JPS58215550A - Method and apparatus for continuous measurement of sulfur ion in seawater - Google Patents

Method and apparatus for continuous measurement of sulfur ion in seawater

Info

Publication number
JPS58215550A
JPS58215550A JP57099060A JP9906082A JPS58215550A JP S58215550 A JPS58215550 A JP S58215550A JP 57099060 A JP57099060 A JP 57099060A JP 9906082 A JP9906082 A JP 9906082A JP S58215550 A JPS58215550 A JP S58215550A
Authority
JP
Japan
Prior art keywords
seawater
electrode
sulfur ion
sulfur
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57099060A
Other languages
Japanese (ja)
Other versions
JPH0342426B2 (en
Inventor
Shiro Sato
史郎 佐藤
Sakae Kato
加藤 榮
Masaya Imai
正也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP57099060A priority Critical patent/JPS58215550A/en
Publication of JPS58215550A publication Critical patent/JPS58215550A/en
Publication of JPH0342426B2 publication Critical patent/JPH0342426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte

Abstract

PURPOSE:To measure continuously a sulfur ion in seawater and to grasp the aging change of its concentration, by mixing the seawater with an antioxidant for sulfur ion without aerating the seawater to be measured and measuring continuously the electric potential of an electrode by a reference electrode and a sulfur ion selecting electrode arranged in a flow passage of this mixed solution to find the activity of the sulfur ion. CONSTITUTION:Seawater to be measured is passed through a piping 2 for sampling seawater and the seawater is sampled continuously from the piping 2 by an injecting pump 4 serviceable for extremely small quantity. On the other hand, an antioxidant 9 for sulfur ion i.e. an aqueous solution containing 0.1-6N sodium hydroxide, 0.01-1M ascorbic acid and 0.001-0.01M ethylenediamine tetraacetic acid is supplied continuously to a mixing and stirring part 14 by an injection pump 10. The seawater sent from the pump 4 is mixed with the antioxidant 9 sent from the pump 10 without aerating said seawater and a uniformly mixed solution is made. An electrode cell 20 provided with a reference electrode 16 and a sulfur ion selecting electrode 18 is arranged on a flow passage of the downstream side of this mixed solution and the electrode electric potential is measured continuously by both electrodes 16, 18 and then, the activity of the sulfur ion is found.

Description

【発明の詳細な説明】 本発明は、海水中の硫!″(S2−)イオンを連続的に
測定する方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to sulfur in seawater! The present invention relates to a method and apparatus for continuously measuring (S2-) ions.

一般に、火力発電所においては、石炭、重油等の燃料を
燃焼せしめて発生させた高温高圧の蒸気を使用して蒸気
タービンを回転させ、その回転力によって発電機をまわ
して発電を行なっているのであり、一方該タービンを通
り抜けた蒸気は復水器で熱交換されてふたたび水に戻さ
れるようになっている。ところで、この復水器用の冷却
管(熱交換管)としては通常黄銅管が使用される一方、
冷却水としては人手の容易な海水が用いられるところか
ら、該黄銅管がかがる冷却用海水中の硫黄(82−)イ
オンにより著しく腐食させられる問題が内在しているの
である。従って、火力発電所の運転にあたっては、冷却
用海水の水質、特に硫黄イオンの厳密な検出が第1条件
として要求され、その濃度に応して適宜の防食対策が講
じられているのであるが、その検出に際しては、酸化作
用などを受けない自然のままの硫黄イオンの極めて精密
な連続的測定データが得られるよう、行なわれることが
望まれるのである。なお、近年、前記冷却管としてはチ
タニウム管が採用される例があり、この場合には硫黄イ
オンの影響は少ないが、コストが高い欠点があるため、
依然として黄銅管が多く使用されているのが現状である
Generally, thermal power plants use high-temperature, high-pressure steam generated by burning fuel such as coal or heavy oil to rotate a steam turbine, and the rotational force rotates a generator to generate electricity. On the other hand, the steam that has passed through the turbine undergoes heat exchange in a condenser and is returned to water. By the way, while brass pipes are usually used as cooling pipes (heat exchange pipes) for this condenser,
Since seawater, which is easily handled by hand, is used as the cooling water, there is an inherent problem in that the brass tubes are severely corroded by sulfur (82-) ions in the cooling seawater. Therefore, when operating a thermal power plant, the first condition is strict detection of the quality of cooling seawater, especially sulfur ions, and appropriate anti-corrosion measures are taken depending on the concentration. When detecting sulfur ions, it is desirable to obtain extremely precise and continuous measurement data of sulfur ions in their natural state, unaffected by oxidation. Incidentally, in recent years, titanium tubes have been adopted as the cooling tubes, and although in this case the influence of sulfur ions is small, it has the disadvantage of high cost.
Currently, brass pipes are still widely used.

さて、従来の海水中の硫黄イオンの測定法としては、採
取した海水を直ちにろ過して海水中の浮遊固形物を除い
たのち、吸光光度法によって定量する方法(J I S
−に−0101)カアルカ、この方法では定置下限が0
.02mg/nであること及びろ過することにより硫黄
イオンの酸化が避けられず、結果として低値の硫黄イオ
ン濃度を示すという欠点があった。
Now, the conventional method for measuring sulfur ions in seawater is to immediately filter the collected seawater to remove suspended solids in the seawater, and then quantify it by spectrophotometry (JIS).
-to-0101) Kaaluka, in this method the lower limit of emplacement is 0
.. 02 mg/n and filtration, oxidation of sulfur ions is unavoidable, resulting in a low sulfur ion concentration.

また、採取した海水に硫黄イオン酸化防止剤を加えて固
定したのち、バッチ方式にて、硫黄イオン選択電極法に
よって定置する方法では、感度は前記方法に比して約1
0倍となるが、自然条件の変化によって変動する硫黄イ
オンを常時看視することが不可能であるという欠点があ
った。
In addition, a method in which a sulfur ion antioxidant is added to collected seawater and fixed, and then fixed using a sulfur ion selective electrode method in a batch method, the sensitivity is about 1
However, there was a drawback in that it was impossible to constantly monitor sulfur ions, which fluctuate due to changes in natural conditions.

更にまた、採取した海水に亜鉛、カドミウム等を加え、
硫黄イオンを硫化物として固定した後、ろ過分離し、滴
定法によって定量する方法(JIS−に−01,02)
も行なわれているが、この方法では、操作が複雑である
こと、感度が十分てないことから、常時看視することが
同様に不可能であるという欠点があったのである。
Furthermore, zinc, cadmium, etc. are added to the collected seawater,
A method of fixing sulfur ions as sulfides, separating them by filtration, and quantifying them by titration (JIS-01, 02)
However, this method had the disadvantage that it was complicated to operate and lacked sufficient sensitivity, making constant monitoring impossible.

ここにおいて、本発明は、かかる事情に鑑みて為された
ものであって、その特徴とするところは、海水中に含ま
れる硫黄イオンを連続的に測定し、その濃度の経時的な
変化の把握を可能とする方法にして、海水中より連続的
に導かれた測定すべき海水を、大気にさらすことなく、
所定の硫黄イオン酸化防止剤と混合ぜしめて均一な混合
液と為した後、更に該混合液の流通せしめられる流路」
二に配置された参照電極及び硫黄イオン選択電極によっ
て連続的に電極電位を測定して、硫黄イオン活量を求め
るようにしたことにある。
The present invention has been developed in view of the above circumstances, and is characterized by continuously measuring sulfur ions contained in seawater and understanding changes in the concentration over time. This method enables the seawater to be continuously drawn from seawater to be measured without exposing it to the atmosphere.
A channel through which the mixed liquid is further circulated after being mixed with a predetermined sulfur ion antioxidant to form a uniform mixed liquid.''
The sulfur ion activity is determined by continuously measuring the electrode potential using a reference electrode and a sulfur ion selective electrode placed at the second electrode.

また、かかる手法の効果的な実施のために、本発明は、
(1)海水中より測定されるへき所定量の海水を大気に
触れることなく連続的に導く海水導入手段と、(2)所
定量の硫黄イオン酸化防止剤を連続的に供給する酸化防
止剤供給手段と、(3)該海水導入手段及び該酸化防止
剤供給手段からそれぞれ導入及び供給される海水並びに
硫黄イオン酸化防止剤を大気にさらすことなく混合せし
める混合手段と、(4)該混合手段の下流側の流路上に
配置され、該混合手段にて形成された混合液に接触せし
められる参照電極と硫黄イオン選択電極とを有する電極
セルと、(5)該参照電極と硫黄イオン選択電極にそれ
ぞれ接続せしめられ、それら二つの電極間の電位差を検
出する電位差検出手段とを、含む装置を用いるものであ
る。
Furthermore, in order to effectively implement such a technique, the present invention provides the following features:
(1) A seawater introduction means that continuously introduces a predetermined amount of seawater into the seawater to be measured without contacting the atmosphere, and (2) An antioxidant supply that continuously supplies a predetermined amount of sulfur ion antioxidant. (3) a mixing means for mixing the seawater and the sulfur ion antioxidant introduced and supplied from the seawater introducing means and the antioxidant supplying means, respectively, without exposing them to the atmosphere; and (4) the mixing means. (5) an electrode cell having a reference electrode and a sulfur ion selective electrode arranged on a flow path on the downstream side and brought into contact with the mixed liquid formed by the mixing means; A device is used which includes potential difference detection means that are connected to each other and detect the potential difference between the two electrodes.

かくして、かくの如き本発明に従えば、冷却用海水など
として用いられる海水中にあって、復水器用黄銅管を腐
食せしめる硫黄(82+ )イオンを、酸化作用を受け
ない自然のままの状態で連続的に且つ極めて精密に測定
することが可能となったのであり、また黄銅管の腐食な
どのトラブルにおける硫黄イオンの影響の解明を可能と
為し、更に自然現象としての海水中の硫黄イオンの動的
変化を把握できることから、特に発電所の復水器管の効
果的な保全対策が可能となる等、優れた効果が奏される
のである。
Thus, according to the present invention, sulfur (82+) ions, which corrode brass pipes for condensers in seawater used as cooling seawater, can be removed in their natural state without being subjected to oxidation. It has become possible to measure continuously and extremely precisely, and it has also made it possible to elucidate the effects of sulfur ions on problems such as corrosion of brass pipes, and also to clarify the effects of sulfur ions in seawater as a natural phenomenon. Since dynamic changes can be ascertained, excellent effects can be achieved, such as making it possible to take effective maintenance measures, especially for condenser pipes at power plants.

以下、本発明に係る海水中の硫黄イオンの連続的測定法
及び装置を、その−例を示す図面を参照しつつ、詳細に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the method and apparatus for continuously measuring sulfur ions in seawater according to the present invention will be described in detail with reference to the drawings showing examples thereof.

先ず、第1図において、海水採取用配管2には水中ポン
プ等の図示しない揚水ポンプによって採取された測定す
べき海水が通されており、この配管2から海水採取用微
量注入ポンプ4によってこの海水が連続的に採取される
ようになっている。
First, in FIG. 1, seawater to be measured collected by a lifting pump (not shown) such as a submersible pump is passed through a seawater sampling piping 2, and the seawater is pumped from this piping 2 by a seawater sampling microinjection pump 4. are collected continuously.

なお、要すれば、該ポンプ4の上流側管路に切換バルブ
6を設け、このハルプロにより校正液供給機構8からの
校正液を周期的に供給することも可能である。
Incidentally, if necessary, it is also possible to provide a switching valve 6 in the upstream pipe line of the pump 4 and to periodically supply the calibration liquid from the calibration liquid supply mechanism 8 by this HALPRO.

一方、硫黄イオン酸化防止剤9、例えば01〜6Nの水
酸化ナトリウム、001〜IMのアスコルビン酸及び0
.001〜0.01Mのエチレンジアミン四酢酸を含む
水溶液を注入ポンプ】0によって連続的に、切換バルブ
12経由、混合攪拌部(混合手段)14へ供給する。
On the other hand, sulfur ion antioxidants 9, such as 01-6N sodium hydroxide, 001-IM ascorbic acid and 0
.. An aqueous solution containing 0.001 to 0.01 M ethylenediaminetetraacetic acid is continuously supplied by an injection pump 0 to a mixing and stirring section (mixing means) 14 via a switching valve 12.

この混合攪拌部14ては、前記微量注入ポンプ4から送
られる海水と注入ポンプ10から送られる硫黄イオン酸
化防II−,剤9とを大気にさらすことなく混合せしめ
て均一な混合液と為すのである。
This mixing/stirring section 14 mixes the seawater sent from the microinjection pump 4 and the sulfur ion antioxidant II agent 9 sent from the injection pump 10 without exposing them to the atmosphere to form a uniform liquid mixture. be.

なお、この際の両液の混合割合の一例を示すならば、海
水の流量10mJ/ln団に対して硫黄イオン酸化防止
剤9を3 Hl / mi n程度とするのである。
In addition, to give an example of the mixing ratio of both liquids at this time, the amount of sulfur ion antioxidant 9 is about 3 Hl/min with respect to the flow rate of seawater of 10 mJ/ln.

そして、上記混合液の下流側の流路上には、第2図に示
されるように参照電極16と硫黄イオン選択電極(溶液
中の82− イオンの濃度を電極電位を通じて示すもの
)18とを有する電極セル20が配置されていて、両電
極16.18によって連続的に電極電位が測定され、硫
黄イオン活量か求められ得るのである。また、第2図に
示される電極セル20には、混合液の均一性を更に高め
るために攪拌機構21が設けられており、そこでは中空
の軸22が送液ノズルとなった小型電磁攪拌器24が設
けられ、これにて駆動される回転攪拌素子26が硫黄イ
オン選択電極18の底部に近接して、前記混合液中にて
回転させられるようになっている。そして混合液は電極
セル20内の流路27にて、参照電極16及び温度セン
サ28に接触させられた後、管路29により前記海水採
取l]配管2とは別の排液用管31内へ排出されるので
ある。
The flow path on the downstream side of the mixed solution is provided with a reference electrode 16 and a sulfur ion selection electrode 18 (which indicates the concentration of 82- ions in the solution through electrode potential) as shown in FIG. An electrode cell 20 is arranged, and the electrode potential is continuously measured by both electrodes 16, 18, so that the sulfur ion activity can be determined. In addition, the electrode cell 20 shown in FIG. 2 is provided with a stirring mechanism 21 in order to further improve the uniformity of the mixed liquid, in which a small electromagnetic stirrer with a hollow shaft 22 serving as a liquid feeding nozzle is provided. 24 is provided, and a rotary stirring element 26 driven by the stirring element 24 is rotated in the mixed liquid close to the bottom of the sulfur ion selection electrode 18. Then, the mixed liquid is brought into contact with the reference electrode 16 and the temperature sensor 28 in the flow path 27 in the electrode cell 20, and then the seawater is collected through the pipe 29 into the drainage pipe 31 which is separate from the pipe 2. It is discharged to.

そして、参照電極16と硫黄イオン選択電極18は、第
1図に示されるように、イオンメータ30(電位差検出
手段)に接続され、該イオンメータ30により硫黄イオ
ン活量は電位差として表示され、更に所定の校正曲線及
び温度センサ28の信号をもとに演算処理の後、硫黄イ
オン濃度として記録計32(記録手段)により記録され
るのである。又は、演算処理後の瞬時濃度値からマイク
ロコンピュータ33のティスプレィ装置35により、例
えば1時間平均値等を求め、その週間、月間又は年間テ
ークとして図示又は表示されたり、プリントアウトされ
るのである。
The reference electrode 16 and the sulfur ion selection electrode 18 are connected to an ion meter 30 (potential difference detection means) as shown in FIG. 1, and the ion meter 30 displays the sulfur ion activity as a potential difference. After arithmetic processing is performed based on a predetermined calibration curve and the signal from the temperature sensor 28, the sulfur ion concentration is recorded by a recorder 32 (recording means). Alternatively, the display device 35 of the microcomputer 33 calculates, for example, an hourly average value from the instantaneous concentration value after arithmetic processing, and the result is illustrated or displayed as a weekly, monthly, or yearly take, or printed out.

なお、電極部を定期的に洗浄するための電極洗浄液供給
機構34は、第3図において、谷部にて示されるように
1時間乃至6時間程度の任意の周期で1分乃至10分間
程度の任意の時間、塩酸水溶液等の電極洗浄液を切換バ
ルブ12、混合攪拌部14経由、電極セル20へ注入し
て電極を洗浄するのである。けだし、海水中には各種の
金属、非金属系、或は無機、有機系の物質が含まれてい
るため、これらが電極の感応部に付着してそれを覆うと
、感度を著しく低下せしめるようになるので、定期的に
洗浄して電極を覆う物質を除去せしめる必要があるから
である。
In addition, the electrode cleaning liquid supply mechanism 34 for periodically cleaning the electrode part is used for cleaning the electrode part for about 1 minute to 10 minutes at an arbitrary period of about 1 hour to 6 hours, as shown by the valley in FIG. An electrode cleaning liquid such as a hydrochloric acid aqueous solution is injected into the electrode cell 20 via the switching valve 12 and the mixing/stirring section 14 for an arbitrary period of time to clean the electrode. However, since seawater contains various metals, non-metals, inorganic and organic substances, if these adhere to and cover the sensitive part of the electrode, it will significantly reduce the sensitivity. This is because it is necessary to periodically clean the electrodes to remove the substances that cover them.

また、前記校正液供給機構8は、本装置の運転中におけ
る装置、計器等の校正を行ない、硫黄イオン濃度の正確
な検出を行なうため、標準濃度の硫黄イオン水溶液を定
期的に流通せしめるものであって、この校正操作の実施
は一般に1ケ月に1回程度の割合で行なわれることとな
る。
In addition, the calibration liquid supply mechanism 8 periodically supplies a sulfur ion aqueous solution with a standard concentration in order to calibrate devices, instruments, etc. during operation of this device and to accurately detect sulfur ion concentration. Therefore, this calibration operation is generally performed about once a month.

更に、海水採取用微量注入ポンプ4、硫黄イオン酸化防
止剤注入ポンプ10及び洗浄液供給機構34等の作動の
制御は制御器36(制御手段)によって為されるのであ
る。即ち、電極洗浄液供給機構34が作動せしめられて
所定の洗浄液が前記電極セル20に給送されているとき
は、前記注入ポンプ4と10とは作動が停止せしめられ
るのである。
Furthermore, the operations of the seawater sampling microinjection pump 4, the sulfur ion antioxidant injection pump 10, the cleaning liquid supply mechanism 34, etc. are controlled by a controller 36 (control means). That is, when the electrode cleaning liquid supply mechanism 34 is activated and a predetermined cleaning liquid is being supplied to the electrode cell 20, the operation of the injection pumps 4 and 10 is stopped.

かくして、かくの如き本発明の採用により、従来は海水
を採取して持ち帰り、バッチ式として分析していたもの
を、大気にさらすことなく連続的に採取した海水により
その硫黄イオン活量を連続的に且つ極めて精密に測定し
得ることとなったのである。しかも、自然現象としての
海水中の硫黄イオンの変動を、第3図に示されるように
、経時的な変動として、更には第4図に示されるように
長期日数にわたる変動として明確に把握し得るようにな
り、以て復水器管などの効果的な保全対策が可能となっ
たのである。
Thus, by adopting the present invention, the sulfur ion activity of seawater can be continuously measured by continuously collecting seawater without exposing it to the atmosphere, whereas conventionally seawater was collected and brought back and analyzed batchwise. This enabled measurements to be made with great precision. Moreover, it is possible to clearly understand the fluctuations of sulfur ions in seawater, which is a natural phenomenon, as changes over time, as shown in Figure 3, or as fluctuations over a long period of days, as shown in Figure 4. This made it possible to take effective maintenance measures for condenser pipes, etc.

また、この測定装置に送水される海水の流路中に溶存酸
素計及びpH計の電極をそれぞれ挿入することにより、
硫黄イオン活量、溶存酸素濃度及びpHを同時に連続的
に且つ総合的に把握できる機能を本実施例に附与し得る
のである。
In addition, by inserting the electrodes of a dissolved oxygen meter and a pH meter into the flow path of seawater that is fed to this measuring device,
This embodiment can be provided with a function that allows the sulfur ion activity, dissolved oxygen concentration, and pH to be grasped simultaneously, continuously, and comprehensively.

なお、上述の説明においては、両電極部を清浄化せしめ
る洗浄液を供給する洗浄液供給機構34の設置、及び該
機構34と両注入ポンプ4,10とをそれぞれ制御する
制御器36の設置、更には硫黄イオン濃度を記録する記
録計32又はマイクロコンピュータ33のディスプレイ
装置t35の設置等を例示したのであるが、本発明は必
ずしもこれに限定されるものではなく、そのいずれか一
つ、またはそのすべてを省略することも可能である。
In the above description, installation of a cleaning liquid supply mechanism 34 that supplies cleaning liquid for cleaning both electrode parts, installation of a controller 36 that controls the mechanism 34 and both injection pumps 4 and 10, and furthermore, Although the installation of the recorder 32 for recording the sulfur ion concentration or the display device t35 of the microcomputer 33, etc., the present invention is not necessarily limited to this, and the present invention is not limited to this. It is also possible to omit it.

また、その他、本発明には、その趣旨を逸脱しない範囲
内において、当業者の知識に基づいて種々なる変形・改
良などを加え得ることは言うまでもないところである。
In addition, it goes without saying that various modifications and improvements can be made to the present invention based on the knowledge of those skilled in the art without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る海水中の硫黄イオンの連続的測定
法及び装置の一例を示すブロック図であり、第2図はそ
の電極セル部分の拡大断面図、第3図は第1図の装置の
記録計にて記録された硫黄イオン濃度(mV)の時間的
な変化の一例を示すグラフであり、第4図は第3図にお
ける硫黄イオンの瞬時濃度値をデータ処理して1時間平
均値としてプリントアウトしたグラフである。 4:海水採取用微量注入ポンプ 9:硫黄イオン酸化防止剤 10:注入ポンプ 14:混合攪拌部 16:参照電極  18:硫黄イオン選択電極20:電
極セル  30:イオンメータ32:記録計    3
3:マイクロコンピュータ34:洗浄液供給機構 35:ディスプレイ装置 36:制御器 出願人  注友怪金属工業株式会社
FIG. 1 is a block diagram showing an example of the method and apparatus for continuous measurement of sulfur ions in seawater according to the present invention, FIG. 2 is an enlarged cross-sectional view of the electrode cell portion, and FIG. This is a graph showing an example of the temporal change in the sulfur ion concentration (mV) recorded by the recorder of the device, and Figure 4 is an hourly average obtained by data processing the instantaneous sulfur ion concentration values in Figure 3. This is a graph printed out as a value. 4: Micro-injection pump for seawater collection 9: Sulfur ion antioxidant 10: Injection pump 14: Mixing stirring section 16: Reference electrode 18: Sulfur ion selection electrode 20: Electrode cell 30: Ion meter 32: Recorder 3
3: Microcomputer 34: Cleaning liquid supply mechanism 35: Display device 36: Controller Applicant: Chuyukai Metal Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)海水中に含まれる硫黄イオンを連続的に測定し、
その濃度の経時的な変化の把握を可能とする方法にして
、 海水中より連続的に導かれた測定すべき海水を、大気に
さらすことなく、所定の硫黄イオン酸化防止剤と混合せ
しめて均一な混合液と為した後、更に該混合液の流通せ
しめられる流路上に配置された参照電極及び硫黄イオン
選択電極によって連続的に電極電位を測定して、硫黄イ
オン活量を求めるようにしたことを特徴とする海水中の
硫黄イオンの連続的測定法。
(1) Continuously measure sulfur ions contained in seawater,
Using a method that makes it possible to understand changes in the concentration over time, the seawater to be measured is continuously drawn from seawater and mixed with a specified sulfur ion antioxidant without exposing it to the atmosphere. After forming a mixed solution, the electrode potential is continuously measured using a reference electrode and a sulfur ion selective electrode placed on the flow path through which the mixed solution is made to flow, thereby determining the sulfur ion activity. A method for continuously measuring sulfur ions in seawater.
(2)前記硫黄イオン酸化防止剤が、0.1〜6Nの水
酸化ナトリウム、0.01〜IMのアスコルビン酸及び
0.001〜0.01Mのエチレンジアミン四酢酸を含
む水溶液である特許請求の範囲第1項記載の方法。
(2) The claim that the sulfur ion antioxidant is an aqueous solution containing 0.1-6N sodium hydroxide, 0.01-IM ascorbic acid, and 0.001-0.01M ethylenediaminetetraacetic acid. The method described in paragraph 1.
(3)海水中より測定されるべき所定量の海水を大気に
触れることなく連続的に導く海水導入手段と、 所定量の硫黄イオン酸化防止剤を連続的に供給する酸化
防止剤供給手段と、 該海水導入手段及び該酸化防止剤供給手段からそれぞれ
導入及び供給される海水並びに硫黄イオン酸化防止剤を
大気にさらすことなく混合せしめる混合手段と、 該混合手段の下流側の流路上に配置され、該混合手段に
て形成された混合液に接触せしめられる参照電極と硫黄
イオン選択電極とを有する電極セルと、 該参照電極と硫黄イオン選択電極にそれぞれ接続せしめ
られ、それら二つの電極間の電位差を検出する電位差検
出手段とを、 含むことを特徴とする海水中の硫黄イオンの連続的測定
装置。
(3) seawater introduction means that continuously introduces a predetermined amount of seawater to be measured from seawater without contacting the atmosphere, and an antioxidant supply means that continuously supplies a predetermined amount of sulfur ion antioxidant; a mixing means for mixing the seawater and the sulfur ion antioxidant introduced and supplied from the seawater introducing means and the antioxidant supplying means, respectively, without exposing them to the atmosphere; disposed on a flow path downstream of the mixing means; an electrode cell having a reference electrode and a sulfur ion selective electrode that are brought into contact with the mixed liquid formed by the mixing means; and an electrode cell that is connected to the reference electrode and the sulfur ion selective electrode, respectively, and that controls the potential difference between the two electrodes. A device for continuously measuring sulfur ions in seawater, comprising: a potential difference detection means for detecting sulfur ions in seawater.
(4)前記参照電極及び硫黄イオン選択電極のそれぞれ
の電極部を清浄化せしめ得る洗浄液を供給する洗浄液供
給機構を1、前記電極セルに至るまでの流路に接続せし
めた特許請求の範囲第3項記載の装置。
(4) A cleaning liquid supply mechanism for supplying a cleaning liquid capable of cleaning each electrode portion of the reference electrode and the sulfur ion selective electrode is connected to the flow path leading to the electrode cell. Apparatus described in section.
(5)前記海水導入手段、酸化防止剤供給手段及び洗浄
液供給機構をそれぞれ制御する制御手段を設け、該制御
手段によって該洗浄液供給機構が作動せしめられて所定
の洗浄液が前記電極セルに給送されているときには、該
海水導入手段並びに酸化防止剤供給手段の作動が停止せ
しめられるようにした特許請求の範囲第4項記載の装置
(5) A control means is provided for controlling each of the seawater introduction means, the antioxidant supply means, and the cleaning liquid supply mechanism, and the cleaning liquid supply mechanism is operated by the control means to supply a predetermined cleaning liquid to the electrode cell. 5. The apparatus according to claim 4, wherein the operation of the seawater introducing means and the antioxidant supplying means is stopped when the seawater is in the inlet.
(6)前記電位差検出手段に対して、記録手段が接続さ
れ、該電位差検出手段から出力される信号に基づいて、
硫黄イオン活量若しくは硫黄イオン濃度が連続的に記録
される特許請求の範囲第3項記載の装置。
(6) A recording means is connected to the potential difference detection means, and based on the signal output from the potential difference detection means,
4. The device according to claim 3, wherein sulfur ion activity or sulfur ion concentration is continuously recorded.
JP57099060A 1982-06-09 1982-06-09 Method and apparatus for continuous measurement of sulfur ion in seawater Granted JPS58215550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099060A JPS58215550A (en) 1982-06-09 1982-06-09 Method and apparatus for continuous measurement of sulfur ion in seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099060A JPS58215550A (en) 1982-06-09 1982-06-09 Method and apparatus for continuous measurement of sulfur ion in seawater

Publications (2)

Publication Number Publication Date
JPS58215550A true JPS58215550A (en) 1983-12-15
JPH0342426B2 JPH0342426B2 (en) 1991-06-27

Family

ID=14237170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099060A Granted JPS58215550A (en) 1982-06-09 1982-06-09 Method and apparatus for continuous measurement of sulfur ion in seawater

Country Status (1)

Country Link
JP (1) JPS58215550A (en)

Also Published As

Publication number Publication date
JPH0342426B2 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
US5470484A (en) Method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
US5382331A (en) Method and apparatus for inline electrochemical monitoring and automated control of oxidizing or reducing agents in water systems
Larsen et al. Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge
JPH0765727B2 (en) Boiler cycle monitoring method
US5190728A (en) Apparatus for monitoring fouling in commercial waters
US4146436A (en) Electrochemical determination of heavy metals in water and apparatus therefor
ES2385508T3 (en) Sensor device, system and method to monitor an anaerobic digestion process
US3813325A (en) Continuous respirometer apparatus
US6416652B1 (en) Method for measuring ammonia in biochemical processes
Rieger et al. In-situ measurement of ammonium and nitrate in the activated sludge process
AU2004298634B2 (en) Hydrogen sulfide monitoring system
CN105911109A (en) Method for online measurement of dissolved oxygen in water, and apparatus thereof
JPS58215550A (en) Method and apparatus for continuous measurement of sulfur ion in seawater
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
JP2008096396A (en) Metal ion concentration measuring instrument
KR20010042271A (en) Methods and apparatus for monitoring water process equipment
Bailey Electrochemical sensors for process stream monitoring
JPS5999353A (en) Method and apparatus for measuring bod
JP3859309B2 (en) Method for evaluating slime generation in paper pulp manufacturing process and slime control method
JP3497806B2 (en) Water quality monitoring device
US20040055900A1 (en) Apparatus and methods for sampling and analyzing inlet air associated with combustion turbine
EP1019329B1 (en) Method for evaluating and controlling the biomass contained in waste water treatment biological tanks
JPH0374336B2 (en)
AU730153B2 (en) A method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
RU4169U1 (en) SYSTEM FOR AUTOMATED QUALITY CONTROL OF NATURAL AND SEWAGE WATERS