JPS58215345A - Composite film - Google Patents

Composite film

Info

Publication number
JPS58215345A
JPS58215345A JP9867182A JP9867182A JPS58215345A JP S58215345 A JPS58215345 A JP S58215345A JP 9867182 A JP9867182 A JP 9867182A JP 9867182 A JP9867182 A JP 9867182A JP S58215345 A JPS58215345 A JP S58215345A
Authority
JP
Japan
Prior art keywords
film
base layer
copolymer
propylene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9867182A
Other languages
Japanese (ja)
Other versions
JPH0229016B2 (en
Inventor
勤 井坂
煕 永野
三郎 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9867182A priority Critical patent/JPS58215345A/en
Priority to PCT/JP1983/000189 priority patent/WO1983004388A1/en
Publication of JPS58215345A publication Critical patent/JPS58215345A/en
Publication of JPH0229016B2 publication Critical patent/JPH0229016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Wrappers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は包装用の複合フィルムに関し、詳細にμアイソ
タクチックポリブテンー1系単独重合体又は共重合体と
、プロピレン系単独重合体又は共重合体との積層物で少
なくともm=軸方向に延伸してなり、包装用フィルムと
しての要求特性、殊に柔軟性とバンチホール強度の憂れ
た複合フィルムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite film for packaging, in particular a laminate of a μ isotactic polybutene-1 homopolymer or copolymer and a propylene homopolymer or copolymer. The present invention relates to a composite film which is stretched at least in the m=axial direction and has poor properties required as a packaging film, particularly flexibility and bunch hole strength.

包装用フィルムには透明性、引張り強さ、耐ブロツキン
グ性、柔軟性、バンチホール強度等多くの特性が要求さ
れるが、中でも柔軟性及びバンチホール強度についての
要望は最近特に厳しくなっている。即ち商品の種類や包
装形態が多面化するにつれて、それらのあらゆる商品及
び包装形態に適合させる為には「柔軟性」が不可欠の要
件となるが、その他遠隔輸送に付する場合においては、
輸送時のフィルムの破壊全防止するうえで「バンチホー
ル強度」も極めて重要となる。殊に衣類等の繊維製品や
寝具類、インテリア製品等は商品自体が軟質であるから
これらの商品はソフトに包装されなければならず、また
取扱い及び輸送時等に外力が作用して孔があき、その開
孔部全起点とする破断が進行するのを防止しなければな
らず、上記2種の特性に極めて重要である。
Packaging films are required to have many properties such as transparency, tensile strength, blocking resistance, flexibility, and bunch-hole strength, among which demands on flexibility and bunch-hole strength have recently become particularly severe. In other words, as the types of products and packaging formats become more diverse, "flexibility" becomes an essential requirement in order to adapt to all kinds of products and packaging formats. However, when transporting products over long distances,
"Bunch hole strength" is also extremely important in completely preventing film destruction during transportation. In particular, textile products such as clothing, bedding, interior products, etc. are soft products, so these products must be packaged in a soft manner, and are susceptible to holes due to external forces during handling and transportation. , it is necessary to prevent the progression of fracture starting from all the openings, which is extremely important for the above two types of characteristics.

て方包装材料としては、ボンビニルアルコール、ポリフ
タジエン、エチレン−ビニルアセテート、ポリエチレン
、軟質塩化ビニル樹脂、塩化ビニリデン樹脂等多種類の
合成樹脂フィルムが知られているが、繊維製品の様な軟
質材の包装に最もひろく用いられているのは軟質ポリビ
ニルアルコールである。しかしポリビニルアルコールフ
ィルムは、透明性、帯電防止性及び柔軟性が優れている
反面、湿度の変化に弱く且つ乾燥期には柔軟性を失って
硬化するという重大な問題がある。しかもフィルム表面
にべたつきがある為に包装時の作業性が悪く、また包装
品を積層したときにブロッキング?生じる等、多くの問
題が指摘されている。
Various types of synthetic resin films are known as packaging materials, including vinyl alcohol, polyphtadiene, ethylene-vinyl acetate, polyethylene, soft vinyl chloride resin, and vinylidene chloride resin. The most widely used material for packaging is soft polyvinyl alcohol. However, although polyvinyl alcohol films have excellent transparency, antistatic properties, and flexibility, they have serious problems in that they are sensitive to changes in humidity and lose flexibility and harden during dry periods. Moreover, because the film surface is sticky, it is difficult to work with during packaging, and it also causes blocking when stacking packaged products. Many problems have been pointed out.

本発明者等に上記の様な事情に着目し、特に柔軟性及び
パンチホール強度の優れたフィルム全提供すべく研究?
開始した。セして1ず柔軟性の高いアイソタクチックポ
リブテン−1に注目し、これ全包装フィルム用に改質し
ようとした。ところがポリブテンは軟化点が低く表面に
べたつきがある他、パンチホール強度が乏しいので、前
述の様な包装用フィルムとして実用化することはできな
い。
The present inventors focused on the above circumstances and conducted research to provide a film with particularly excellent flexibility and punch hole strength.
It started. First, we focused on isotactic polybutene-1, which has high flexibility, and attempted to modify it for use in all packaging films. However, polybutene has a low softening point, is sticky on the surface, and has poor punch hole strength, so it cannot be put to practical use as a packaging film as described above.

尚通常の結晶性ポリマーよりなるフィルムでは、延伸処
理音節すことによジバンチホール強度が向上することは
確認されている。ところがアイソタクチックポリブテン
−1は、若干の結晶性は有するものの延伸処理上行なう
ことができないので、延伸によるパンチホール強度改善
策に期待することもできない。そこでアイソタクチック
ポリブテン−1の物性自体全改善するのでになく、これ
?他のフィルム材料と組合せることによって前述の欠点
全防止することはできないかと考え、更に研究ケ進めた
It has been confirmed that divantihole strength of ordinary crystalline polymer films is improved by stretching. However, although isotactic polybutene-1 has some crystallinity, it cannot be subjected to a stretching process, so that stretching cannot be expected to improve the punch hole strength. So instead of completely improving the physical properties of isotactic polybutene-1, what is this? We thought that it would be possible to eliminate all of the above-mentioned drawbacks by combining the film with other film materials, so we conducted further research.

本発明はこうした研究の結果完成されたものであって、
その構成は、ブテン含量が60〜100重量%であるア
イソタクチックポリブテン−1糸単独重合体又は共重合
体よりなる基層の片面若しくは両面に、プロピレン含量
が70〜100重量%であるプロピレン系単独重合体又
は共重合体よりなるフイルムケ積層して72ニジ、且つ
前記基層の内厚が全内厚の50%以上全占カッなくとも
1軸万可に延伸したものであるところに要旨が存在する
The present invention was completed as a result of such research, and
Its composition consists of a base layer made of isotactic polybutene-1 yarn homopolymer or copolymer having a butene content of 60 to 100% by weight, and a propylene base layer having a propylene content of 70 to 100% by weight on one or both sides of the base layer. The gist lies in that the base layer is made of a film made of a polymer or copolymer and has a thickness of 72 degrees, and the inner thickness of the base layer is 50% or more of the total inner thickness, and is stretched at least uniaxially. .

本発明に係る複合フィルムの基層にアイソタクチックポ
リブテン−1系の単独重合体又は共重合体であり、ブテ
ン含iが60重量%以上のものでなければならない。そ
の理由は、ブテン含量か60重量%未満では、基層とし
ての柔軟性が乏しくなると共に寒暖差による柔軟性の変
化が著しく、更にはフィルムの透明性が乏しくなる。尚
共重合成分として最も一般的なものは、ブテン−1と共
重合可能なα−オレフィン(02〜C工。、但t、c 
4h除く)であり、共重合の形態はランダム共重合体及
びブロック共重合体の何れであってもよいが、透明性を
高める上でにランダム共重合体が最適である。又基層全
構成する素材中には、ブテン含量が60%以上という要
件を満たす範囲で、α−オレフィン系重合体をブレンド
することも可能である。尚この単独若しくは共重合体は
、以下に示すプロピレン糸単独又は共重合体と積層して
複合フィルムとされるが、基層の肉厚は、フィルム全内
厚の50%以上にしなければならない。しかして基層の
肉厚が50%未満では、上に述べた基層特有の柔軟性が
十分に発揮されなくなって目的全達成することができな
くなる。
The base layer of the composite film according to the present invention must be an isotactic polybutene-1 homopolymer or copolymer, and the butene content i must be 60% by weight or more. The reason for this is that if the butene content is less than 60% by weight, the flexibility as a base layer becomes poor, the flexibility changes significantly due to temperature differences, and furthermore, the transparency of the film becomes poor. The most common copolymerization components are α-olefins copolymerizable with butene-1 (02 to C), but t, c
4h), and the form of copolymerization may be either a random copolymer or a block copolymer, but a random copolymer is optimal in terms of improving transparency. It is also possible to blend an α-olefin polymer into the material constituting the entire base layer within a range that satisfies the requirement that the butene content be 60% or more. This homopolymer or copolymer is laminated with the following propylene yarn alone or copolymer to form a composite film, but the thickness of the base layer must be at least 50% of the total internal thickness of the film. However, if the thickness of the base layer is less than 50%, the above-mentioned flexibility peculiar to the base layer will not be fully exhibited, making it impossible to achieve the entire purpose.

次に上記基層の片面又は両面に積層されるプロピレン糸
単独又は共重合体は、複合フィルムに延伸性り与え・主
として/<ンチホール強Jl−高める上で極めて重要で
おる。即ち前述のiK74 ’/ Jクチツクボリブー
テ、ノー1糸重合体では延伸処理を行ηうことが極めて
困難でbす・延伸に16バ′チホー・ル強摂の向上に望
めないか、これに10ピレン糸重合体フイルムケ積層す
ると、複合フィルム全体が延伸可能どなり、それにエフ
でパンチ1゛−ル強度を高めることが可能になる。しか
も複合フィルム表面はべたつきのないプロピレン系重合
体フィルムで被覆されfc状態になるので、ブロッキン
グの問題も解消される。
Next, the propylene thread alone or copolymer laminated on one or both sides of the base layer is extremely important in imparting stretchability to the composite film and mainly increasing the cross-hole strength Jl. In other words, it is extremely difficult to carry out the drawing process with the above-mentioned iK74'/J kuchitsukuboribute and no-1 yarn polymers. When a 10 pyrene thread polymer film is laminated on the composite film, the entire composite film can be stretched and the punch strength can be increased. Furthermore, since the surface of the composite film is coated with a non-sticky propylene polymer film and is in the fc state, the problem of blocking is also eliminated.

この様な目的にかなうプロピレン系重合体としては、プ
ロピレン単独重合体あるいはプロピレンとエチレン、ブ
テン、ヘキセン等のa−オレフィン(好ましくは02〜
Cよ。、但しC3に除く)との共重合体が使用されるが
、少なくともプロピレン含量が70!L量%以上のもの
?使用しなけれ゛ばならない、その理由は、プロピレン
含量が70重量%未満のものではその特性が満足できず
、本発明の様に延伸処理の困難なアイソタクチックポリ
ブテン−1系重合体フィルムと積層した場合に、複合フ
ィルム全体としての延伸性を十分に高めることができな
くなるからである。尚このプロピレン系共重合体はラン
ダム共重合体及びグロック共重合体の何れであってもよ
いが、透明性?高めるうえではランダム共重合体が最適
である。しかしプロピレン単独重合体に優るものでにな
い。
Propylene polymers suitable for such purposes include propylene homopolymers or propylene and a-olefins such as ethylene, butene, and hexene (preferably 02-
C. , except for C3) with a propylene content of at least 70! Is it more than L amount%? The reason for this is that if the propylene content is less than 70% by weight, the properties cannot be satisfied, and it cannot be laminated with an isotactic polybutene-1 polymer film that is difficult to stretch as in the present invention. This is because in this case, the stretchability of the composite film as a whole cannot be sufficiently improved. This propylene copolymer may be either a random copolymer or a Glock copolymer, but is it transparent? Random copolymers are optimal for increasing this. However, it is not superior to propylene homopolymer.

上記アイソタクチックポリブテン−1系重合体及びプロ
ピレン系重合体の選択に当っては、組合わせる相手方素
材の物性等に応じて最適のものt選択して決定すべきで
あるが、その選択基準についても検討で行なったところ
、画素材の融点の差によって決めるのが最も実際的であ
り、基層全形成する主要な重合体の融点が表面層の融点
より5〜50°Cの範囲で低い値の素材全選択すること
によって高品質の複合フィルムを得ることができること
が分かった。
When selecting the above isotactic polybutene-1 polymer and propylene polymer, the most suitable one should be selected depending on the physical properties of the other material to be combined, but regarding the selection criteria. We also conducted a study and found that the most practical method is to determine the difference in melting points of the image materials, and that the melting point of the main polymer that forms the entire base layer is lower than the melting point of the surface layer by 5 to 50°C. It was found that a high-quality composite film could be obtained by selecting all materials.

上記の様な複合フィルムは、例えば次の様な方法によっ
て製造することができる。
The above composite film can be manufactured, for example, by the following method.

〔1〕基層と被覆層を個別に溶融押出ししfc、後溶融
積層し、あるいは基層全浴融押出ししつつ予め製造して
おいた被覆用フィルムに積層し、冷却固化烙せる。この
場合の冷却固化温度は素材の融点にもよるが、−20〜
100°C(好ましくVf、−20〜70°C)程度が
一般的である。また引取りあるいはテンション?かける
場合、チルロールには被覆層が、またホットロールには
基層が夫々接触する様に各ロール全配置するのがよい。
[1] The base layer and the coating layer are individually melt-extruded and then melt-laminated, or the base layer is melt-extruded in a full bath and laminated on a previously prepared coating film, and then cooled and solidified. The cooling solidification temperature in this case depends on the melting point of the material, but is between -20 and
The temperature is generally about 100°C (preferably Vf, -20 to 70°C). Taking over again or tension? When applying, it is preferable to arrange all the rolls so that the coating layer is in contact with the chill roll and the base layer is in contact with the hot roll.

もつとも両面に被覆Mk設ける場合はこの様な配慮は全
く不要でおる。
Of course, when coating Mk is provided on both sides, such consideration is not necessary at all.

〔2〕上記で得た未延伸複合フィルムは、次いで常法に
より少なくともl軸方向(好寸しくけ2軸方向)VC延
伸処理される。延伸倍率等は特に限定されないが、バン
チホール強度向」二効果を有意に発揮させる為には、縦
方向に1.5〜20倍、横方向に1.5〜16倍程度と
するのがよく、この場合の最適延伸1M度は縦方向延伸
の場合80〜160°C(よシ好ましくは60〜185
°C)、横方向延伸の場合60〜160°C(よシ好ま
しくは80〜140°C)である。この複合フィルムは
1軸延伸のみ(一般的には60〜160°Cで2〜20
倍程度)であっても十分なバンチホール強度上発揮する
が、2軸延伸全行なえばバンチホール強度が更に向上す
ると共にクリープ特性、透明性、耐ブロッキング性及び
帯電防止性等も更に向上するのが好ましい。
[2] The unstretched composite film obtained above is then subjected to a VC stretching treatment in at least the l-axis direction (or in the biaxial direction of a suitable film) by a conventional method. The stretching ratio is not particularly limited, but in order to significantly exhibit the effect of increasing bunch hole strength, it is recommended that the stretching ratio be approximately 1.5 to 20 times in the longitudinal direction and 1.5 to 16 times in the transverse direction. In this case, the optimum stretching temperature of 1M degree is 80 to 160°C (preferably 60 to 185°C) for longitudinal stretching.
°C), 60 to 160 °C (more preferably 80 to 140 °C) in the case of transverse stretching. This composite film is only uniaxially stretched (generally 2-20°C at 60-160°C).
However, full biaxial stretching will further improve the bunch hole strength, as well as creep properties, transparency, anti-blocking properties, and antistatic properties. is preferred.

この様にして得た延伸フィルムはそのまま巻取つ1商品
化してもよく、あるいは必要により10〜60°C程度
でエージング処理し、更にはコロナ放電処理、電子線処
理、火炎処理等を施すこともできる。
The stretched film obtained in this way may be rolled up as it is and made into a single product, or if necessary, it may be subjected to aging treatment at about 10 to 60°C, and further subjected to corona discharge treatment, electron beam treatment, flame treatment, etc. You can also do it.

本発明は概略以上の様に構成されておシ、柔軟性の優れ
たアイソタクチックポリブテン−1系重合体フィルムの
片面又は両面にプロピレン系重合体?積層して延伸する
ことによυ、包装用フィルムとしての要求特性、殊に柔
軟性及びバンチホール強度全大幅に改善することができ
た。従ってこの複合フィルムは繊維製品の様な軟質商品
の包装用として極めて有用である他、必要に応じて他の
熱可塑性プラスチックフィルムやセロファン、紙、布、
金属箔等全積層することによって夫々の特性に応じた用
途に適用することができる。
The present invention is roughly constructed as described above, and includes a propylene polymer on one or both sides of an isotactic polybutene-1 polymer film with excellent flexibility. By laminating and stretching the film, it was possible to significantly improve the characteristics required for a packaging film, especially flexibility and bunch hole strength. Therefore, this composite film is extremely useful for packaging soft products such as textile products, and can also be used for packaging other thermoplastic films, cellophane, paper, cloth, etc.
By fully laminating metal foils, etc., it can be applied to applications depending on the characteristics of each.

次に実施例及び比較例金示すが、それに先立って、後述
する各種試験項目の評価方法全説明する。
Next, Examples and Comparative Examples will be shown, but prior to that, all evaluation methods for various test items to be described later will be explained.

(1ンt3友 点 パーキン・エルマー社製差動熱量計全使用して20℃/
分の昇温で測定した。
(20℃ using all Perkin-Elmer differential calorimeters)
It was measured at a temperature increase of 1 minute.

(2)ブロッキング AsrM−D−1893−67に準拠して測定、加熱温
度は50’Cとした。
(2) Blocking Measured according to AsrM-D-1893-67, heating temperature was 50'C.

(3)摩擦係数 ASTM−D−1894−63法に準じて測定した。(3) Friction coefficient Measured according to ASTM-D-1894-63 method.

(4)ヘイズ ASTM−D−1008−52に準じて測定し友。(4) Haze Measured according to ASTM-D-1008-52.

(5)グロス ASTM−D−528−67により測定した。(5) Gross Measured according to ASTM-D-528-67.

(69表面の凹凸及びさざ波状模様 評 点5:全くなく良好 同 4:僅かに存在するが実用上問題なし同 8:若干
存在するが凹凸も少なく使用可能 同 2:かなり顕著な模様がみられ使用不可 向 1:全面に互いにはつきりした凹凸とさざ波が見ら
れ夾用は全く不能 (7)パンチホール強度 フィルムに5Wφの丸孔を開孔し、次いでこの孔にフッ
クを引掛けて引張ったときの破壊強度で測定。
(69 Surface unevenness and ripple pattern Rating: 5: Not at all, good condition. 4: Slight presence, but no practical problem. 8: Slight presence, but no unevenness and usable. 2: Quite noticeable pattern. Unsuitable for use 1: There are unevenness and ripples that stand out from each other on the entire surface, making it completely impossible to use. Measured by breaking strength when

実施例1 アイソタクチックポリブテン−1−エチレン共重合体(
エチレン含量:8.53ii量%)80重量%とプロピ
レン−ブテン−1共重合体10重量%及びグロビレンー
エチレン共重合体10重量%からなる混合組成物に、帯
電防止剤としてアルキルアミンのエチレンオキサイド付
加物IN量96ヲ混合し、基層用フィルム素材(A)と
する。また被覆層用フィルム素材(B)としては、プロ
ピレン−ブテン−1共重合体(プデン含有量12重量%
)とプロピレン−エチレン共重合体(エチレン含有量4
.5重量%)を夫々60重量%ずつ混合し、この混合物
に2酸化珪素(平均粒径3〜4μm)0.4重量%を混
合したもの全便用する。
Example 1 Isotactic polybutene-1-ethylene copolymer (
Ethylene content: 80% by weight), 10% by weight of propylene-butene-1 copolymer, and 10% by weight of globylene-ethylene copolymer were added with ethylene, an alkylamine, as an antistatic agent. An amount of 96% of the oxide adduct IN was mixed to obtain a base layer film material (A). In addition, as the film material (B) for the coating layer, propylene-butene-1 copolymer (butene content 12% by weight) is used.
) and propylene-ethylene copolymer (ethylene content 4
.. 5 wt.

上記素材(A)、(B)全夫々溶融押出しした後、溶融
状態で積層した後25°Cの冷却ロールで冷却しくB)
層/(A)層/(B)層の厚み比率が15/75/15
である積層未延伸フィルム上沓た(全体の肉厚は40μ
m)。
After melt-extruding each of the above materials (A) and (B), they are laminated in a molten state and then cooled with a cooling roll at 25°C.B)
The thickness ratio of layer/(A) layer/(B) layer is 15/75/15
(total thickness is 40 μm)
m).

一方、未延伸状態における肉厚が720μmとなる様に
素材(A)、CB)k溶融押出しした他は上記と同様に
して未延伸フィルム七得た後、125℃にて縦方向へ4
.0倍、横方向へ4−5倍の同時2軸延伸全行ない、肉
厚が約40μmの2軸延伸フイルム?得た。
On the other hand, an unstretched film was obtained in the same manner as above except that materials (A) and CB) were melt-extruded so that the wall thickness in the unstretched state was 720 μm, and then rolled in the longitudinal direction at 125° C.
.. A biaxially stretched film with a wall thickness of about 40 μm that is simultaneously biaxially stretched 0x and 4-5x in the lateral direction? Obtained.

上記で得た未延伸又は211i延伸フイルムの片面にコ
ロナ放電処理を施し、表面濡れ張力が41ダイン/αと
なる様に調整した後、後記第1表に示す物性試験に供し
た。
One side of the unstretched or 211i stretched film obtained above was subjected to corona discharge treatment to adjust the surface wetting tension to 41 dynes/α, and then subjected to the physical property tests shown in Table 1 below.

比較例1 アイソタクチックポリプロピレンに突1’tx例1 、
!:同じ帯電防止剤1.0重量%を混合した後溶融押出
しし、以下実施例1と同様にして厚さ40μmの未延伸
フィルム及び2軸延伸フイルム?得、更に同様のコロナ
放電処理を施して表面濡れ張力全40ダイン/αに調整
した。
Comparative Example 1 Isotactic polypropylene 1'tx Example 1,
! : 1.0% by weight of the same antistatic agent was mixed and then melt-extruded, and the same procedure as in Example 1 was carried out to prepare an unstretched film and a biaxially stretched film with a thickness of 40 μm. The surface wetting tension was adjusted to a total of 40 dynes/α by applying the same corona discharge treatment.

比較例2 ポリプロピレンに代えて低密度ポリエチレン(密度0−
915 f /ax )を使用した他に比較例1と同様
にして、表面濡れ張力が40ダイン/αの未延伸フィル
ム及び2軸延伸フイルム?得た。
Comparative Example 2 Low density polyethylene (density 0-
An unstretched film and a biaxially stretched film with a surface wetting tension of 40 dynes/α were prepared in the same manner as in Comparative Example 1 except that 915 f/ax) was used. Obtained.

比較例3 比較例1で用いたのと同じアイソタクチックポリプロピ
レン(帯電防止剤1.0重量%を含む)を基層用フィル
ム素材とし、プロピレン−エチレン共重合体(エチレン
含量4.0重量%)會被覆層用フィルム素材として使用
した他は実施例1と同様にして、表面濡れ張力が40ダ
イン/αで厚さ40μmの未延伸フィルム及び2h延伸
フイルム?得た。
Comparative Example 3 The same isotactic polypropylene (containing 1.0% by weight of antistatic agent) used in Comparative Example 1 was used as the film material for the base layer, and propylene-ethylene copolymer (ethylene content: 4.0% by weight) was used as the film material for the base layer. An unstretched film and a 2h stretched film with a surface wetting tension of 40 dynes/α and a thickness of 40 μm were prepared in the same manner as in Example 1, except that they were used as film materials for the coating layer. Obtained.

比較例4 帯電防止剤1.0重量%を混合したポリブテン−1を基
層用フィルム素材とし、比較例2で用いた低圧度ポリエ
チレン?被覆層用フィルム紫材として使用した他は実施
例1と同様にして、表面濡れ張力が40ダイン/ax″
′C厚さ40 p mの未延伸フィルム及び2軸延伸フ
イルム?得た。
Comparative Example 4 Polybutene-1 mixed with 1.0% by weight of an antistatic agent was used as the film material for the base layer, and the low-pressure polyethylene used in Comparative Example 2 was used. The same procedure as in Example 1 was used except that the film for the coating layer was used as the purple material, and the surface wetting tension was 40 dynes/ax''.
'C unstretched film and biaxially stretched film with a thickness of 40 pm? Obtained.

比較例5 実施例1で使用したのと同じアイソタクチックポリブテ
ン−1を単独で溶融押出しし、厚さ720μmの未延伸
シートを得た。この場合、押出しシートがチルロールへ
粘着する為製膜は極めて困難であったが、生産性及び外
観等は全く無視し、約0.5m/分の低速で溶融押出し
?行なった。
Comparative Example 5 The same isotactic polybutene-1 used in Example 1 was melt-extruded alone to obtain an unstretched sheet with a thickness of 720 μm. In this case, it was extremely difficult to form a film because the extruded sheet adhered to the chill roll, but it was melt-extruded at a low speed of about 0.5 m/min, completely ignoring productivity and appearance. I did it.

この未延伸シートを天尻例1と同様にして2軸延伸し、
厚さ40μmのフィルムを得た。但し125°Cでに延
伸上行なうことができなかったので、延伸温ffU10
0°Cとした。次いで片面にコロナ放電処理ケ施して表
面濡れ張力’((41ダイン/αに調整した。
This unstretched sheet was biaxially stretched in the same manner as Tenjiri Example 1,
A film with a thickness of 40 μm was obtained. However, since it was not possible to carry out stretching at 125°C, the stretching temperature was set at ffU10.
The temperature was set to 0°C. Then, one side was subjected to corona discharge treatment to adjust the surface wetting tension to 41 dynes/α.

上記天尻例及び比較例で得た各未延伸フィルム及び2軸
延伸フイルムの特性全第1表に一括して示す。
The properties of each unstretched film and biaxially stretched film obtained in the Tenjiri Example and Comparative Example are summarized in Table 1.

第1表からも明らかな様に、実旅例1の2軸延伸フイル
ム(本発明フィルム)は、笑施例1の未延伸フィルム及
び比較例1〜5の未延伸又は2軸延伸フイルム(何れも
比較フィルム)に比べて卓越したパンチホール強度を有
している。又その他の緒特性においても本発明フィルム
は比較フィルムに比べて総合的に優れた値を示しており
、特に柔軟性の目安となるヤング率ハアイソタクチック
ボリブテンー1の単独フィルムに比べて遜色のない値を
示すと共に、ブロッキング及び摩擦係数の値はポリプロ
ピレン単独フィルムに比べて遜色のない値を示している
。即ち本発明の複合フィルム(グ、アイソタクチックポ
リブテン−1の特長とポリプロピレンの特長を兼備する
と共に、バンチホール強度の大幅に改善されたフィルム
と言える。
As is clear from Table 1, the biaxially stretched film of Example 1 (the film of the present invention) is different from the unstretched film of Example 1 and the unstretched or biaxially stretched films of Comparative Examples 1 to 5 (both It also has superior punch hole strength compared to other comparative films. In addition, the film of the present invention shows comprehensively superior values in other properties compared to comparative films, and in particular, Young's modulus, which is a measure of flexibility, is inferior to a single film of isotactic polybutene-1. In addition, the blocking and friction coefficient values are comparable to those of a polypropylene film alone. That is, it can be said that the composite film of the present invention has both the features of isotactic polybutene-1 and the features of polypropylene, and has significantly improved bunch hole strength.

出願人  東洋紡績株式会社Applicant: Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)ブテン含量が60〜100重量%であるアイソタ
クチックポリブテン−1糸単独重合体又は共重合体より
なる基層の片面若しくは両面に、プロピレン含量が70
〜100重量%であるプロピレン系単独重合体又は共重
合体よシなるフィルム全積層してなり、且つ前記基層の
肉厚が全因厚の50%以上で少なくとも1軸方向に延伸
されたものであること全特徴とする複合フィルム。
(1) One side or both sides of a base layer made of isotactic polybutene-1 yarn homopolymer or copolymer with a butene content of 60 to 100% by weight, and a propylene content of 70% by weight.
-100% by weight of a propylene homopolymer or copolymer film, and the base layer has a thickness of 50% or more of the total thickness and is stretched in at least one axis. Composite film with all the features.
JP9867182A 1982-06-08 1982-06-08 Composite film Granted JPS58215345A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9867182A JPS58215345A (en) 1982-06-08 1982-06-08 Composite film
PCT/JP1983/000189 WO1983004388A1 (en) 1982-06-08 1983-06-08 Laminated film for wrapping use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9867182A JPS58215345A (en) 1982-06-08 1982-06-08 Composite film

Publications (2)

Publication Number Publication Date
JPS58215345A true JPS58215345A (en) 1983-12-14
JPH0229016B2 JPH0229016B2 (en) 1990-06-27

Family

ID=14225973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9867182A Granted JPS58215345A (en) 1982-06-08 1982-06-08 Composite film

Country Status (2)

Country Link
JP (1) JPS58215345A (en)
WO (1) WO1983004388A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128781A (en) * 1974-03-29 1975-10-11
JPS5582648A (en) * 1978-12-18 1980-06-21 Asahi Dow Ltd Compound film of cold high orientation and method of making said film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128781A (en) * 1974-03-29 1975-10-11
JPS5582648A (en) * 1978-12-18 1980-06-21 Asahi Dow Ltd Compound film of cold high orientation and method of making said film

Also Published As

Publication number Publication date
WO1983004388A1 (en) 1983-12-22
JPH0229016B2 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
US5126197A (en) Heat-laminatable, high-gloss multilayer films
US6458469B1 (en) Multilayer oriented films with metallocene catalyzed polyethylene skin layer
US4588650A (en) Olefin polymer stretch/cling film
US20010055692A1 (en) Multi-layer film with core layer of syndiotactic polypropylene
KR910006232B1 (en) Multi-layer shrink film
US5376437A (en) Laminated three-layer film
JPS6189040A (en) Film for stretching packaging
EP0109512A2 (en) Olefin polymer stretch/cling film
KR20190111975A (en) Biaxially oriented polypropylene-based film
US20230135527A1 (en) Polyolefin-based resin film
US5169714A (en) Heat-shrinkable polypropylene film with improved printability
JPS6150974B2 (en)
JPH02141238A (en) Co-extruded laminated film
GB2049707A (en) Olefin resin compositions and heat-sealable composite biaxially- stretched films
JPS58215345A (en) Composite film
JPS587329A (en) Manufacture of polyolefin film
JPH07232417A (en) Polyolefoinic heat-shrinkable laminated film and manufacture thereof
JPH06115027A (en) Laminated stretch shrink film
JP2001232683A (en) Polyolefinic film excellecnt in uniform expansibility and lubricity
JP2605114B2 (en) Laminated product of stretched polypropylene film and its use
JP7484908B2 (en) Polyolefin resin film and laminate using same
JPH06115026A (en) Multi-layer stretch shrink film
JP2662541B2 (en) Metallized plastic film
JPH011535A (en) multilayer shrink film
JP2907935B2 (en) Metallized plastic film