JPS5821581A - Measurement of electron beam diameter - Google Patents

Measurement of electron beam diameter

Info

Publication number
JPS5821581A
JPS5821581A JP12010781A JP12010781A JPS5821581A JP S5821581 A JPS5821581 A JP S5821581A JP 12010781 A JP12010781 A JP 12010781A JP 12010781 A JP12010781 A JP 12010781A JP S5821581 A JPS5821581 A JP S5821581A
Authority
JP
Japan
Prior art keywords
beam diameter
electron
electron beam
diameter
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12010781A
Other languages
Japanese (ja)
Inventor
Isao Sasaki
勲 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12010781A priority Critical patent/JPS5821581A/en
Publication of JPS5821581A publication Critical patent/JPS5821581A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable a highly accurate measurement of the electron beam diameter by forming a sharp edge of a metal marker in such a manner that the thickness thereof is less than one-tenth as large as the beam diameter to be measured. CONSTITUTION:A sharp edge 1a is scanned with an electron beam Ei and reflected electrons Er thus obtained are detected. Based on the detection signals, the diameter of the electron beam Ei is measured. In this case, said sharp edge 1a is made up of a metal marker 1 in such a manner that the thickness thereof is less than one-tenth of the beam diameter to be measured. This enables the evaluation of the brightness of an electron gun at a high accuracy thereby avoiding uneven exposure, variations and the like in the describing by electron beam.

Description

【発明の詳細な説明】 本発明は、電子C−ムO径をシャープエツジ法によ〕測
定する電子ビーム径測定方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron beam diameter measuring method for measuring the electron beam diameter by the Sharp Edge method.

近時、牛導体りエハやマスク基板等の試料に黴IIA/
譬ターンを形成するものとして電子ビーム描ml装置が
用いられているが、この装置で線描画時間を左右する因
子として電子銃の輝度およびレジスト感度が重要となる
。輝度βは描画面におけるC−ム電流を11% ビーム
直径を−とする゛と次式で示される。
Recently, mold IIA/
An electron beam lithography system is used to form the pattern, and the brightness of the electron gun and resist sensitivity are important factors that affect the line writing time in this system. The brightness β is expressed by the following equation, where the beam current at the drawing surface is 11% and the beam diameter is -.

β@CII/纏    −−(1) この第1式からも判るように1輝度βを正確に評価する
にはビーム径dを正確に測定する必要がある。
β@CII/纏 --(1) As can be seen from the first equation, in order to accurately evaluate 1 luminance β, it is necessary to accurately measure the beam diameter d.

従来、電子ビームの径を測定するには、ワイヤ法やシャ
ープエツジ法等が用いられている。
Conventionally, a wire method, a sharp edge method, etc. have been used to measure the diameter of an electron beam.

これらは電子ビームで細いワイヤ或いはシャープエツジ
を走査し、このとき得られる反射電子信号に基づいてC
−ム径を測定するものでTo)、上記測定を比較的容易
に行うことができる。
These scan a thin wire or sharp edge with an electron beam, and calculate C based on the reflected electron signal obtained at this time.
- It measures the diameter of the lumen (To), and the above measurement can be performed relatively easily.

しかしながら、゛この種の、方法にありてれそれぞれ次
Oような問題があった。すなわち、前記ワイヤ法では得
られるワイヤの細さおよび1嵌面平滑さに限界があるた
め、V−^IIが10(7111k)以下、特に1〔雄
〕以下の場合には測定精度の着しい低下を招いえ。また
、前記シャープエツジ法で紘主にシリコン単結晶の臂開
を利用してシャープエツジを形成している。これは、シ
リコン単結晶の骨開面が(1113面であることを利用
している0例えtf%(100)面のシリコン単結晶を
伸開すれば、アンダーカットの状態で(111)面が現
われるので、切〕口つまり (1001mト(1111
mトclt角#64度とシャープと1k)、所鯖シャー
プエySpが形成されることになる。しかし、上記伸開
によるシャー/エツジ形成は容易とは言い難く、必ずし
%1回OgI開できれいにシャープエツジが得られると
は隈らなかりた。tた、伸開によ多形成されたシャープ
エv ya 、使用しているうちに劣化しそのエツジが
丸くな〕、これKよ如前記V−ム欄定精度の低下を招く
等の問題があった。
However, each of these types of methods has the following problems. In other words, since there are limits to the thinness of the wire that can be obtained and the smoothness of one mating surface in the wire method, when V-^II is less than 10 (7111k), especially less than 1 [male], the measurement accuracy is at a disadvantage. Invite a decline. Further, in the sharp edge method, a sharp edge is formed mainly by utilizing the opening of a silicon single crystal. This takes advantage of the fact that the bone opening plane of a silicon single crystal is the (1113 plane).For example, if a silicon single crystal with a (100) plane is expanded, the (111) plane will be in an undercut state. Because it appears, the cut is clogged (1001mt(1111m)
m to clt angle #64 degrees and sharp and 1k), the mackerel sharp A ySp will be formed. However, it is difficult to say that forming shears/edges by the above-mentioned expansion and opening is easy, and it is not always possible to obtain a sharp edge with just one OgI opening. In addition, there are problems such as the sharp edges formed due to expansion deteriorate during use and the edges become rounded, resulting in a decrease in the accuracy of the V-me field determination described above. Ta.

そζで蛾近、シャープエツジ法の改嵐としてシャーlエ
ツジを金マーカで形成し丸ものが考えられている。金マ
ーカ紘電子反射率が高く劣化がないため、ビーム径測定
に際し極めて有効となる。しかし、この金マーカを使用
する場合次のような問題を招いた。すなわち、金i−力
フ法°および蒸着法等があるが、いずれの製法にあって
もエツジの部分に金マーカの厚さに相当する曲率半径を
持った丸みが生じる。そして、このエツジO丸みが、ビ
ームaia+定精度、特に細いビーム径の測定精度を低
下させる要因となる。
Therefore, as a modification of the sharp edge method, a round shape is being considered in which the sharp edge is formed with a gold marker. The gold marker has a high electron reflectance and does not deteriorate, making it extremely effective for measuring beam diameter. However, when using this gold marker, the following problems arise. That is, there are the gold i-force method and the vapor deposition method, but no matter which method is used, the edge portion is rounded with a radius of curvature corresponding to the thickness of the gold marker. This edge O roundness becomes a factor that reduces the measurement accuracy of the beam aia+, especially the measurement accuracy of a narrow beam diameter.

本発明は上記事情を考慮してなされたもので、その目的
とするとζろは、シャープエツジ法を用いて電子ビーム
の径を精度良く測定することのできる電子ビーム径測定
方法を提供する仁とにある。
The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to develop and develop a method for measuring the diameter of an electron beam using the Sharp Edge method. It is in.

まず、本発明の詳細な説明する。前記ビーム俤測定精度
の低下蝶、エツジに生じる丸みに起因するものである。
First, the present invention will be explained in detail. The decrease in the accuracy of the beam radius measurement is due to the roundness that occurs in the edges.

丸みをなくすこと、つまシ前記曲率半径を零にすること
は!−力の製法上不可能である。したがって、エツジの
丸みを小さくするためKは、マーカの厚みを小さくし厚
みに略等しいエツジの曲率半径を小さくすればよい。し
かし、!−力をあオjlK薄く形成すると、マーカと酸
マーカが形成された試料基板等との反射電子率差が小さ
くなり、’−ム測定感度が着しく低下する。すなわち、
!−力を薄く形成するとビーム測定感度が低下し、逆に
マーカを厚く形成するとビーム測定精度が低下すること
になる。この点を考慮し本発明者等が銑意研究を重ねた
結果、マーカの厚さを差程薄くすることなく、一定すべ
きビーム径の1/10以本発明はこのような点に着目し
、電子げ−ム径の測定に供されるシャープエツジを金属
マーカで形成し、かつその厚みを測定すべきビーム径の
1/10以下に形成するようにした方法である。し九が
うて本発明によれば、シャープエツジ法を用いて電子ビ
ームの径を精度良く測定することができ、電子ビーム露
光装置の電子銃輝度評価等に極めて有効となる。
Eliminating roundness and reducing the radius of curvature to zero! -It is impossible due to the manufacturing method of power. Therefore, in order to reduce the roundness of the edge, K may be reduced by reducing the thickness of the marker and reducing the radius of curvature of the edge, which is approximately equal to the thickness. but,! - If the force is applied thinly, the difference in reflected electron rate between the marker and the sample substrate on which the acid marker is formed becomes small, and the sensitivity of the -me measurement decreases considerably. That is,
! - If the force is made thin, the beam measurement sensitivity will be reduced, and conversely, if the marker is made thick, the beam measurement accuracy will be reduced. Taking this point into consideration, the inventors of the present invention have conducted extensive research, and the present invention focuses on this point in that it is possible to reduce the thickness of the marker to 1/10 of the beam diameter, which should be constant, without making the thickness of the marker significantly thinner. In this method, the sharp edge used for measuring the electron beam diameter is formed from a metal marker, and the thickness thereof is 1/10 or less of the beam diameter to be measured. Furthermore, according to the present invention, the diameter of an electron beam can be measured with high precision using the Sharp Edge method, which is extremely effective for evaluating the electron gun brightness of an electron beam exposure apparatus.

以下、本発明の詳細を図面を参照して説明する。Hereinafter, details of the present invention will be explained with reference to the drawings.

第1図は本発明に係わるマーク部をよびビーム強震分布
を示す模式図である。@中1杜金i−力% xaその下
地となる導電性基板、例えばシリコン単結晶である。金
!−力lのエツジ部1aにはマーカ1の厚さRK#A尚
する曲率半径の丸みが形成されている。Jは入射電子組
が上記マーカ1或い紘基板2に美大した結果、マーカ1
或い紘基板2から反射してくる反射電子12rを検出す
る反射電子検出器である。
FIG. 1 is a schematic diagram showing mark portions and beam strong motion distribution according to the present invention. @Naka 1 Dukin i-force% xa The underlying conductive substrate is, for example, silicon single crystal. Money! - The edge portion 1a of the force 1 is formed with a rounded radius of curvature equal to the thickness RK#A of the marker 1. J is the marker 1 as a result of the incident electron group being applied to the marker 1 or the Hiro substrate 2.
This is a backscattered electron detector that detects backscattered electrons 12r reflected from the substrate 2.

入射電子giは通常円形であシ、その強度分布はガウス
分布(標準偏差σ)である。いま、原点0からビーム中
心までの距離をx1鏡面電子反射方向と入射点から見た
反射電子検出方向とのなす角度をF←)とすると、反射
電子検出器3にて検出される信号強II a ma F
(ロ)に比例する。
The incident electrons gi are usually circular, and their intensity distribution is a Gaussian distribution (standard deviation σ). Now, if the distance from the origin 0 to the beam center is x1 and the angle between the specular electron reflection direction and the backscattered electron detection direction seen from the incident point is F←), then the signal strength II detected by the backscattered electron detector 3 is a ma F
Proportional to (b).

入射電子Itを紙面左から右の方向1cyll査した場
合、反射電子検出器JK入る電子ビームの変化祉xの関
数として次式で計算される。
When the incident electron It is scanned one cycle from left to right on the paper, it is calculated by the following equation as a function of the change x of the electron beam entering the backscattered electron detector JK.

I(d−/に−N(d・awF6c)・打=”(2)た
だし、Xは反射率で金マーカlと基板2とで祉異なる値
となる。また、N(ロ)はビームの強度分布である。上
記篇2式の計算結果が第2図であ〕、この場合!−カ1
の厚さR−0,3(趨バi−力1と基板2との反射率の
比紘ム聾: 81 m3:1とし良、′を九、ビーム強
度分布の標準偏差Cを/母うメータとしてお〕、曲il
l P *は1mO,4(鵬)、−sP黛は−−0,2
(趨)、曲線PsB y −0,1CM&)、―線P4
は−−0,04(趨)の場合である。真のビーム径d紘
L8@#と定義されるので、上記曲線PI  ePl 
 eP@ml’aの真のビーム径はそれぞれ1 (#s
)、0.5〔島〕、0、26 (趣〕、0.1 (#l
)になる、この第2図に示し九針算による曲線は実験結
果とよく一致する。
I(d-/N(d・awF6c)・strike=”(2) However, This is the intensity distribution.The calculation result of the above-mentioned formula 2 is shown in Figure 2], and in this case!-K1
Thickness R-0,3 (ratio of reflectivity between deflection force 1 and substrate 2: 81 m3:1, '9, standard deviation C of beam intensity distribution / mother) As a meter], song il
l P * is 1 mO, 4 (Peng), -sP Mayuzumi is -0, 2
(trend), curve PsB y -0,1CM&), - line P4
is the case of −0,04 (trend). Since the true beam diameter d is defined as L8@#, the above curve PI ePl
The true beam diameter of eP@ml'a is 1 (#s
), 0.5 [Island], 0, 26 (Elegance), 0.1 (#l
), the nine-point calculation curve shown in Figure 2 agrees well with the experimental results.

第2図と同様な測定曲線からビーム径を求めるには次の
ようにしている。すなわち、反射電子検出器IO検出信
号の最大レベルと最小レベルとの差をHとし、最大レベ
ルよj)Q、IH小さい点と最小レベルより 0.1 
H大きい点との間の走査方向幅りをビーム径として測定
している。
The beam diameter can be determined from a measurement curve similar to that shown in FIG. 2 as follows. That is, let H be the difference between the maximum level and the minimum level of the backscattered electron detector IO detection signal, and the difference between the maximum level and Q, IH smaller than the minimum level is 0.1.
The width in the scanning direction between the large point H is measured as the beam diameter.

このようにして求めたビーム径と真のC−ム径d−’2
.!5ellとの関係を示したのが第3図であり、!−
力1の厚さ8が/#2メータである0曲線Qtはl−0
,1C島)、曲線QsはR−0,3〔篇〕、−線Q謬は
凰−0,5〔趣〕、曲1! Q a紘R−1,0(趨)
の場合である。また、破線で示す直線状測定ビーム径と
真のビーム径とが等しい場合、すなわちR−00場合で
ある。第3図から判るようにマーカ1の厚さRが小さい
程ビームが正確に評価される。ビーム径が1〔趣〕の場
合、略正確に評価されるのFi自曲線1っまシマー力1
の厚さ8が−0,1(am)およびこれ以下のときであ
シ、マーカ1の厚さRが0.1 (JIIIL)以上と
なると測定誤差が大きくなる。また、図には示されてい
ないがビーム径が10 (MK)の場合に拡曲線Q4が
直線に近ずき、V−ム橢定糾差社無視できる程度であう
た。第3図の計算結果によると、C−ム径が大きい場合
には真のビーム径よル細く測定され、ある程度以下のビ
ーム径の場合には真のビーム径よ〕も太く評価されてい
ることKなる。しかし、そのび−ム径の境界鉱マーカ1
の厚みKよりて異りている。
The beam diameter obtained in this way and the true C-mu diameter d-'2
.. ! Figure 3 shows the relationship with 5ell. −
The 0 curve Qt where the thickness 8 of force 1 is /#2 meters is l-0
, 1C island), the curve Qs is R-0,3 [edition], - line Q error is 凰-0,5 [style], song 1! Q a hiro R-1,0 (trend)
This is the case. Further, this is a case where the linear measurement beam diameter shown by a broken line is equal to the true beam diameter, that is, the R-00 case. As can be seen from FIG. 3, the smaller the thickness R of the marker 1, the more accurately the beam can be evaluated. When the beam diameter is 1, it is estimated almost accurately that Fi curve is 1 and shimmer force is 1.
When the thickness 8 of the marker 1 is -0.1 (am) or less, the measurement error becomes large when the thickness R of the marker 1 is 0.1 (JIIIL) or more. Furthermore, although not shown in the figure, when the beam diameter was 10 (MK), the expansion curve Q4 approached a straight line, and the intensity of the beam was negligible. According to the calculation results shown in Figure 3, when the C-mu diameter is large, the beam diameter is measured to be thinner than the true beam diameter, and when the beam diameter is below a certain level, it is evaluated to be thicker than the true beam diameter. K becomes. However, the boundary ore marker 1 of the beam diameter
It differs depending on the thickness K.

第4図tiマーIJ4D厚JRカ1000 (X) ト
5000 (1)との4のにクーての実験結果を示すも
ので、夾#lO電子C−ム描画装置を用いて測定した。
Fig. 4 shows the results of an experiment with 1000 (X) and 5000 (1), which was measured using an #10 electronic C-me drawing device.

縦軸は測定されたビーム径、横軸紘上記装置の電子光学
鏡筒にお妙る第2コンデンサレンズの詞!1目盛で数学
が大きくなる程ビーム径は小さくなる* 1llill
llt  e 8嘗紘!−力1(iり厚”gRカッtL
−t’tL1000 (1−) Th!ヒ5000(D
の場合を示している。第4図から判るように、測定され
るビーム径が0.3 C篇)を境にして、これより太い
ビームでは!−力厚さ5000(t)o方*t 000
 CL’)O%t)ヨ11IA<な〕、0、3 (71
11&)以上で紘逆になっている。し九がって、前記第
2図に示した理論計算の結果は、こO実験結果とよく一
致しておシ、正しいことが判る。
The vertical axis is the measured beam diameter, and the horizontal axis is the diameter of the second condenser lens in the electron optical lens barrel of the above device. The larger the mathematics in 1 scale, the smaller the beam diameter * 1llill
llt e 8 hiro! -Force 1 (thickness “gR cut tL
-t'tL1000 (1-) Th! Hi 5000 (D
The case is shown below. As can be seen from Figure 4, when the measured beam diameter reaches 0.3C, for beams thicker than this! - Force thickness 5000 (t) o side * t 000
CL') O%t) Yo11IA<na], 0, 3 (71
11&) and above are Hirogyaku. Therefore, the results of the theoretical calculations shown in FIG. 2 are in good agreement with the experimental results, and are thus found to be correct.

とζろで、金!−力1を形成するKIIIしてその製造
方法は種々あるが、理想的に第1図における曲率半径8
を零にすることは非常に困難であ〕°、前述した如く金
マーカ1の厚さRK相尚する曲率半径を有するのが通常
である。
And ζrode, money! - There are various manufacturing methods for KIII that forms force 1, but ideally the radius of curvature is 8 in Figure 1.
It is very difficult to make the thickness RK zero. As mentioned above, the gold marker 1 usually has a radius of curvature that is comparable to the thickness RK.

したがって、実用的な面から見え場合、そして前述した
理論計算および実験結果等から見た場合、例えば1〔μ
惰〕のビーム径を正確K11l定するに祉厚さ0.1 
(ss)の金マーカを用いればよいことが判る。さらに
、これらの結果からマーカ1の厚さは測定すべきビーム
径の1/10以下であれば、正確な測定を行えることが
判明する。かくして本発明によれば、電子銃輝度の評価
をも精度棗く行うことができ、電子ピー^描画における
露光むら中ぐらつき等を避けることができる。
Therefore, from a practical standpoint and from the theoretical calculations and experimental results mentioned above, for example, 1 [μ
To accurately determine the beam diameter of the beam, the thickness is 0.1.
It turns out that it is sufficient to use the gold marker (ss). Furthermore, these results show that accurate measurements can be made as long as the thickness of marker 1 is 1/10 or less of the beam diameter to be measured. Thus, according to the present invention, it is possible to evaluate the electron gun brightness with high precision, and it is possible to avoid wobbling during exposure unevenness in electron beam drawing.

なお、前記マーカの材質として金を用いたが、この金の
代シには白金、りIム、銀或いはニッケル等の電子反射
率の高い金属であれば用いてもよい。また、電子ビーム
描画装置に限らず、各棟の電子C−ム装置に適用できる
のは、勿論のむとである。その他、本発明の要旨を逸脱
しない範囲で種々変形して実施することができる。
Although gold is used as the material for the marker, any metal with high electron reflectance such as platinum, aluminum, silver, or nickel may be used instead of gold. Moreover, it is of course applicable not only to the electron beam drawing apparatus but also to the electron beam drawing apparatus of each building. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図はそれぞれ本発明の詳細な説明するた
めのもので、第1図はマーカ部およびげ一ム強度分布を
示す模式図、第2図は反射電子強度の計算結果を示す図
、第3図れマーカ厚さを一臂ツメー/七して真のビーム
liK対する測定ビーム径を示す図、第4図は夷験結釆
を示す図である。 1・・・金!−力、J I@@基板、S・・・反射電子
検出器、1a・−二yジ部。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 9R4図 23456      ′
Figures 1 to 4 are for explaining the present invention in detail, respectively. Figure 1 is a schematic diagram showing the marker part and beam intensity distribution, and Figure 2 shows the calculation results of the backscattered electron intensity. Figure 3 is a diagram showing the measurement beam diameter with respect to the true beam liK by adjusting the marker thickness by 1/7, and Figure 4 is a diagram showing the experimental result. 1... Money! -Force, J I@@Substrate, S... Backscattered electron detector, 1a/-2y section. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 2 9R4 Figure 23456'

Claims (1)

【特許請求の範囲】[Claims] 電子C−ムでシャー/工v yt 走査して得られる反
射電子を検出し、この検出信号に基づいて上記電子C−
ムの径を測定する方法において、前記シャープエツジを
金属マーカで形成し、かつその厚みを測定すべ龜ビーム
径の1710以下に形成したことを特徴とする電子ビー
ム径測定方法。
The reflected electrons obtained by scanning the electron beam are detected, and based on this detection signal, the electron C-
1. A method for measuring the diameter of an electron beam, characterized in that the sharp edge is formed of a metal marker, and its thickness is 1710 mm or less of the diameter of the beam to be measured.
JP12010781A 1981-07-31 1981-07-31 Measurement of electron beam diameter Pending JPS5821581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010781A JPS5821581A (en) 1981-07-31 1981-07-31 Measurement of electron beam diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010781A JPS5821581A (en) 1981-07-31 1981-07-31 Measurement of electron beam diameter

Publications (1)

Publication Number Publication Date
JPS5821581A true JPS5821581A (en) 1983-02-08

Family

ID=14778097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010781A Pending JPS5821581A (en) 1981-07-31 1981-07-31 Measurement of electron beam diameter

Country Status (1)

Country Link
JP (1) JPS5821581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058426B1 (en) * 2020-12-17 2022-04-22 ツィンファ ユニバーシティ Electron beam detector and detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111481A (en) * 1980-01-23 1981-09-03 Chiyou Lsi Gijutsu Kenkyu Kumiai Measuring device for electron beam diameter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111481A (en) * 1980-01-23 1981-09-03 Chiyou Lsi Gijutsu Kenkyu Kumiai Measuring device for electron beam diameter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058426B1 (en) * 2020-12-17 2022-04-22 ツィンファ ユニバーシティ Electron beam detector and detection method

Similar Documents

Publication Publication Date Title
CA1059752A (en) Gauging surfaces by remotely tracking multiple images
CN101236076B (en) Laser angle interferometry system possessing standard angle rotating platform and its measurement method
US3994599A (en) Method and apparatus for measuring wall thickness and concentricity of tubular glass articles
CN102072710B (en) Optical angle measuring device and angle measuring method
CN103630277A (en) Film stress test method
CN106932179A (en) The method and device that off-axis paraboloidal mirror is measured off axis is demarcated based on grating scale and theodolite
JP2009236894A (en) Precise phase shift generator, precise length measurement system, and precise length measurement method
WO2016173382A1 (en) Method for measuring focal length and rotating angle using fabry-perot etalon
JPS5821581A (en) Measurement of electron beam diameter
US4684257A (en) Measuring instrument
Leusink et al. In situ sensitive measurement of stress in thin films
JPH0213810A (en) Linear encoder and linear scale
Kiyono et al. Self-calibration of precision angle sensor and polygon mirror
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
CN108180850A (en) A kind of Newton&#39;s ring radius of interference fringe measuring device and measuring method
JPH07280526A (en) Thickness measuring method for steel plate by laser distance meter
CN207937605U (en) A kind of ultra-precise laser displacement sensor
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
JPH0462001B2 (en)
Alekseenko et al. Measurements of the liquid-film thickness by a fiber-optic probe
JP3059714B1 (en) Relative position measurement device
RU2258903C2 (en) Method and device for measuring shift of object (versions)
JPS6057203A (en) Method and device for measuring thickness of plate-like material
JP3019647B2 (en) Non-contact thickness gauge
JP3526724B2 (en) Error correction method in shape measuring device