JPS58216491A - Composite photoelement - Google Patents

Composite photoelement

Info

Publication number
JPS58216491A
JPS58216491A JP57099701A JP9970182A JPS58216491A JP S58216491 A JPS58216491 A JP S58216491A JP 57099701 A JP57099701 A JP 57099701A JP 9970182 A JP9970182 A JP 9970182A JP S58216491 A JPS58216491 A JP S58216491A
Authority
JP
Japan
Prior art keywords
etching
insulating
substrate
inp
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57099701A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57099701A priority Critical patent/JPS58216491A/en
Publication of JPS58216491A publication Critical patent/JPS58216491A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the reproducibility and yield of manufacturing a composite photoelement by improving the electric insulation between elements using a semi-insulating semiconductor substrate for a substrate and employing as a light source a high performance BH-LD, thereby readily forming a laser resonator surface. CONSTITUTION:In1-xGaxAsyP1-y-InPBH-LD 101 and PD 102 which are formed on an Fe-doped semi-insulating InP substrate, are opposed through an etching groove 105. One resonator surface of the BH-LD 101 is formed by an etching method. The laser output light 109 from the etching resonator surface 103 can be monitored by the photoreceiving surface 104 which is formed similarly by an etching method. In order to flow a current through the BH-LD 101, positive bias voltage is applied to the BH-LD 101 to the BH-LD electrode and the ohmic N type common electrode 108 of N type InP electrically insulated by an SiO2 insulating film 106.

Description

【発明の詳細な説明】 本発明は埋め込みへテロ構造半導体レーザと7オトデイ
テクタとが同一基板上に集積化された複合化光素子、特
に個々の光素子間の電気的な絶縁性が改善された半導体
レーザ・フォトディテクタ複合化光素子に関する。
[Detailed Description of the Invention] The present invention provides a composite optical device in which a buried heterostructure semiconductor laser and a seven-dimensional detector are integrated on the same substrate, and in particular, the electrical insulation between the individual optical devices is improved. This invention relates to a semiconductor laser/photodetector composite optical device.

近年光半導体素子や光ファイバの高品質化が進み、光フ
アイバ通信の実用化が進められている。
In recent years, the quality of optical semiconductor devices and optical fibers has improved, and optical fiber communications are being put into practical use.

それにつれて、各種光半導体素子を一体化してシステム
の安定化をはかろうという気運が高まってきている。中
でも半導体レーザと受光素子との集積化は光源の光出力
をモニタする必要性からシステム構成上重要である。性
能のよい埋め込みへテロ構造半導体レーザ(BH−LD
)とフォトダイオード(PD)とを同一半導体基板上に
集積化したものとして本願の発明者らは特願昭56−1
29057に示した様なエツチング法を用いたBH−L
D−PD複合化光素子を発明した。、これViBH−L
Dの一方の共振器面をエツチング法によって形成し、そ
れに相対する面をPDの受光面としたものである。この
複合化光素子においてはPDのキャリア発生領域のスト
ライプ幅がBH−LDの活性層の幅よりも大きいため、
受光効率がよい。またBH−LDの特性が共振器面形成
のためのエツチングにあまシ強く左右されず、したがっ
て特性の再現性、製造の歩留りが比較的良いという特徴
を有している。
Along with this, there is a growing trend to integrate various optical semiconductor elements in order to stabilize the system. Among these, integration of a semiconductor laser and a light-receiving element is important in terms of system configuration because of the need to monitor the optical output of a light source. High-performance buried heterostructure semiconductor laser (BH-LD)
) and a photodiode (PD) are integrated on the same semiconductor substrate, the inventors of the present application have filed a patent application filed in 1986-1.
BH-L using the etching method as shown in 29057
Invented a D-PD composite optical device. , this is ViBH-L
One resonator surface of D is formed by an etching method, and the surface opposite to it is used as the light receiving surface of PD. In this composite optical device, since the stripe width of the carrier generation region of the PD is larger than the width of the active layer of the BH-LD,
Good light receiving efficiency. In addition, the characteristics of the BH-LD are not strongly affected by etching for forming the resonator surface, and therefore the reproducibility of characteristics and manufacturing yield are relatively high.

ところで上述の複合化光素子においては、半導体基板上
に形成されたBH−LDとPDとの電気的な絶縁をとる
ために、前述の半導体基板、あるいはそれと同じ導電型
の半導体層までエツチングを行なっている。そうするこ
とにより、半導体基板に対し、 BH−Ll)に正のバ
イアスを印加して電流を流し、PDに負のバイアス電圧
を印加して、BH−LDからのレーザ出力光をPI)で
モニタすることが可能となっている。しかしながら、こ
のときに、BH−LDK流れる電流は必ずしも全て基板
側電極に到達せず、その一部がPD側に流れこんでしま
い、実際のレーザ出力光よりもモニタ出力が大きく観測
されたジするという問題が生じた。すなわち、上述の複
合化光素子においてはBH−LI)とPD”との電気的
な絶縁に問題があり、再現性、製造歩留りが必ずしも十
分でないという欠点があった。この電気的絶縁性を改善
した複合化光素子として、フォトダイオードと半導体レ
ーザとを半絶縁性の半導体基板上に集積化し、半導体レ
ーザの光出力をモニタする複合化光素子が実願昭52−
23614において、半導体装置として湯浅氏により出
願されている。この発明においては半絶縁性半導体基板
を用いることにより確かに半導体レーザとフォトダイオ
ードとの電気的な絶縁は良好にとれている。しかしなが
らここでは半導体レーザとして通常の電極ストライプ型
の半導体レーザを用いているために製作がきわめて困難
であるという欠点が認められる。通常の電極ストライブ
型LDやBH構造以外の横モード安定化LDにおい2ン
ぐ。
By the way, in the above-mentioned composite optical device, in order to electrically insulate the BH-LD and PD formed on the semiconductor substrate, etching is performed to the semiconductor substrate or a semiconductor layer of the same conductivity type. ing. By doing so, a positive bias is applied to the semiconductor substrate (BH-Ll) to flow a current, a negative bias voltage is applied to the PD, and the laser output light from the BH-LD is monitored by the PI). It is now possible to do so. However, at this time, all of the current flowing through the BH-LDK does not necessarily reach the substrate side electrode, and a portion of it flows into the PD side, resulting in the observed monitor output being larger than the actual laser output light. A problem arose. That is, in the above-mentioned composite optical device, there was a problem in the electrical insulation between the BH-LI) and the PD, and the reproducibility and manufacturing yield were not necessarily sufficient.This electrical insulation was improved. As a composite optical element, a composite optical element that integrates a photodiode and a semiconductor laser on a semi-insulating semiconductor substrate and monitors the optical output of the semiconductor laser was proposed in 1972.
No. 23614, filed by Mr. Yuasa as a semiconductor device. In this invention, by using a semi-insulating semiconductor substrate, the semiconductor laser and the photodiode are certainly electrically insulated well. However, since a normal electrode stripe type semiconductor laser is used as the semiconductor laser, manufacturing is extremely difficult. There are two types of transverse mode stabilized LDs other than normal electrode striped LDs and BH structures.

てパ活性層は厚さパ0.1〜0.2μm程度と十分薄い
ものの、ペテロ接合に平行方向に大きく拡がって形成さ
れているためにレーザのミラー面形成のためのエツチン
グ技術がきわめて難かしく、それによる特性の劣化、歩
留りの低下をまねいていた。
Although the active layer is sufficiently thin with a thickness of about 0.1 to 0.2 μm, it is formed to extend widely in the direction parallel to the Peter junction, making the etching technique for forming the mirror surface of the laser extremely difficult. , resulting in deterioration of characteristics and reduction in yield.

本発明の目的は前述の従来例における欠点を除ζ 去すべく、半導体レーザとフォトディテクタとの電気的
絶縁が良好にとれ、紫芋製造の再現性、歩留りが向上し
た複合化光素子を提供することにある。
An object of the present invention is to provide a composite optical device that can provide good electrical insulation between a semiconductor laser and a photodetector, and that improves the reproducibility and yield of purple sweet potato production, in order to eliminate the drawbacks of the conventional example described above. There is a particular thing.

本発明の複合化光素子は% 1つの絶縁性基板または半
絶縁性基板上に、同じ多層構造を有する半導体レーザと
7オトデイテクタとを備え、当該半導体レーザは活性層
の周囲に当該活性層よりも工導体レーザとフn)ディテ
クタが互いに相対する共振器面及び受光面はエツチング
法によって形成されている構成と々っている。    
′本発明の構成によればごく小さな活性層が周囲のクラ
ッド層半導体材料によって完全にと9かこまれているた
めに、クラッド層の半導体材料に対するエツチング法さ
えおさえておけば、ミラー面形成のためのエツチングは
きわめて容易である。
The composite optical device of the present invention includes a semiconductor laser and a detector having the same multilayer structure on one insulating or semi-insulating substrate, and the semiconductor laser is arranged around an active layer more than the active layer. The resonator surface and the light-receiving surface of the conductor laser and the Fn) detector that face each other are formed by an etching method.
'According to the structure of the present invention, the extremely small active layer is completely surrounded by the surrounding semiconductor material of the cladding layer, so as long as the etching method for the semiconductor material of the cladding layer is mastered, it is possible to form a mirror surface. Etching is extremely easy.

したがってBH−LDを採用することにより、素子作製
の再現性、歩留りは従来例と比べて大きく向上する。
Therefore, by employing BH-LD, the reproducibility and yield of device fabrication are greatly improved compared to the conventional example.

本発明の大きなポイントは半導体レーザとその光出力を
モニタするためのフォトディテクタとを集積化した半導
体発光素子におIハて、基板に半絶縁性半導体基板を用
いて素子間の電気的絶縁を良好にしたこと、および光源
として高性能なりH−LDを用いることにより、レーザ
共振器面の形成を容易にしたことである。
The main point of the present invention is that it is a semiconductor light emitting device that integrates a semiconductor laser and a photodetector for monitoring its optical output, and a semi-insulating semiconductor substrate is used as the substrate to provide good electrical insulation between the devices. In addition, by using a high-performance H-LD as a light source, it is possible to easily form a laser resonator surface.

以下、実施例を示す図面を参照して、本発明を説明する
Hereinafter, the present invention will be described with reference to drawings showing examples.

第1図には本発明の一実施例の平面図を示す。FIG. 1 shows a plan view of an embodiment of the present invention.

Feドープの半絶縁性InP基板上に形成されたIn1
−xGaxAs、PH−y−InP BH−LD 10
1とPD102 とがエツチング溝105を介して、相
対して配置されている。BH−LD 101の一方の共
振器面はエツチング法によって形成されている。このエ
ツチング共振器面103からのレーザ出力光109を同
様にエツチング法によって形成された受光面104でモ
ニタすることができる。BH−LDIOIに電流を流す
には、BH−LDの電極と、8 io、絶縁膜106に
よって電気的に絶縁されたn−InPのオーミック性n
形共通電極108に対して、BH−LD  101に正
のバイアス電圧をかければよい。同時にn形共通電極1
08に対して、PD  102に負のバイアス電圧を印
加することにより、レーザ出力光109を受光面104
で受け、BH−LDの出力光をモニタすることができる
In1 formed on a Fe-doped semi-insulating InP substrate
-xGaxAs, PH-y-InP BH-LD 10
1 and PD 102 are placed opposite to each other with an etching groove 105 in between. One resonator surface of the BH-LD 101 is formed by an etching method. Laser output light 109 from this etched resonator surface 103 can be monitored on a light receiving surface 104 which is also formed by the etching method. In order to flow current through the BH-LDIOI, the ohmic nature of the n-InP electrically insulated by the electrode of the BH-LD, 8 io, and the insulating film 106 is required.
A positive bias voltage may be applied to the BH-LD 101 with respect to the shaped common electrode 108. At the same time, n-type common electrode 1
08, by applying a negative bias voltage to the PD 102, the laser output light 109 is directed to the light receiving surface 104.
It is possible to monitor the output light of the BH-LD.

第1図中へ−N、 B−B’で示した部分の複合化光素
子の断面図を第2図(a)、 (b)にそれぞれ示す。
2(a) and 2(b) show cross-sectional views of the composite optical device at the portions indicated by -N and BB' in FIG. 1, respectively.

このような複合化光素子を得るには、まず(100)F
e ドープ半絶縁性InP基板201上に通常のエピタ
キシャル成長技術によJn−InPバッファ層202、
発層液02.3μmに対応するノンドープIn0.7!
 Gao、、8Aso、、、  pO,3+1活性層2
03.p−InPクラッド層204を順次させる。その
ようにして得た多層膜構造半導体ウェファに通常のフォ
トレジスト技術、および化学エツチング技術を用いて(
011>方向に平行に2本の平行なエツチング溝205
,206を形成する。
To obtain such a composite optical element, first, (100)F
e A Jn-InP buffer layer 202 is formed on a doped semi-insulating InP substrate 201 by a normal epitaxial growth technique.
Non-doped In0.7 corresponding to layer forming liquid 02.3μm!
Gao, , 8Aso, , pO, 3+1 active layer 2
03. The p-InP cladding layer 204 is made sequential. The thus obtained multilayer film structure semiconductor wafer was subjected to ordinary photoresist technology and chemical etching technology (
Two parallel etched grooves 205 parallel to the 011> direction
, 206.

この2本の溝は幅10μm1深さ3μm程度こすればよ
く、このときに発光再結合するino、?2 Gao、
8ASO9Ill PG、80  活性層203を含む
幅2 μmのメサストライプ207をはさんで形成する
。このような1本の幅のせまいメサストライプ207と
、それをはさんで形成されているエツチング溝205゜
206 とを有する半導体ウェファに埋め込み成長を行
ない、p−InP電流電流ブタ22層208−InP電
流電流クロッ2層209いずれもメサストライプの上部
のみを除いて成長させる。さらにp−InP埋め込み層
21 Q、 P −I ng、72 Ga643AS6
.HPo、8@電極層211を全面にわたって積層させ
埋め込み成長を終える。このようにして得たBH−LD
ウェフファn形電極形成のためのエツチング、およびレ
ーザ共振器面形成のためのエツチングを行なう。なお、
第1図中B−B’の断面図を示す第2図(b)に示した
ようにPD 102側にはメサストライプの両側の部分
も受光領域として使えるように、n−InP電流電流ク
ロッ2層209きぬけるようにp形不純物であるZnを
拡散してZn拡散領域215を形成しておくとよい。そ
のようにすると受光面内のキャリア発生領域が実効的に
広い面積:ゝ を有していることになり、受光効率が向上する。
These two grooves only need to be rubbed with a width of 10 μm and a depth of 3 μm, and at this time, the ino and ? 2 Gao,
8ASO9Ill PG, 80 Mesa stripes 207 with a width of 2 μm including the active layer 203 are formed on both sides. A semiconductor wafer having such a narrow mesa stripe 207 and etching grooves 205 and 206 formed between the mesa stripes is buried and grown to form a p-InP current layer 22 layer 208-InP. Both of the current and current cross layer 209 are grown except for the upper part of the mesa stripe. Furthermore, p-InP buried layer 21 Q, P-I ng, 72 Ga643AS6
.. A HPo, 8@electrode layer 211 is laminated over the entire surface to complete the buried growth. BH-LD thus obtained
Etching is performed to form the wafer fan n-type electrode and to form the laser resonator surface. In addition,
As shown in FIG. 2(b), which is a cross-sectional view taken along line B-B' in FIG. It is preferable to form a Zn diffusion region 215 by diffusing Zn, which is a p-type impurity, so as to pass through the layer 209. In this case, the carrier generation region within the light-receiving surface has an effectively wide area, and the light-receiving efficiency is improved.

電極形成、エツチングミラー面の形成のためには、まず
n形電極の形成のために、メサストライプ207と平行
な方向にn−InPバッファ層202まで層液02グす
る。次に電極分離のための8i0.絶縁膜212を形成
し、それによって分離されるようにして、p形オーミッ
ク性電極213、n形オーミック性電極214をそれぞ
れ形成する。次にエツチングミラー面の形成は、第1図
中105で示シタ様なフォトレジストパターンを形成し
、金属電極の除去、StO,絶縁膜の除去を行なった後
、例えばBrメタノール系の工ヴチング液を用いて、半
絶縁性InP基板201に達するまでエツチングを行な
い、エツチングミラー面103.PDの受光面104を
形成すればよい。
In order to form electrodes and etching mirror surfaces, a layer solution is first etched in a direction parallel to the mesa stripe 207 up to the n-InP buffer layer 202 in order to form an n-type electrode. Next, 8i0 for electrode separation. An insulating film 212 is formed, and a p-type ohmic electrode 213 and an n-type ohmic electrode 214 are formed so as to be separated by the insulating film 212. Next, the etching mirror surface is formed by forming a photoresist pattern as shown at 105 in FIG. etching is performed until the semi-insulating InP substrate 201 is reached using the etching mirror surface 103. What is necessary is to form the light receiving surface 104 of the PD.

このようにして得られた複合化光素子のBH−LDIO
IK正のバイアス電圧をかけて電流を流し、レーザ発振
させ、同時にPD102に負のバイアス電圧をかけるこ
とにより、レーザ出力光をモニタすることがで六た。上
述のように半導体基板として半絶縁性基板を用い、それ
に達するようにエツチングミラー面のエツチングを行な
うことにより、BH−Ll)101とPD102  と
の絶縁は良好にとれ、従来例の複合化光素子と比べて、
素子製造の再現性、歩留りが大幅に向上した。
BH-LDIO of the composite optical device thus obtained
By applying a positive IK bias voltage to flow a current to cause laser oscillation, and at the same time applying a negative bias voltage to the PD 102, it was possible to monitor the laser output light. As mentioned above, by using a semi-insulating substrate as the semiconductor substrate and etching the etching mirror surface to reach it, good insulation can be obtained between the BH-Ll) 101 and the PD 102, and the conventional composite optical device Compared to
The reproducibility and yield of device manufacturing have been significantly improved.

なお上述の実施例においては%BH−LD、およびPD
の形状として、2本の平行なエツチング溝と、それらに
よってはさまれたメサストライプとを有するものを用い
て説明を行なったが、本発明はもちろんこれに限るもの
ではない。1本のメサストライプを形成して埋め込み成
長を行なうものや、メサストライプ、あるいは溝部分に
活性層を埋め込む形状のBH−LD等、あらゆる形状の
BH−J、Dでもさしつかえない。エツチングミラー面
の形成の際、半絶縁性半導体基板に達するまでエツチン
グを行なったが、素子間の絶縁が十分にとれればよいの
で、n−InPバッファ層まででとどめておいてもかま
わない。また用いる半導体材料としてu InGaAs
P / InP系を用いて説明したが、もちろんこれに
限るものではない。フォトディテクタとしてもPDを用
いて説明を行なったが、これに限ることなく、アバラン
シェ・フォトダイオード、フォトトランジスタ、フォト
コンダクタ。
In addition, in the above-mentioned examples, %BH-LD and PD
Although the shape has been described using two parallel etched grooves and a mesa stripe sandwiched between them, the present invention is of course not limited to this. Any BH-J or D shape may be used, such as a BH-LD in which a single mesa stripe is formed and buried growth is performed, a mesa stripe, or a BH-LD in which the active layer is buried in a groove portion. When forming the etching mirror surface, etching was performed until it reached the semi-insulating semiconductor substrate, but it is sufficient to ensure sufficient insulation between elements, so etching may be performed up to the n-InP buffer layer. In addition, u InGaAs is used as a semiconductor material.
Although the explanation has been made using the P/InP system, the invention is of course not limited to this. Although the explanation has been given using a PD as a photodetector, the invention is not limited to this, and examples include an avalanche photodiode, a phototransistor, and a photoconductor.

あるいはこれらを組み合わせたもの等、あらゆる種類の
半導体フォトディテクタを含む。
It also includes all kinds of semiconductor photodetectors, such as those that combine these.

本発明の特徴i、+BH−r、1)とレーザ出力モニタ
用のフォトディテクタとを同−半導体重版上に集積化し
た複合化光デバイスに、半絶縁性半導体基板を用いたこ
とである。こi′LKよってBH−LDとフォトディテ
クタとの間の′電気的絶縁が良好になり、したがって従
来例に比べて製造歩留りが大幅に向上した。もちろん半
導体レーザとし千HH−LDを用いたことにより、従来
例の電極ストライブ型LDの場合と比べて素子製作が容
易になった。特にレーザ共振器形成のためのエツチング
が容易となり、素子製作上の再現性・歩留りが大幅に向
上した。
The feature of the present invention is that a semi-insulating semiconductor substrate is used in a composite optical device in which i, +BH-r, 1) and a photodetector for monitoring laser output are integrated on the same semiconductor reprint. This i'LK provides good electrical insulation between the BH-LD and the photodetector, and therefore the manufacturing yield is significantly improved compared to the conventional example. Of course, by using a 1000HH-LD as a semiconductor laser, device fabrication is easier than in the case of the conventional electrode stripe type LD. In particular, etching for forming a laser resonator has become easier, and the reproducibility and yield of device manufacturing have been greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による複合化光素子の平面図、第2図(
al fl第1図中人−A′で示したBH−I、Dの断
面図、第2図(b)は第1図中B−B’で示したPI)
の断面中である。図中101はBi(−、LD、 10
2ViPD、  10:3t−jエツチング共振器面、
 104は受光面、 105はエツチング部分、 10
6は絶縁膜、107はB、H−LJ)ストライブ、 1
08はn形1[,109けレーザ出力光、201は半絶
縁性InP基板、202はn−InPバッファ層、  
20:lj:In6.72 Gao、2. ASo、1
11 Po、1111活性層、204はp−InPクラ
ッド層、205,206はエツチングs、 207はメ
サストライプ、 2081dp−InP@、流ブロック
層、 209はn−InP電流ブロック層% 210は
p−InP埋め込み層、211 fI:i p−Ino
、、t Gao、tsASo、6I Po、39電極層
、 212は絶縁膜、213はp形オーミック電極、 
214はn形オー ミック電極、215ViZn拡散領
域である。 ・て “10計内原 晋り; へ 、+ 1 回 + 2図 (cL) (b)
Figure 1 is a plan view of a composite optical element according to the present invention, and Figure 2 (
al fl A cross-sectional view of BH-I and D indicated by Chunin-A' in Figure 1, and PI indicated by B-B' in Figure 1 (Figure 2 (b))
It is in the cross section. In the figure, 101 is Bi(-, LD, 10
2ViPD, 10:3t-j etched resonator surface,
104 is a light receiving surface, 105 is an etched portion, 10
6 is an insulating film, 107 is a B, H-LJ) stripe, 1
08 is n-type 1[,109 laser output light, 201 is semi-insulating InP substrate, 202 is n-InP buffer layer,
20:lj:In6.72 Gao, 2. ASo, 1
11 Po, 1111 active layer, 204 p-InP cladding layer, 205, 206 etching s, 207 mesa stripe, 2081 dp-InP@, flow blocking layer, 209 n-InP current blocking layer %, 210 p-InP Buried layer, 211 fI:ip-Ino
,,t Gao, tsASo, 6I Po, 39 electrode layers, 212 is an insulating film, 213 is a p-type ohmic electrode,
214 is an n-type ohmic electrode and 215 is a ViZn diffusion region.・Te" 10 total Susumu Uchihara; To, + 1 time + 2 figures (cL) (b)

Claims (1)

【特許請求の範囲】[Claims] 1つの絶縁性基板または半絶縁性基板上に、同じ多層構
造を有する半導体レーザとフォトディテクタ七を備え、
当該半導体レーザは活性層の周囲に当該活性層よりもエ
ネルギーギャップが大きく、夕が互いに相対する共振器
面及び受光面はエツチング法によって形成されているこ
とを特徴とする複合化光素子。
A semiconductor laser and a photodetector seven having the same multilayer structure are provided on one insulating or semi-insulating substrate,
A composite optical device characterized in that the semiconductor laser has a larger energy gap around the active layer than the active layer, and a resonator surface and a light-receiving surface that face each other are formed by an etching method.
JP57099701A 1982-06-10 1982-06-10 Composite photoelement Pending JPS58216491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099701A JPS58216491A (en) 1982-06-10 1982-06-10 Composite photoelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099701A JPS58216491A (en) 1982-06-10 1982-06-10 Composite photoelement

Publications (1)

Publication Number Publication Date
JPS58216491A true JPS58216491A (en) 1983-12-16

Family

ID=14254354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099701A Pending JPS58216491A (en) 1982-06-10 1982-06-10 Composite photoelement

Country Status (1)

Country Link
JP (1) JPS58216491A (en)

Similar Documents

Publication Publication Date Title
US4839900A (en) Buried type semiconductor laser device
JPH05341242A (en) Optical modulating element
US4910744A (en) Buried heterostructure semiconductor laser device
JPS58216491A (en) Composite photoelement
JPS60788A (en) Optical integrated circuit and manufacture thereof
JPS6136987A (en) Distribution feedback type semiconductor laser provided with light detector
JPH04144182A (en) Optical semiconductor device array
JPS5948975A (en) Semiconductor light emitting element
JPS6320398B2 (en)
JPS5875879A (en) Photointegrated element
JPS62291987A (en) Optical integrated device
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPS6342874B2 (en)
JP2001024211A (en) Semiconductor light receiving element
JPS5886788A (en) Semiconductor laser and photodiode photointegrated element
JPS6148277B2 (en)
JPS6358391B2 (en)
JPS61242091A (en) Semiconductor light-emitting element
JP2917787B2 (en) Embedded semiconductor optical waveguide device and method of manufacturing the same
JPS5871677A (en) 2-wavelength buried hetero structure semiconductor laser
JPH03192787A (en) Integrated optical modulator
JPS63311786A (en) Optical integrated element
JPS58196085A (en) Semiconductor laser device
JPS6346790A (en) Buried semiconductor laser and manufacture thereof
JPS5831593A (en) Light integrating element