ヘッドの構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a single-sided magnetic pole head that has a small space loss in reproduction output in a perpendicular magnetization recording system.

従来の長手方向磁化記録方式と比較して、垂直磁化記録
方式は、その残留記録磁化状態の静磁エネルギーがより
安定であるので(反磁場が小さい)、高密度記録に適し
ていることは明白である。
Compared to the conventional longitudinal magnetization recording method, the perpendicular magnetization recording method is clearly suitable for high-density recording because the magnetostatic energy of its residual recording magnetization state is more stable (the demagnetizing field is smaller). It is.

この垂直方式を回転ヘッドVTRおよびハードディスク
に適用するためには、媒体を両側からはさむ補助磁極励
磁型でなく、片側から動作するヘッド構造でなければな
らない。次に、媒体に深く強く垂直性のよい記録磁界を
印加するにはリングヘッドでなく単磁極ヘッドである必
要がある。第三に、機構の単純化のため録再兼用ヘッド
がのぞましい。
In order to apply this vertical method to rotary head VTRs and hard disks, the head structure must be operated from one side, rather than the auxiliary pole excitation type in which the medium is sandwiched from both sides. Next, in order to apply a deep, strong, and highly perpendicular recording magnetic field to the medium, it is necessary to use a single-pole head rather than a ring head. Thirdly, a recording/reproducing head is desirable in order to simplify the mechanism.

以上の三つの条件を満たすものとして、本発明者は特願
56−017224および特願56−119903にお
いて、高飽和磁化軟磁性膜付の厚い非平行単磁極ヘッド
を提供した。
In order to satisfy the above three conditions, the present inventor provided a thick non-parallel single magnetic pole head with a highly saturated magnetized soft magnetic film in Japanese Patent Application No. 56-017224 and Japanese Patent Application No. 56-119903.

図1に示すように単磁極ヘッドコア1の媒体流入端2を
記録パターンを作る媒体流出端3と非平行にすることに
より、再生においてコアに流れ込む媒体記録パターンか
らの磁束の時間変化のうち流入端における分はアジマス
効果のため均らされ消えるようにすることができる。
As shown in FIG. 1, by making the medium inflow end 2 of the single-pole head core 1 non-parallel to the medium outflow end 3 that forms the recording pattern, the inflow end of the time change of the magnetic flux from the medium recording pattern flowing into the core during reproduction is The fraction in can be made to even out and disappear due to the azimuth effect.

結局、再生電圧は流出端における分だけが寄与するため
、平行単磁極の場合と違って、再生分解能を犠牲にする
ことなく流出端と流入単間の平均厚み1/2(t1+t
2)を厚くすることができる。
In the end, only the portion at the outflow end contributes to the reproducing voltage, so unlike the case of parallel single magnetic poles, the average thickness between the outflow end and the inflow end is 1/2 (t1+t
2) can be made thicker.

従って片側からの記録および再生の効率を上げるために
必要な単磁極ヘッドコアの媒体と接する上面4とコイル
部5間の磁束流伝達率を上げることができるのである。
Therefore, it is possible to increase the magnetic flux flow transmission rate between the upper surface 4 of the single-pole head core in contact with the medium and the coil portion 5, which is necessary to increase the efficiency of recording and reproducing from one side.

単磁極ヘッドコアの媒体流出側面に、高飽和磁化軟磁性
膜を設けたのは、その記録磁界のエッジピークをより鋭
くして、薄い高導磁率層をもつテープ等に対しても記録
効率を上げるためである。
A highly saturated soft magnetic film is provided on the media outflow side of the single-pole head core to sharpen the edge peak of the recording magnetic field and increase recording efficiency even on tapes with thin high magnetic permeability layers. It's for a reason.

上記の厚い非平行単磁極ヘッドにより片側録再が可能と
なり、その周波数特性は目的の高密度域にディップの出
ない使い易いものだが、高密度域での再生スペース損失
が大きく、予期した程の高密度特性が得られなかった。
The above-mentioned thick non-parallel single-pole head enables one-sided recording and playback, and its frequency characteristics are easy to use with no dip in the desired high-density region, but the playback space loss in the high-density region is large and the result is not as high as expected. High density characteristics could not be obtained.

一般に単磁極ヘッドは再生スペース損失に関してはリン
グヘッドより悪く、その為極端に厳しい機械的精度が求
められており(特に浮動ヘッド)、垂直方式実用化の大
きな障害となっていた。
In general, single-pole heads are worse than ring heads in terms of reproduction space loss, and therefore require extremely strict mechanical precision (particularly for floating heads), which has been a major obstacle to the practical application of the vertical method.

本発明はその原因について単磁極ヘッドとリングヘッド
の動作を比較探究した結果に基づきなされたものである
。すなわち、図2において説明すると、単磁極ヘッド1
のコイル2に誘導される信号電圧は媒体垂直記録層3の
主にヘッドのエッジ上の記録磁化ビット5から流れ込む
磁束7によるものであるが、ヘッド媒体間にスペーシン
グがあるとこの単磁極ヘッドからはずれた位置にある隣
りの逆位相のビット6からの磁束8も感度のよいエッジ
先端に流入し、7と8が干渉して再生感度を下げている
ものと思われる。そこで、その対策として、この干渉す
る隣りのビットからの干渉磁束8を吸込む役目をする軟
磁性の″分解能コア″9を単磁極ヘッド1とギャップ1
0を隔てて設ければ、隣りのビット6からの干渉磁束は
、9のエッジ先端から11となって吸い込まれ、単磁極
ヘッドの再生感度のスペーシング(d)損失はほぼリン
グヘッド並になるはずである。ギャップ(g)は広すぎ
ては短波長再生時に効果がないし、狭すぎると再生時に
隣接ビット5、6間の磁束を短絡し、記録時には単磁極
ヘッドのエッジピークの磁界の切れがシャープでなくな
るので、gは最短ビット長程度にするのが最適である。
The present invention was made based on the results of a comparative investigation of the operation of a single magnetic pole head and a ring head to determine the cause of this problem. That is, to explain with reference to FIG. 2, the single magnetic pole head 1
The signal voltage induced in the coil 2 of the medium is due to the magnetic flux 7 flowing into the medium perpendicular recording layer 3 mainly from the recording magnetized bit 5 on the edge of the head. It is thought that the magnetic flux 8 from the adjacent bit 6 of the opposite phase, which is located away from the magnetic field, also flows into the sensitive edge tip, and 7 and 8 interfere with each other, lowering the reproduction sensitivity. Therefore, as a countermeasure, a soft magnetic "resolution core" 9, which serves to absorb the interfering magnetic flux 8 from the interfering neighboring bit, is connected to the single magnetic pole head 1 and the gap 1.
If bits 0 and 0 are placed apart, the interference magnetic flux from the adjacent bit 6 will be absorbed from the tip of the edge of bit 9 as 11, and the spacing (d) loss in reproduction sensitivity of a single magnetic pole head will be almost the same as that of a ring head. It should be. If the gap (g) is too wide, it will not be effective during short wavelength reproduction, and if it is too narrow, it will short-circuit the magnetic flux between adjacent bits 5 and 6 during reproduction, and the magnetic field break at the edge peak of the single magnetic pole head will not be sharp during recording. Therefore, it is optimal to set g to about the shortest bit length.

以上の構造は極端に広いバックキャップをもつリングヘ
ッド状のものともいえるが、その動作は本質的に単磁極
ヘッドである。
Although the above structure can be said to be like a ring head with an extremely wide back cap, its operation is essentially that of a single-pole head.

この分解能コアの効果を実証するため再生の拡大モデル
実験を行なった。モデルでの1cmは実際のヘッドでの
1ミクロン(μ)にほぼ対応している。但し、トラック
巾、厚さ、長さは実際のプロポーションからは、ずれて
いる。
In order to demonstrate the effectiveness of this resolution core, we conducted an expanded reproduction model experiment. 1 cm in the model approximately corresponds to 1 micron (μ) in the actual head. However, the track width, thickness, and length differ from the actual proportions.

単磁極ヘッド1、分解能コア9および媒体の高導磁率層
4の材料はMnZnフェライトブロック、垂直記録層3
はBaフェライト永久磁石を積み重ねて作ったものであ
る。
The materials of the single magnetic pole head 1, the resolution core 9, and the high magnetic permeability layer 4 of the medium are MnZn ferrite blocks, and the perpendicular recording layer 3.
is made by stacking Ba ferrite permanent magnets.

サイズは次の通り 単磁極ヘッド:t1=6.0cm t2=2.0cmW
=3.0cm L′=18.0cm コイル巻数=50
0分解能コア:t3=1.0cm、 L″=24.0c
mW=3.0cm、 ギャップg=0.5cm(このモ
デル実験の形とサイズは動作説明図2と違い、細長い直
方体を用いた。) 媒体: 走行方行長さ=12cm、 トラック巾=2.
5cm、 垂直記録層厚=0.2cmビット長λ/2=
0.5cm、 高導磁率層厚=0.8cmスペーシング
g=0〜1.0cmの範囲で、媒体通過時の再生電圧を
デジタル波形メモリで測定した。(図−3) 厚い非平行単磁極ヘッドだけの場合 再生損失=−50.6d/λ dB 分解能コアを併設した場合 再生損失=−35.2d/λ dB すなわち分解能コアによりスペース損失は、15dB改
善された。
The sizes are as follows: Single magnetic pole head: t1 = 6.0cm t2 = 2.0cmW
=3.0cm L'=18.0cm Number of coil turns=50
0 resolution core: t3=1.0cm, L″=24.0c
mW = 3.0 cm, gap g = 0.5 cm (The shape and size of this model experiment are different from the operation explanation diagram 2, and an elongated rectangular parallelepiped was used.) Medium: Traveling length = 12 cm, Track width = 2.
5cm, perpendicular recording layer thickness=0.2cm bit length λ/2=
0.5 cm, high magnetic permeability layer thickness = 0.8 cm, spacing g = in the range of 0 to 1.0 cm, and the reproducing voltage when the medium passed was measured using a digital waveform memory. (Figure 3) Reproduction loss with only thick non-parallel single magnetic pole head = -50.6d/λ dB Reproduction loss with resolution core = -35.2d/λ dB In other words, space loss is improved by 15dB with resolution core. It was done.

この実施例としてこの構造をVTR用回転ヘッドに適用
した場合について述べる。この構造は図2に示す様に極
端に広く長いバックギャップをもったリングヘッド状で
あり、公知のフェライトVTRヘッド製造法を殆んどそ
のまま適用できるので、違う部分だけについて述べる。
As an example, a case will be described in which this structure is applied to a rotary head for a VTR. As shown in FIG. 2, this structure has a ring head shape with an extremely wide and long back gap, and since the known ferrite VTR head manufacturing method can be applied almost as is, only the different parts will be described.

先づ、図4に示す様にフェライト単結晶インゴットから
切出した単結晶ブロック1でリングヘッドの一片に対応
する単磁極ヘッドの方を作り、つき合せ面に高飽和磁化
層2として例えば、センダスト、低ニッケルFe−Ni
合金(パーマロイ)或は、Co−IIIa〜IVa金属
合金アモルファス等のスパッタ、蒸着による薄膜約0.
5μ(最短ビット長以下)を設け、さらにその上 にギャップ層11としてAl2O3或はCr金属薄膜、
約0.5μ(最短ビット長以下)を同様の方法で設ける
。分解能コアと接着後、12に沿ってスライスして、そ
れぞれ単磁極ヘッドになった時、媒体に接する面のギャ
ップ側と反対側のエッジが非平行になる様に、奥行数+
ミクロンのかきおとし13を入れて媒体との接触面がほ
ぼ五角形になる様にする。
First, as shown in FIG. 4, a single-pole head corresponding to one piece of the ring head is made using a single-crystal block 1 cut from a ferrite single-crystal ingot, and a highly saturated magnetic layer 2 made of, for example, Sendust, is applied to the abutting surface. Low nickel Fe-Ni
A thin film of about 0.0 mm by sputtering or vapor deposition of an alloy (permalloy) or an amorphous Co-IIIa to IVa metal alloy.
5μ (shortest bit length or less), and further thereon, as a gap layer 11, an Al2O3 or Cr metal thin film,
Approximately 0.5μ (less than the shortest bit length) is provided in a similar manner. After adhering to the resolution core, slice it along 12 to make a single magnetic pole head, so that the edge opposite to the gap side of the surface in contact with the medium is non-parallel to the depth number +
A micron scraper 13 is inserted so that the contact surface with the medium is approximately pentagonal.

次に、リングヘッドのコイル孔用みぞ切り部付の他の一
片のブロック製造工程に対応する分解能コア製造工程と
して、図5に示す様にフェライト単結晶ブロック1に、
深さ約0.3mmの溝4を、ギャップデプス3約100
ミクロン(D)と、精密接着上必要な後端部5(E■D
)を残してみぞ切りをする。ここにガラス6を融着し、
接着剤逃げみぞ7を切った後、端磁極ヘッドとのつき合
わせ面となるこの表面をラップしガラス部をカバーしな
がら単磁極ヘッドと同じく高飽和磁化薄膜2を設ける。
Next, as shown in FIG. 5, a ferrite single crystal block 1 is manufactured as a resolution core manufacturing process corresponding to the manufacturing process of another piece of block with grooves for the coil hole of the ring head.
Groove 4 with a depth of about 0.3mm, gap depth 3 about 100mm
micron (D) and the rear end 5 (E D) required for precision bonding.
) and make a groove. Glass 6 is fused here,
After cutting the adhesive escape groove 7, this surface, which will be the abutting surface with the end magnetic pole head, is lapped to cover the glass portion and a highly saturated magnetized thin film 2 is provided in the same manner as in the single magnetic pole head.

単磁極部と分解能コア部を合せて接着し、コイル孔8を
あけ、リングヘッド的に磁路がつながらぬよう後端部を
14で切り離した後スライスし、側面ラップおよびベー
ス固着をする。
The single magnetic pole part and the resolution core part are glued together, a coil hole 8 is made, and the rear end is cut off at 14 so that the magnetic path is not connected like a ring head, and then sliced, and the side surface is wrapped and the base is fixed.

全体のサイズは普通のVTRヘッドとほぼ同じく媒体走
行奥行Ts■Tr■1.5mm、巾W=0.15mm絞
り込んだ後のトラック巾〜20ミクロンとするが、単磁
極ヘッドとしての記録時の反磁場を低くするため、長さ
Lはやや長くとって3〜10mmとする。
The overall size is almost the same as a normal VTR head, with a medium running depth Ts Tr 1.5 mm and a width W = 0.15 mm.The track width after narrowing down is ~20 microns, but the In order to lower the magnetic field, the length L is set slightly longer to 3 to 10 mm.

このヘッドはほぼそのまま固定ヘッドとしてフロッピー
ディスク用、オーディオPCMテープ用、コンピュータ
ーのテープ用としても用いることができる。
This head can be used almost as is as a fixed head for floppy disks, audio PCM tapes, and computer tapes.

また、サイズを小型にして、ハードディスク用の浮動ス
ライダーの後端部に取付けることもできる。
It can also be made smaller and attached to the rear end of a floating slider for a hard disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高飽和磁化薄膜(6)付の厚い非平行ヘッドの
斜視図。 第2図は分解能コア(9)付の単磁極ヘッドの動作説明
図。8は分解能コアのない時の干渉磁束を示す。 第3図は拡大モデル実験の再生電圧とスペーシングとの
関係(dはスペーシング、人は波長)を示す。1は分解
能コアのある場合、2は分解能コアなしの場合。 第4図はVTR用ヘッド製造工程での単磁極ヘッドコア
部分の製法を示す。 第5図は同じく分解能コア部分の製法を示す。 第4、第5図において1は単結晶フェライト、2は高飽
和磁化軟磁性薄膜、3はギャップデプスになる所、6は
ガラス、8はコイル孔、14は接着後の切り離し線、 特許出願人 大坪秋■
FIG. 1 is a perspective view of a thick non-parallel head with a highly saturated magnetized thin film (6). FIG. 2 is an explanatory diagram of the operation of a single magnetic pole head with a resolution core (9). 8 shows the interference magnetic flux when there is no resolution core. FIG. 3 shows the relationship between reproduction voltage and spacing in an enlarged model experiment (d is spacing, human is wavelength). 1 is with a resolution core, 2 is without a resolution core. FIG. 4 shows a method for manufacturing a single magnetic pole head core portion in a VTR head manufacturing process. FIG. 5 also shows the manufacturing method of the resolution core portion. 4 and 5, 1 is a single crystal ferrite, 2 is a highly saturated magnetized soft magnetic thin film, 3 is a gap depth, 6 is glass, 8 is a coil hole, 14 is a separation line after bonding, and the patent applicant Aki Otsubo■

Claims (1)

【特許請求の範囲】[Claims] 媒体の片側から記録再生する垂直単磁極ヘッドにおいて
、そのヘッドコアの媒体流出側面と最短記録ビット長程
度のギャップをはさんで軟磁性コアを設置することを特
徴とする単磁極ヘッドの構造。
A structure of a vertical single-pole head that records and reproduces information from one side of a medium, characterized in that a soft magnetic core is installed across a gap approximately equal to the shortest recording bit length from the medium outflow side of the head core.
JP10189182A 1982-06-13 1982-06-13 Vertical magnetic head Pending JPS58218021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10189182A JPS58218021A (en) 1982-06-13 1982-06-13 Vertical magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10189182A JPS58218021A (en) 1982-06-13 1982-06-13 Vertical magnetic head

Publications (1)

Publication Number Publication Date
JPS58218021A true JPS58218021A (en) 1983-12-19

Family

ID=14312546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10189182A Pending JPS58218021A (en) 1982-06-13 1982-06-13 Vertical magnetic head

Country Status (1)

Country Link
JP (1) JPS58218021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133509A (en) * 1983-12-21 1985-07-16 Keiji Suzuki Vertical magnetic head
US4987510A (en) * 1977-12-11 1991-01-22 Siemens Aktiengesellschaft Thin film magnet head for vertical magnetization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987510A (en) * 1977-12-11 1991-01-22 Siemens Aktiengesellschaft Thin film magnet head for vertical magnetization
JPS60133509A (en) * 1983-12-21 1985-07-16 Keiji Suzuki Vertical magnetic head
JPH053644B2 (en) * 1983-12-21 1993-01-18 Mitsubishi Electric Corp

Similar Documents

Publication Publication Date Title
JPH0291806A (en) Vertically magnetized thin-film head
JPH028365B2 (en)
JPS5958609A (en) Reading-writing head used for vertical recording medium
US4868698A (en) Magnetic head
US5729413A (en) Two-gap magnetic read/write head
JPS58218021A (en) Vertical magnetic head
JP2619017B2 (en) Composite magnetic head
JPH0229904A (en) Perpendicular magnetic recording head
JPS6362804B2 (en)
JP2563253B2 (en) Magnetic head
JPS5996517A (en) Magnetic recording and reproducing method
JP2555031B2 (en) Magnetic head
JPS6236708A (en) Magnetic head
JPS6398815A (en) Thin film head for perpendicular magnetic recording
JP2553494B2 (en) Magnetic head
JPS6015806A (en) Magnetic head and its production
JPS59140617A (en) Head for vertical magnetization recording and reproducing
JPS6059516A (en) Composite head for vertical magnetic recording and reproducing
JPH069081B2 (en) Magnetic recording / reproducing system
JPH0766496B2 (en) Combined type magnetic head
JPS61117714A (en) Thin film magnetic head
JPS60202514A (en) Vertical magnetic recording head
JPH02105309A (en) Thin film magnetic head
JPS59203211A (en) Unipolar magnetic head for vertical recording
JPH0660320A (en) Magnetic head