JPH02105309A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPH02105309A
JPH02105309A JP25772688A JP25772688A JPH02105309A JP H02105309 A JPH02105309 A JP H02105309A JP 25772688 A JP25772688 A JP 25772688A JP 25772688 A JP25772688 A JP 25772688A JP H02105309 A JPH02105309 A JP H02105309A
Authority
JP
Japan
Prior art keywords
magnetic
film
gap
leading edge
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25772688A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25772688A priority Critical patent/JPH02105309A/en
Publication of JPH02105309A publication Critical patent/JPH02105309A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/245Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features comprising means for controlling the reluctance of the magnetic circuit in a head with single gap, for co-operation with one track
    • G11B5/2452Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features comprising means for controlling the reluctance of the magnetic circuit in a head with single gap, for co-operation with one track where the dimensions of the effective gap are controlled
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/21Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features the pole pieces being of ferrous sheet metal or other magnetic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To record the short wavelength with high density by using a laminated matter of a metallic magnetic film of high magnetic permeability and an insulated film to form the greater part of a magnetic core and preparing a metallic magnetic film having saturated magnetic flux density lower than the magnetic core at the leading edge of a gap. CONSTITUTION:A laminated magnetic matter 1 of high permeability is used to form the greater part of a magnetic core. At the same time, a magnetic film 2 having the low saturated magnetic flux density is formed at the leading edge part of a gap 5. A thin film magnetic head of such a constitution has its magnetic core which is chiefly made of a laminated matter 4 containing a metallic magnetic film 1 having the high permeability and an insulated film 3. As a result, the high core efficiency is secured over a wide range of several tens of MHz. Furthermore a wide, intensive and deep magnetic field having the effectively large gap length is generated at the leading edge side of the gap 5 with saturation in a recording state owing to the film 2 prepared at the leading edge side of the gap 5. Then the leading edge side is not saturated either in a reproducing state owing to the low magnetic flux density flowing to the head. Thus the function of a narrow gap is secured and the highly effective reproduction is attained even with the short bit length.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はディジタルVTRや大容量FDDなとの高密
度、高周波数記録に用いられる薄膜磁気ヘッドに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic head used for high density, high frequency recording in digital VTRs and large capacity FDDs.

[従来の技術] 近年、高密度で広帯域記録用ヘッドとしてC0Zr−N
bなとのアモルファスやセンダストなどの合金磁性材の
高い飽和磁束密度を利用し、その欠点である渦電流損対
策として合金磁性材の膜とSiO□なとの絶縁体の膜と
を交互に積層し、これを非磁性基板で挟持した構造(薄
膜磁気ヘッド)が提案されている。例えば文献[電子通
信学会研究会報告MR86−28〜31 N986)J
で提案されているヘッドを第8図に示す。図において(
4)は合金磁性膜と絶縁体膜との積層体、(10)は巻
線窓、(5)は動作ギャップ、(22)は低融点ガラス
、(23)は結晶化ガラス層、(24)は非磁性基板で
ある。
[Prior art] In recent years, C0Zr-N has been used as a high-density, wide-band recording head.
Utilizing the high saturation magnetic flux density of alloy magnetic materials such as amorphous and sendust, we alternately stack films of alloy magnetic material and insulator films such as SiO□ to counteract the eddy current loss that is their drawback. However, a structure (thin film magnetic head) in which this is sandwiched between nonmagnetic substrates has been proposed. For example, the literature [IEICE Study Group Report MR86-28~31 N986) J
Figure 8 shows the head proposed in . In the figure (
4) is a laminate of an alloy magnetic film and an insulating film, (10) is a winding window, (5) is an operating gap, (22) is a low melting point glass, (23) is a crystallized glass layer, (24) is a non-magnetic substrate.

上記のように構成された薄膜磁気ヘッドは、積層体(4
)の積層厚がトラック幅となるため、トラック幅の制御
が容易で、しかもフェライトヘッドやMIGヘッドのよ
うに機械加工を用いてトラック幅を規制するわけではな
いので10μm以下の極めてトラック幅の狭いものでも
容易に形成できる。また、膜の成膜方向がトラック幅方
向にほぼ一致するため、使用する金属磁性膜の最適膜厚
で絶縁層と交互に何層か積層することができるので、渦
電流が十分押えられた広帯域用のヘッドとして使用でき
る。さらに、磁路を形成する磁性体がコア全体にわたっ
てトラック幅の膜厚しかないので、コイル巻数当りのへ
ラドインダクタンスはコア全体がほぼ磁性体であるフェ
ライトヘッドやMIGヘッドに比べかなり小さくなり、
電磁変換特性上かなり有利である。
The thin-film magnetic head configured as described above has a multilayer structure (4
) is the track width, so it is easy to control the track width, and unlike ferrite heads and MIG heads, the track width is not controlled by machining, so the track width is extremely narrow, less than 10 μm. It can be easily formed. In addition, since the direction of film formation almost coincides with the track width direction, several layers can be stacked alternately with insulating layers at the optimum film thickness for the metal magnetic film used, so eddy currents can be sufficiently suppressed over a wide band. It can be used as a head for. Furthermore, since the magnetic material that forms the magnetic path is only as thick as the track width over the entire core, the herad inductance per number of coil turns is considerably smaller than in ferrite heads and MIG heads, where the entire core is almost entirely magnetic.
This is quite advantageous in terms of electromagnetic conversion characteristics.

〔発明が解決しようとする課題] このように薄膜磁気ヘッドは高周波数、広帯域ヘッドと
して優れた特性を有するが、用いる金属磁性膜は再生効
率の面からCo −Zr −Nbなどのアモルファス、
センダスト、パーマロイ等の合金磁性体で、何れにして
も高透磁率材でなければならなず、飽和磁束密度は70
00〜10000Gaussぐらいである。このため、
最短ビット長が0.3μm以下となると、再生時のギャ
ップ長は空隙損失とのかね合いて0.2μm以下となり
、高記録密度用媒体であるメタルテープなどに記録する
場合、記録不十分となる。また、このためオーバーライ
ド特性も悪くなる。
[Problems to be Solved by the Invention] As described above, the thin film magnetic head has excellent characteristics as a high frequency and wide band head, but the metal magnetic film used is amorphous such as Co-Zr-Nb, etc. from the viewpoint of reproduction efficiency.
Alloy magnetic materials such as sendust and permalloy must be made of high magnetic permeability material, with a saturation magnetic flux density of 70
It is about 00 to 10,000 Gauss. For this reason,
If the shortest bit length is 0.3 μm or less, the gap length during playback will be 0.2 μm or less due to gap loss, and recording will be insufficient when recording on metal tape, which is a medium for high recording density. . Moreover, the override characteristics are also deteriorated for this reason.

この発明は上記のような問題点を解消するためになされ
たもので、高周波数、広帯域でかつ最短ビット長が0.
3μm以下の超高密度記録が可能な磁気ヘッドを得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and has a high frequency, a wide band, and a minimum bit length of 0.
The object is to obtain a magnetic head capable of ultra-high density recording of 3 μm or less.

〔課題を解決するための手段] この発明に係る薄膜磁気ヘッドは、磁気コアの大部分を
高透磁率の積層磁性体で構成し、しかもギャップのリー
ディングエツジ部に低飽和磁束密度を有する磁性膜を配
したものである。
[Means for Solving the Problems] A thin-film magnetic head according to the present invention has a magnetic core mostly composed of a laminated magnetic material with high magnetic permeability, and a magnetic film having a low saturation magnetic flux density at the leading edge of the gap. It is arranged.

〔作用〕[Effect]

この発明における薄膜磁気ヘッドは、磁気コアの大部分
を高透磁率を有する金属磁性膜と絶縁膜との積層体で構
成しているので、数十MHzの広帯域で高いコア効率を
確保できる。また、ギャップのリーディングエツジ側に
低飽和磁束密度を有する磁性膜を配するため、記録時は
、リーディングエツジ側が飽和して実効的にギャップ長
が広がり強く深い磁界が発生でき、再生時はヘッドに流
入する磁束密度が小さいため、リーディングエツジ側も
飽和せず狭ギャップとして動作し短ビット長でも効率よ
く再生できる。
In the thin film magnetic head according to the present invention, most of the magnetic core is composed of a laminate of a metal magnetic film having high magnetic permeability and an insulating film, so that high core efficiency can be ensured over a wide band of several tens of MHz. In addition, since a magnetic film with low saturation magnetic flux density is placed on the leading edge side of the gap, during recording, the leading edge side saturates, effectively widening the gap length, and generating a strong and deep magnetic field. Since the inflowing magnetic flux density is small, the leading edge side is not saturated and operates as a narrow gap, allowing efficient reproduction even with short bit lengths.

〔実施例1 以下この発明の一実施例を図について説明する。第1図
は一実施例である磁気ヘッドの斜視図であり、第2図は
その摺動面の拡大図である。第1図および第2図におい
て、(1)はセンダストやCo系アモルファスなどの高
透磁率金属磁性膜、(2)はガーネットやフェライトな
どの低飽和磁束密度磁性膜、(3)は絶縁体、(4)は
高透磁率金属磁性膜(1)と絶縁膜(3)との積層体、
(5)はギャップ、(10)は巻線窓、(12)は溶着
ガラスである。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a magnetic head according to an embodiment, and FIG. 2 is an enlarged view of its sliding surface. In Figures 1 and 2, (1) is a high permeability metal magnetic film such as sendust or Co-based amorphous, (2) is a low saturation magnetic flux density magnetic film such as garnet or ferrite, (3) is an insulator, (4) is a laminate of a high permeability metal magnetic film (1) and an insulating film (3);
(5) is a gap, (10) is a wire-wound window, and (12) is a welded glass.

製造方法としては、第3図に示す如〈従来の薄膜磁気ヘ
ッドと同様積層ブロック(13)を形成し、そのギャッ
プ面に対応する面に第4図に示す如く低飽和磁束密度磁
性膜(2)を製膜し、その後狭トラツク溝(11)加工
を行い、巻線溝(図示省略)加工後、ギャップ面にギャ
ップ材を施し、ブロックを突合せ、モールドし切断して
ヘッドチップを得る。ただし、低飽和磁束密度磁性膜(
2)はリーディングエツジ側に形成される。
As for the manufacturing method, as shown in FIG. 3, a laminated block (13) is formed as in the conventional thin film magnetic head, and a low saturation magnetic flux density magnetic film (2) is formed on the surface corresponding to the gap surface as shown in FIG. ) is formed into a film, then a narrow track groove (11) is formed, a winding groove (not shown) is formed, a gap material is applied to the gap surface, the blocks are butted, molded and cut to obtain a head chip. However, low saturation magnetic flux density magnetic film (
2) is formed on the leading edge side.

次に動作について説明する。再生の場合、記録波長とヘ
ッドのギャップ長とが同程度であると再生出力に対し次
のギヤツブ損失項が支配的な要因となる。
Next, the operation will be explained. In the case of reproduction, if the recording wavelength and head gap length are approximately the same, the following gear loss term becomes a dominant factor in the reproduction output.

プ損失項 (「磁気記録」松本光功著、p 118 (7,49)
式このため、ギャップ長は波長の%以下、ビット長の%
以下であることが必要である。例えば、最短ビット長0
.3μmとするとギャップ長は0.2μm以下となる。
loss term (“Magnetic Recording” by Mitsukoshi Matsumoto, p 118 (7, 49)
Formula Therefore, the gap length is less than or equal to % of the wavelength, % of the bit length
It is necessary that the following is true. For example, the shortest bit length is 0
.. If it is 3 μm, the gap length will be 0.2 μm or less.

次に記録の場合、磁性コアが線形に動作する間は、記録
電流とヘッド磁界は比例するが、ある程度記録電流を大
きくしていくと、磁束の集中するギャップ近傍より磁気
飽和が起り、磁界分布が広がってくる。この様子を第5
図に磁束の流れとして示す(松本光功著「磁気記録」p
33による)。但し第5図(a)が飽和前、第5図(b
)が飽和後である。なお、この第5図はギャップ(5)
を拡大してその対称的な半分を示し、y軸はギャップ(
5)の中央を摺動面に対して垂直に通り、点Oはy軸と
摺動面との交点である。
Next, in the case of recording, while the magnetic core operates linearly, the recording current and head magnetic field are proportional to each other, but as the recording current increases to a certain extent, magnetic saturation occurs near the gap where the magnetic flux concentrates, and the magnetic field distribution is spreading. This situation can be seen in the fifth
The figure shows the flow of magnetic flux (Magnetic Recording by Mitsukoshi Matsumoto, p.
33). However, Fig. 5(a) is before saturation, Fig. 5(b)
) after saturation. In addition, this figure 5 shows the gap (5)
is enlarged to show its symmetrical half, and the y-axis is the gap (
5) perpendicularly to the sliding surface, and point O is the intersection of the y-axis and the sliding surface.

この磁界分布の広がり(第5図(b))が媒体流出端(
以下トレイリングエツジ)で起ると記録減磁として悪影
響を及ぼす。本発明によると、リーディングエツジに低
飽和磁束密度の磁性材を配しているため、飽和がリーデ
ィングエツジ側で先に起り実効的に広いギャップ長で強
い磁界を発生させることができ、また、トレイリングエ
ツジ側は飽和が起きにくいため記録減磁が少ない。この
ためギャップ長が0.2μm以下でも記録に必要な十分
の磁界を発生することができ自己録再が可能である。
The spread of this magnetic field distribution (Figure 5(b)) is the media outlet end (
If this occurs at the trailing edge (hereinafter referred to as trailing edge), it will have an adverse effect as recording demagnetization. According to the present invention, since a magnetic material with a low saturation magnetic flux density is arranged at the leading edge, saturation occurs first on the leading edge side and a strong magnetic field can be generated with an effectively wide gap length. Since saturation is less likely to occur on the ring edge side, there is less recording demagnetization. Therefore, even if the gap length is 0.2 μm or less, a sufficient magnetic field necessary for recording can be generated, and self-recording and reproducing is possible.

また、再生出力は磁性コアの透磁率に大きく依存するが
、本発明の場合、金属磁性膜と絶縁膜との積層体を用い
るため渦電流損が十分に押えられ、数十MHzの高い周
波数でも高い透磁率が確保されるため、高周波特性に優
れたヘッドが得られるなお上記実施例では、磁性コアが
金属磁性膜と絶縁膜の積層体で構成されていたが、トラ
ック幅が数μmの場合、金属磁性膜単層でも渦電流損は
あまり大きくないのでこの場合は単層でもよい。
In addition, the reproduction output largely depends on the magnetic permeability of the magnetic core, but in the case of the present invention, eddy current loss is sufficiently suppressed because a laminate of a metal magnetic film and an insulating film is used, and even at high frequencies of several tens of MHz, Since high magnetic permeability is ensured, a head with excellent high-frequency characteristics can be obtained.In the above embodiment, the magnetic core was composed of a laminate of a metal magnetic film and an insulating film, but when the track width is several μm, In this case, a single layer may be used since the eddy current loss is not so large even with a single layer of metal magnetic film.

また上記実施例では、トレイリングエツジ側は磁性コア
に何も施していないが、第6図の斜視図あるいは第7図
の摺動面拡大図に示すようにトレイリングエツジ側にF
e−3iなどの高飽和磁束密度の磁性膜(6)を施すと
上記実施例以上の効果を奏する。
Further, in the above embodiment, nothing is applied to the magnetic core on the trailing edge side, but as shown in the perspective view of FIG. 6 or the enlarged view of the sliding surface in FIG.
If a magnetic film (6) having a high saturation magnetic flux density such as e-3i is applied, an effect greater than that of the above embodiment can be obtained.

また上記実施例では、積層体を非磁性基板で挟持してい
るが、これを抵抗率の高いMn−Znフェライトなどの
磁性体基板で挟持してもよい。
Further, in the above embodiment, the laminate is sandwiched between non-magnetic substrates, but it may be sandwiched between magnetic substrates such as Mn--Zn ferrite having high resistivity.

[発明の効果] 以上のようにこの発明によれば、磁気コアの大部分を高
透磁率の金属磁性膜と絶縁膜の積層体で構成し、ギャッ
プのリーディングエツジ側にそれよりも低い飽和磁束密
度を有する金属磁性膜を配しているので、数十MHzの
広帯域でしかも従来困難であった最短記録波長が0.6
μm以下、最短ビット長が0.3μm以下の高密度記録
が十分に高い効率で行える効果がある。
[Effects of the Invention] As described above, according to the present invention, most of the magnetic core is composed of a laminate of a metal magnetic film with high magnetic permeability and an insulating film, and a lower saturation magnetic flux is provided on the leading edge side of the gap. Because it uses a metal magnetic film with a high density, it can achieve a wide band of several tens of MHz and the shortest recording wavelength is 0.6, which was previously difficult.
There is an effect that high-density recording with a shortest bit length of 0.3 μm or less can be performed with sufficiently high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による薄膜磁気ヘッドの斜
視図、第2図は第1図の薄膜磁気ヘッドの摺動面の拡大
図、第3図および第4図は第1図に示す薄膜磁気ヘッド
の製造方法の概略を示す工程図、第5図は磁束の飽和前
および後の状態の磁束の分布図、第6図は他の実施例に
よる薄膜磁気ヘッドの斜視図、第7図は第6図の薄膜磁
気ヘッドの摺動面の拡大図、第8図は従来の薄膜磁気ヘ
ッドの斜視図である。 図において(1)は高透磁率の金属磁性膜、(2)は低
飽和磁束密度の磁性膜、(3)は絶縁膜(4)は(1)
と(3)を交互に積んだ積層体(5)は動作ギャップ、
(6)は高飽和磁束密度の磁性膜、(10)は巻線窓、
(11)は狭トラツク溝、(12)は溶着ガラス、(2
2)は低融点ガラス、(23)は結晶化ガラス、(24
)は非磁性基板である。 なお、図中、同一符号は同一、または相当部分を示す。 代理人 弁理士  大  岩  増  雄第 図 4:本気 屑 体 第 図 第 図 第 図
1 is a perspective view of a thin film magnetic head according to an embodiment of the present invention, FIG. 2 is an enlarged view of the sliding surface of the thin film magnetic head of FIG. 1, and FIGS. 3 and 4 are shown in FIG. 1. FIG. 5 is a diagram showing the distribution of magnetic flux before and after saturation of the magnetic flux; FIG. 6 is a perspective view of a thin-film magnetic head according to another embodiment; FIG. 6 is an enlarged view of the sliding surface of the thin film magnetic head shown in FIG. 6, and FIG. 8 is a perspective view of the conventional thin film magnetic head. In the figure, (1) is a metal magnetic film with high magnetic permeability, (2) is a magnetic film with low saturation magnetic flux density, (3) is an insulating film, and (4) is (1).
The laminated body (5) in which (3) and (3) are stacked alternately has an operating gap,
(6) is a magnetic film with high saturation magnetic flux density, (10) is a wire-wound window,
(11) is a narrow track groove, (12) is a welded glass, (2)
2) is low melting point glass, (23) is crystallized glass, (24
) is a non-magnetic substrate. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa Diagram 4: Serious Waste Diagram Diagram Diagram Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)高透磁率の金属磁性体からなる薄膜と絶縁体より
なる薄膜とを交互に順次積層することにより形成したト
ラック幅相当あるいはそれ以上の幅の積層磁性体あるい
は単層磁性体を非磁性基板あるいは酸化物磁性基板によ
り挟着した磁気コア半体の一対はそのうちの媒体流入側
(以下リーディングエッジ)のギャップ形成面上に低飽
和磁束密度を有する磁性膜を形成した後ギャップ材を介
して接合されていることを特徴とする薄膜磁気ヘッド。
(1) Non-magnetic layered magnetic material or single-layer magnetic material with a width equivalent to or larger than the track width formed by alternately laminating thin films made of a metal magnetic material with high magnetic permeability and thin films made of an insulating material. A pair of magnetic core halves sandwiched between substrates or oxide magnetic substrates is formed with a magnetic film having a low saturation magnetic flux density on the gap forming surface on the medium inflow side (hereinafter referred to as the leading edge), and then the magnetic core halves are sandwiched between substrates or oxide magnetic substrates. A thin film magnetic head characterized by being bonded.
JP25772688A 1988-10-13 1988-10-13 Thin film magnetic head Pending JPH02105309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25772688A JPH02105309A (en) 1988-10-13 1988-10-13 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25772688A JPH02105309A (en) 1988-10-13 1988-10-13 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH02105309A true JPH02105309A (en) 1990-04-17

Family

ID=17310244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25772688A Pending JPH02105309A (en) 1988-10-13 1988-10-13 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH02105309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578234A2 (en) * 1992-07-08 1994-01-12 Sharp Kabushiki Kaisha Magnetic head and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087411A (en) * 1983-10-20 1985-05-17 Yaskawa Electric Mfg Co Ltd Magnetic head
JPS62177714A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Magnetic head
JPS63300417A (en) * 1987-05-29 1988-12-07 Matsushita Electric Ind Co Ltd Magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087411A (en) * 1983-10-20 1985-05-17 Yaskawa Electric Mfg Co Ltd Magnetic head
JPS62177714A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Magnetic head
JPS63300417A (en) * 1987-05-29 1988-12-07 Matsushita Electric Ind Co Ltd Magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578234A2 (en) * 1992-07-08 1994-01-12 Sharp Kabushiki Kaisha Magnetic head and method of manufacturing the same
EP0578234A3 (en) * 1992-07-08 1994-02-16 Sharp Kk
US5691866A (en) * 1992-07-08 1997-11-25 Sharp Kabushiki Kaisha Magnetic head and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0291806A (en) Vertically magnetized thin-film head
US4868698A (en) Magnetic head
JP2565187B2 (en) Thin film magnetic head
JPH02105309A (en) Thin film magnetic head
US4731299A (en) Composite magnetic material
JP2933638B2 (en) Manufacturing method of magnetic head
KR0152601B1 (en) Core of composite magnetic head and the manufacturing method
JP2591109B2 (en) Magnetic head
JPH03225610A (en) Thin-film magnetic head
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
KR100232141B1 (en) Manufacturing method of magnetic head
JPH0278007A (en) Thin film magnetic head and production thereof
JPS6356805A (en) Magnetic head
JPH01133211A (en) Thin film magnetic head and its production
JPH06203320A (en) Erasing head
JPH02216604A (en) Magnetic head and its production
JPS6174109A (en) Magnetic head
JPH07192215A (en) Bulk type magnetic head
JPH01119911A (en) Thin film magnetic head
JPH08273113A (en) Magnetic head and manufacture of the same
JPH05347009A (en) Magnetic head
JP2000011314A (en) Magnetic head and its production
JPH0765316A (en) Magnetic head
JPH04271003A (en) Magnetic head
JPH0660315A (en) Production of magnetic head