JPS58215084A - Semiconductor photo detector - Google Patents

Semiconductor photo detector

Info

Publication number
JPS58215084A
JPS58215084A JP57097952A JP9795282A JPS58215084A JP S58215084 A JPS58215084 A JP S58215084A JP 57097952 A JP57097952 A JP 57097952A JP 9795282 A JP9795282 A JP 9795282A JP S58215084 A JPS58215084 A JP S58215084A
Authority
JP
Japan
Prior art keywords
layer
type
inp
absorption layer
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57097952A
Other languages
Japanese (ja)
Inventor
Kazuto Yasuda
和人 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57097952A priority Critical patent/JPS58215084A/en
Publication of JPS58215084A publication Critical patent/JPS58215084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type

Abstract

PURPOSE:To make the most part of holes excited in an absorption layer which is influenced particularly greatly by a hetero epitaxial junction flow into a multiplication layer at a high speed and thus contrive to improve the response speed of a photo detector by a method wherein the energy bands are positioned at three layers. CONSTITUTION:N-In0.53Ga0.47As 12, N-In1-xGaxAsyP1-y 13 (x=y/2.197, y=0.25- 0.7), and N-InP 14 are superposed on an N<+>-InP substrate 11, and a P<+> layer 15 is formed by Cd implantation into the layer 14, and a P type guard ring 16 by Be introduction, an insulation film 17 is selectively provided, and then fixed electrodes 18 and 19 are added. By this constitution, the energy band width of the layer 13 has the valve medium between that of the photo absorption layer 12 and that of the multiplication layer 14 and then selects the thickness of the layer 13, accordingly makes the minimum energy level E2 of the valence band of the photo absorption layer 12 equal to the maximum energy level E1 of the valence band of the multiplication layer 14 or higher than it in the operating state of the device. Thereby, carriers becomes easy to pass through the hetero- epitaxial junction, and therefore the response speed can be improved.

Description

【発明の詳細な説明】 (a)  発明の仮;・町分野 本発明は、ヘテロエビタそシャル接合k @ tr 半
導体受光装置の5谷速度の改善に調ア8゜(b)  仮
術の背景 光を情報信号の媒体とする元通信及びそのIコの産某、
民生分野において、′yt信号を疏気信号に変換する半
導体受光装置は重要で饋不的な構成安素の一つとなって
おり、既に多くのものが実用化され、また提案されつつ
ある。
[Detailed Description of the Invention] (a) Preliminary Field of the Invention The present invention is directed to improving the 5-valley speed of a hetero-evitational junction k @ tr semiconductor photodetector (b) Background light of a preliminary technique A former telecommunications company and its I-co.
In the consumer field, a semiconductor photodetector that converts a 'yt signal into a signal has become one of the important and essential constituent elements, and many have already been put into practical use or are being proposed.

vl」えはシリコン(Si)PIN型フォトダイオード
(PD)及びSlアバランシェフォトダイオード(AP
D)が波長λ:0.85[μ輿〕帝寺において一般に使
用され、また波長λ=1.3[μ舞〕程度の帝裁につい
てはゲルマニウム(Ge)APDが既に実用化されてい
る。
vl” is silicon (Si) PIN type photodiode (PD) and Sl avalanche photodiode (AP).
D) is generally used in imperial temples with a wavelength λ of 0.85 [μ], and germanium (Ge) APDs have already been put into practical use for imperial courts with wavelengths λ = 1.3 [μ].

しかしながら、例えば今後の7c遡悟の玉流とl流、雑
音に関して材料云性による限界があるために、化合物半
導体を用いた支元装置の開発が進のられている。
However, since there are limits due to the quality of the material, for example in the future 7c retrograde flow and noise, the development of support devices using compound semiconductors is progressing.

これらの化合物半導体としてぼ、例えば前記の成長λ−
1,0乃至1.7〔μ票〕帯については、インジウム・
ガリウム・砒1(InGaAs )、  インノウム・
ガリウム・砒素・燐(I nGaAsP )+ ガリウ
ムアルミニウム・アンチモン(GaA14S b ’)
、ガリウムアルミニウム・砒素・アンチモン(GaA1
4Sb’)等が、また可視波長帯域への条近のためには
ガリウム・アルミニウム・砒素(GaAI!As)−4
が用いられている。
As these compound semiconductors, for example, the above-mentioned growth λ-
For the 1.0 to 1.7 [μ] band, indium
Gallium Arsenic 1 (InGaAs), Innoum
Gallium, arsenic, phosphorus (InGaAsP) + gallium aluminum, antimony (GaA14S b')
, gallium aluminum, arsenic, antimony (GaA1
4Sb') etc., and for approaching the visible wavelength band, gallium aluminum arsenic (GaAI!As)-4
is used.

(e)  従来技術と間池点 これらの化合吻手舟体によって形成された十導体受光懐
瀘の−ψ1]としてAPDを第1図に示す。
(e) Prior Art and Maike Point The APD is shown in FIG. 1 as -ψ1] of the ten-conductor light-receiving system formed by these combined proboscis bodies.

第1図において、1は+1”m I nP 4更、21
’j n 2InGaAs光吸収層、3はn m I 
n P jJ倍!、4ばInP屓〒に形成されたf饋取
、5なガードリング効果を有するp1朶、6は絶Tぺ、
暎、7 yi P =i1’=襖、814 n @成極
である。
In Figure 1, 1 is +1” m I nP 4 more, 21
'j n 2InGaAs light absorption layer, 3 is nm I
n P jJ times! , 4 is an f-hole formed on the InP layer, 5 is a p1 with a guard ring effect, 6 is an absolute Tpe,
暎, 7 yi P = i1' = Fusuma, 814 n @ Seikoku.

このAPDにni!1114歳8を正、p側ば極7を声
の7性とする逆バイアス磁圧を印加することにより、p
n接合すなわちp+胆藏4とn型InP瑠倍層3との界
面附近に空乏、rjが形成され、これがn型InGaA
s光吸収層21でひろがり、この空乏層内で入力悟号元
によって成子が云4帝に励起て側シ甑8.正孔はpXi
l’4極7に:司ってドリフトし、n型InP増倍層3
にPいては、との正孔に起因するなだれ増倍が行なわれ
ろ。
Ni to this APD! By applying a reverse bias magnetic pressure with 1114 years old 8 as positive and p side pole 7 as voice 7, p
A depletion, rj, is formed near the interface between the n junction, that is, the p+ layer 4 and the n-type InP layer 3, and this is the n-type InGaA
s spreads in the light absorption layer 21, and within this depletion layer, the input light excites Naruko to the 4th stage, and the side surface 8. The hole is pXi
l' quadrupole 7: control and drift, n-type InP multiplier layer 3
When P is present, avalanche multiplication due to holes with and occurs.

以上説明したAPDのエネルギ帝を第2図(a)及び(
b)に図示する。ただし、第2J(a)はバイアス電圧
を印加しない状態、第2図(b)はバイアス、圧が印加
されている状態を示し、図において符号2乃至4はそれ
ぞれ前記語1図に示される半4体智の各部位を、Ecは
伝導帯、Evは価逍子甜を示す。
The energy control of APD explained above is shown in Figure 2 (a) and (
b). However, 2J(a) shows the state where no bias voltage is applied, and FIG. 2(b) shows the state where bias and pressure are applied. Each part of the four bodies is represented by Ec, the conduction band, and Ev, the value.

これらの図に見られる如く、n型InGaAs光吸収B
2は禁制帯転が狭く、n型InP席倍帰3’;−′i禁
制帯幅が広いために、両者のへテロエピタキシャル接合
界面において、伝4帯Ec及び価−子帯Evに段差を生
ずる。
As seen in these figures, n-type InGaAs light absorption B
In 2, the forbidden band transition is narrow and the n-type InP seat fold 3';-'i forbidden band width is wide, so there is a step in the transmission band Ec and the valence band Ev at the heteroepitaxial junction interface between the two. arise.

先に運べた如く、n型InGaAs光吸収J如2に2い
て入力信号光を岐収して4子・正孔対が発生し更にn型
InP増倍層3においてなだれpM倍による電子・正孔
対が発生するが、これらの励7とさnた電子は伝4帯で
n側戒極8に向71って、また帰心で扛た正孔・)=1
=−子栄でpの’i −”” 7に司かってドリフトで
れる。しかるにこれらの4子・正孔すなわちキャリア:
仁、前記のへテロエピタキシャル接曾界面におけるエネ
ルギ部位の段差:・ζよってそのエネルギを奪われその
Mkが低下する。この速度低下は時に正孔に2いて顕著
である。
As mentioned earlier, the n-type InGaAs optical absorption layer 2 splits the input signal light to generate four electron-hole pairs, and furthermore, in the n-type InP multiplication layer 3, an avalanche of electrons and holes is generated by multiplying pM. Hole pairs are generated, but these excited 7 electrons move toward the n-side polarity 8 in the propagation band 71, and the hole 71 which is picked up by returning
=-Koei can be used to drift p's 'i-''''7. However, these four electrons/holes, or carriers:
Furthermore, the above-mentioned step difference in the energy portion at the contact interface of the heteroepitaxial layer: ・ζ Therefore, the energy is taken away and the Mk thereof decreases. This speed reduction is sometimes noticeable for holes.

このキャリア速度の低下は千4体受元衾λ、例えILi
A P Dの入力i3号の変制局波ノー出カー流特性に
おいて、第3図(′こ−ラリを示す如く10い□1Hz
)乃≠30 [J4Hz )程度以上の逼周波;て2け
る出力−流の低下として現われる。
This decrease in carrier speed is due to the 1,400-year-old Ukemotojuku λ, for example ILi
In the modified station wave and output Kerr flow characteristics of input i3 of APD, Fig.
)≠30 [J4Hz] Appears as a decrease in the output current.

この周波致巧注を同上するための従〕に知ら4tている
対策:・ま、光吸収す番て2−げる元:g号の吸収、丁
なわちキャリアの励、・5がその冗入豹測の界司におい
て最大であってその入射深さに従って一7役に指絃関偵
回に低下するために、発生したキャリアが界面に3!」
達するまでに′、4−するエネルギが少いものが多いこ
とに圧用して、てのキャリアで良jを1元漱し、かつ電
界′5ti度を大さくして元弦収量lをを逗人し、界面
に到埋するキャリアのエネルギを太きくする方法である
。しかし〕tがら、この方j去:こよりては充分な結果
t−得るに至らず、−A確な技術の開発が要求されてい
る。
Countermeasures known to those skilled in the art in order to achieve this frequency enhancement: ・The absorption of the light absorption factor, i.e. the excitation of the carrier, ・5 is the redundancy. The carriers generated are at the maximum at the interface and decrease from 17 to 17 according to the depth of incidence, so the generated carriers reach the interface. ”
Taking advantage of the fact that there are many things that require less energy to reach This is a method of increasing the energy of carriers that reach the interface. However, this approach has not yielded sufficient results, and there is a need for the development of a more accurate technique.

(d)  発明の目的 本発明はへテロエピタキシャル接合を含む4 giL体
受光長置装ついて、キャリアの該ヘテロエピタキシャル
接合通過を容易にすることにより、応、ど速度すなわち
周波数特匠などケ改讐することを目的とする。
(d) Object of the Invention The present invention improves the response speed, frequency, etc. of a 4 giL photoreceptor length device including a heteroepitaxial junction by facilitating the passage of carriers through the heteroepitaxial junction. The purpose is to

(e)  発明の溝底 本発明の前記目3)は、所要の県111帯陥金石して光
吸収層を溝底する第1の4喝iの第Iの干害悴層と、該
第1の牛斗湊心に接して設けら扛第1の導電型を有する
第2の半導体層と、該第2の牛へ体層に接して設けられ
前記第1の半導体層より大きい県制帝幅を有する第1の
導電型の第3の=S体層と、該第3の半動体@に棲して
設けられた弔2の導電型の第4の半導体層とを1.衛え
、前記;:、2の半導体層の県澗計・禍が前記41の子
1体1曽の4割合幅以上とされ、かつ、前j帥≦3の牛
#z、 4;i辺g今の糸制帝幅以下とさ扛てなる牛4
俸受元装置により達成される。
(e) Groove bottom of the invention The above-mentioned item 3) of the present invention is characterized in that the first dry-damage layer of the first 4 layers is made of a necessary prefecture 111 belt and the light absorption layer is groove-bottomed. a second semiconductor layer having a first conductivity type provided in contact with the second semiconductor layer; a third =S body layer of a first conductivity type, and a fourth semiconductor layer of a second conductivity type provided in the third semi-moving body; The prefectural total of the semiconductor layer of 2 is equal to or more than 4 percentage width of 1 child of 41, and the former j is ≦ 3, 4; gCows that are less than the width of the current emperor 4
This is achieved by the salary receiving device.

(f)  発明の犬施りj 以下、不発明を実施例により図面を参照して具体的に説
明する。
(f) Application of the invention The invention will be specifically explained below using examples with reference to the drawings.

第4図に本発明の第一の実施タリであるAPD′f:示
す。
FIG. 4 shows an APD'f which is a first embodiment of the present invention.

第4図において、11はn十型InP−iIf版、12
.ln型I nGaAs光吸収層、13は本発明の特徴
とするn型I nGaAsP Tri、14はn f 
InP N’rFf層、15・はp十−域、16.オガ
ードリング効果を肩するp領虞、17は冶孟j118は
p測成−j119はn fIllイ甑である。
In FIG. 4, 11 is the n-type InP-iIf version, 12
.. ln-type I nGaAs light absorption layer, 13 is n-type I nGaAsP Tri, which is a feature of the present invention, and 14 is n f
InP N'rFf layer, 15. is p-domain, 16. The p range that takes on the ogard ring effect, 17 is the p range, and the p range is 119.

本メ施例のAPDは例えば以下に述べる如く製造される
。すなわち、n型InP番板11上にn型IncLs3
Gao47As層12をキャリア@度I X 10”乃
至IX 10” (5−3)、厚さ2 (a −〕aU
に、n型I nl−X(JaX Asy Pl−7層1
3(但しx=y/2.197.y=0.25乃至0.7
程度)全キャリア濃度1×1014乃至lXl0”(c
m−3)、犀さ05乃至1〔μ属〕桂友に、nWInP
r$14f千ヤリアDaLXIQ”乃至lXl0”Cc
ll−’L 4す2 乃至、4 C1’翼〕m’XK、
、a次液相エピタキシャル成長法(以下LPE法と略称
する)などによって成長せしめた友ンこ、前記n型In
P層14vこ91!えは刀ドミウム(Cd)を選択的に
尋人することによってキャリアd度1×10′8+− 〔ca一つ程度、厚さ1乃至2〔μ諷〕程度のp価城1
5例えはベリリウム(Be)を4人することによってガ
ードリングとするpd域16を形成する。しかる故に絶
縁膜17を選択iJに形成し、次いでp虫:1寛極18
を例えば金−亜鉛(AuZn)を用い、n側底極19を
例えは釜−グルマニウム(AuGe)e用いて配設する
The APD of this embodiment is manufactured, for example, as described below. That is, n-type IncLs3 is formed on the n-type InP plate 11.
Gao47As layer 12 is carrier@degree IX 10" to IX 10" (5-3), thickness 2 (a -] aU
, n-type I nl-X (JaX Asy Pl-7 layer 1
3 (however, x=y/2.197.y=0.25 to 0.7
degree) Total carrier concentration 1×1014 to lXl0” (c
m-3), Rhinoceros 05 to 1 [μ genus] Katsurayu, nWInP
r$14f Chiyaria DaLXIQ”~lXl0”Cc
ll-'L 4s2 to 4 C1' wing] m'XK,
, the above-mentioned n-type In
P layer 14v 91! By selectively converting sword domium (Cd), carrier d degree 1 x 10'8+- [ca 1 degree, thickness 1 to 2 [μ] degree p value castle 1 is obtained.
For example, a PD region 16 serving as a guard ring is formed by adding four beryllium (Be) layers. Therefore, the insulating film 17 is formed in the selected iJ, and then the insulating film 17 is formed in the p.
For example, gold-zinc (AuZn) is used to provide the n-side bottom electrode 19, and the n-side bottom electrode 19 is provided using, for example, pot-glumanium (AuGe).

X夾施ψ」において、先に述べた組成のn型In。In "

−z G a z A s y P 1−7層13の暴
利令幅は、n ’r I no、s・3GaOL47A
S光吸収層12とn m I nP 宿借M14との中
間の1直を・ゴして、これらの各層の工坏ルギ后を図示
すれば、バイアスら圧が印加されないときに第5図(a
)、バイアス−圧が印υ口されたときに45td(b)
の如くであって、nmIn+ =xGaXAsyP+−
y層13の享づをメ近するここによって、受光2了の7
1イ状態に2いて、n’5fb■n01s 3Gacn
 ?As光吸収層12の・l’J−44子合の最低エネ
ルギ早成E、を、n型InP%J、:”、−リ14の価
電子帯の最高エネルギ準hf E +に号し:ハか、;
スいζ扁りシている。
-z G az A sy P The profit margin of the 1-7 layer 13 is n'r I no, s・3GaOL47A
If we take one line between the S light absorbing layer 12 and the nm I nP layer M14 and illustrate the working force of each of these layers, we can see that when no bias pressure is applied, Figure 5 ( a
), 45td(b) when the bias-pressure is stamped υ
and nmIn+ =xGaXAsyP+-
By this, we are approaching the enjoyment of the Y layer 13.
2 in 1 state, n'5fb■n01s 3Gacn
? The lowest energy premature formation E of the .l'J-44 molecule bonding of the As light absorption layer 12 is expressed as the highest energy quasi hf E + of the valence band of the n-type InP%J, - 14: Ha?;
It's flat.

以上説明したように、これら3層のエネルギ軍が位;I
r i’ること(Vよって、ヘテロエビタキンヤル接合
層の彩管が特に太さい元吸収層12て動;世された正孔
は、その大部分が瑠セ1114に高速で猟人することと
なる。
As explained above, these three layers of energy forces are
r i' (Due to V, the chromatic tube of the heteroevital junction layer is particularly thick in the original absorption layer 12; most of the released holes are transported to Ruse 1114 at high speed. Become.

Vζに前記第一の実施例を更に改シした不発明の第二の
央、1iliili例について説明する。不第二の契兄
りtlのLTT面は元に第一の実施例について示した4
4図と同様であるが、本発明の@徴とするn紮InGa
AsP漕13の構、及t−異:Cする。
A second uninvented example, which is a further modification of the first embodiment to Vζ, will be described. The LTT surface of the second contract tl was originally shown in the first example 4
Same as Figure 4, but with n-ligated InGa as @characteristic of the present invention.
Structure of AsP row 13, and t-different:C.

すなわち、4二のA m ’i’lのn型Ink−XG
aXAsyPI−yJ413はn型Ino、53Gal
lL47Asf峨収廟12に愛する猶の近錘においては
、その組成は、In o、s 3Ga O,47AS丁
なわちInws3Gao47As+、ooPoであって
、格子1合するのみで(4なく糸筋」情昌も整合し、エ
ピタキシャル成長中にその徂収を第6図の点薇に示すI
nPへの格子工合粂注iで従って、x=0.47→O,
y=1.OO→0に7化させることによって県別帯幅を
次第に拡大させ、n型InP瑠倍層14に接する面の近
鰐:Cおいては、その組成はIntooGaoAsoP
tooずなわちInPとして禁制帯幅も整合させている
。なお、この層13の厚さは前記第一〇晃施例と同伍に
選択される。
That is, 42 A m'i'l n-type Ink-XG
aXAsyPI-yJ413 is n-type Ino, 53Gal
1L47Asf In the case of the 12-year-old Aishi Temple, its composition is In o, s 3 Ga O, 47 AS Ding, that is, Inws 3 Gao 47 As +, ooPo, and there is only one lattice match (not 4 but a thread line). are also consistent, and their evolution during epitaxial growth is shown by the dots in Figure 6.
Therefore, x = 0.47 → O,
y=1. By changing OO→0 to 7, the prefectural band width is gradually expanded, and in the IntooGaoAsoP layer 14 in contact with the n-type InP layer 14, its composition becomes IntooGaoAsoP.
In other words, the forbidden band width is also matched as InP. The thickness of this layer 13 is selected to be the same as that of the 10th embodiment.

ただし、第6図ti I nl−xGaXAsyPt−
y混晶に2ける格子定数及び禁制帯幅の組7阪との印:
叫そ示す1表であり、横軸及び痘軸は組、d比τ、≦台
甲の実勝は禁制帯幅を、破纒は格子定数を示す。
However, Fig. 6 ti I nl-xGaXAsyPt-
A set of 2 lattice constants and forbidden band widths in a y-mixed crystal with 7 digits:
This is a table that clearly shows this.The horizontal and small axes represent the set, d ratio τ, ≦Tai-Kou's actual win indicates the forbidden band width, and the broken line indicates the lattice constant.

な2、以上説明したn型In1−xGaXAsyPl−
y)脅13は分子線結晶成長(&Iolecular 
Beam L’pi−taXy= %i B E )法
、気相エビタヤシャル成土日などによって形成すること
かでさる。
2. The n-type In1-xGaXAsyPl- explained above
y) Threat 13 is molecular beam crystal growth (&Iolecular
It can be formed by the Beam L'pi-taXy=%iBE) method, vapor phase deposition, etc.

本第二の果尾例のエネルギ帝を図示す、q−j−1、バ
イアス−圧が印加されないとぎに記7図(a)、バイア
ス4圧が印加0されてとぎに弔71;、!(blの如く
であって、nff1Ino、53Gao47A3光吸収
層12とn型InP4倍、j14とはn d I n+
−zGaxAsy P+、7層13によって、工矛ルギ
情:・ま段澁や谷がなく滑らかに連続するために、キャ
リアは減退されることなく流入する。
This second example of energy is illustrated, q-j-1, bias-pressure is not applied, Figure 7(a), bias-4 pressure is applied and it is 71;,! (Like bl, nff1Ino, 53Gao47A3 light absorption layer 12 and n-type InP 4 times, j14 is n d I n+
-zGaxAsy P+, 7 layers 13, mechanical characteristics: - Since the layers are smoothly continuous without any peaks or valleys, carriers flow in without being attenuated.

前肥第−の実施ylj及び第二の実施例Vこついて、入
力信号の変調周波狐−出力急流考性を・北米品と同1法
に街;[定した結果、変調周阪敏500〔ΔIIHz)
まで何れも千慮な特注を示すことが確認された。
Based on the first implementation example and the second example V, we determined the modulation frequency of the input signal and the output current to the same method as the North American product. ΔIIHz)
It was confirmed that all of the pieces were carefully custom-made.

以上の尖L1例はなだれ瑠古層を有するAPDであるが
、なだれ宿倍効果を肩しないフォトダイ万一ド(PO)
こついても、不発明を通用することによって同碌の効果
を得ることができる。
The above cusp L1 example is an APD with an avalanche Ruko layer, but the photodiode (PO) that does not take on the avalanche accommodation effect
Even if you get stuck, you can get the same effect by using non-invention.

ぼた、以上のN t= fllは1nGaAs/InP
系材、科ヲ用いているが、不発明(−こnに限らnるも
ので、互なく、その他の化合吻半辱体に対してもP+ 
子に通用することが可能、であり、7た、英、7i!l
iノリの伝4型とは反対の伝4型に構5双される受元袈
jlこついても、同;求の効果が得られる。
However, the above N t = fll is 1nGaAs/InP
Although it uses materials and materials, it is uninvented (-), and it is not mutually exclusive, and it is P +
It is possible to pass for children, 7ta, English, 7i! l
Even if the Ukemotoke jl is combined with the Den 4 type, which is the opposite of the Den 4 type of I Nori, the same effect can be obtained.

(g)  発明の効果 本発明によれば、以上説明した叩く、牛dt二兇光装置
のへテロエピタキシャル接合、でよって生ずるキャリア
の減速がMmもしくi”を静云さf、るために応答が高
速となり、元入力信号の変調周波σ−出力−流%性が大
幅に収書される。
(g) Effects of the Invention According to the present invention, the deceleration of carriers caused by the above-described heteroepitaxial junction of the dt double phosphor device makes Mm or i'' quiet. The response becomes faster and the modulation frequency σ-output-current ratio of the original input signal is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半4体受光装置の従来例を示す断面図、第2図
(a)及び(b)はそのエネルギ蕃を示す図、第3図は
その変調周波数−出力颯流荷註のし1峰示す図表、第4
図は不発明の実施例を示す断面図、乃5図(a)及び(
b)(グ第一の実施りIJのエネルギ帯テ示す図、第6
0はInGaAsP系屁晶に?ける俗子足郊と糸制帯幅
の組成との相関を示す図、耳7凶(a)及び(b)は第
二の美鳳ザ(1のエネルギ帯を示す詞である。 図に2いて、1はn”F4 I nP 括’f2.2は
n型InGaAs冗吸収層、3はn型I n P h、
’i ffl 1tli、4fdp”領域、11はn+
fi I n P M a、12ばn型InGaAs光
吸収層、13はn型I n G a A s P層、1
4はnuInP層、15はp+領領域16はガードリン
グ、17は絶縁膜、18はp測鑞匝、19はn倶114
0を示す。 L匪ヨ 第 1121
Fig. 1 is a sectional view showing a conventional example of a semi-quadruple light receiving device, Fig. 2 (a) and (b) are views showing its energy range, and Fig. 3 is its modulation frequency-output flow chart. Chart showing peaks, 4th
The figure is a sectional view showing an embodiment of the invention, Figures 5(a) and (
b) (Diagram showing the energy band of IJ in the first implementation, Part 6)
Is 0 an InGaAsP fart crystal? A diagram showing the correlation between the composition of the Sukushi Akiao and the width of the thread belt width. 1 is n”F4 I nP bracket'f2.2 is n-type InGaAs redundant absorption layer, 3 is n-type I nP h,
'i ffl 1tli, 4fdp' area, 11 is n+
fi I n P Ma, 12 is an n-type InGaAs light absorption layer, 13 is an n-type In Ga As P layer, 1
4 is a nuInP layer, 15 is a p+ region 16 is a guard ring, 17 is an insulating film, 18 is a p layer, 19 is an n layer 114
Indicates 0. L Pyo No. 1121

Claims (1)

【特許請求の範囲】[Claims] 所安の票制帯幅を有して元吸収層全湾成する第1の導電
型の肩1の牛篩体、1傭と、該第1の半導体層に接して
設けられ第1の導電型を有する。H2の半導体層と、該
第2の半導体層に接して設けられ前記第1の−i!=々
7体層より大さい宗朋j滑1堤をMするオ、1の導電型
の第3の中4体層と、該@3の半導体層に接して設けら
れた浜2の導−型の第4の半導体、暦とを備え、前記第
20半4よj葎の暴利帯幅がMiJ記第1の中4体層の
系別帯幅以上とさC1かつ、前記第3の半導体層の県副
情嘉以下とされてなることを特徴とする牛4体受元渓燻
A first conductive type shoulder sieve body, which has a uniform band width and forms the entire absorbing layer, and a first conductive layer provided in contact with the first semiconductor layer. Has a type. H2 semiconductor layer, and the first -i! provided in contact with the second semiconductor layer. = 7 layers larger than the 1st layer; a fourth semiconductor of the type C1, and the profit margin width of the 20th half 4th layer is equal to or greater than the system band width of the 1st middle 4th layer of MiJ, and the third semiconductor Genkei smoked with 4 cows, which is characterized by being below the prefectural level of the prefecture.
JP57097952A 1982-06-08 1982-06-08 Semiconductor photo detector Pending JPS58215084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57097952A JPS58215084A (en) 1982-06-08 1982-06-08 Semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57097952A JPS58215084A (en) 1982-06-08 1982-06-08 Semiconductor photo detector

Publications (1)

Publication Number Publication Date
JPS58215084A true JPS58215084A (en) 1983-12-14

Family

ID=14206000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57097952A Pending JPS58215084A (en) 1982-06-08 1982-06-08 Semiconductor photo detector

Country Status (1)

Country Link
JP (1) JPS58215084A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226871A (en) * 1985-07-27 1987-02-04 Mitsubishi Electric Corp Semiconductor element
JPS6428970A (en) * 1987-07-24 1989-01-31 Nec Corp Semiconductor photodetector
JPH01144687A (en) * 1987-11-30 1989-06-06 Nec Corp Semiconductor photodetector
US4974061A (en) * 1987-08-19 1990-11-27 Nec Corporation Planar type heterostructure avalanche photodiode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226871A (en) * 1985-07-27 1987-02-04 Mitsubishi Electric Corp Semiconductor element
JPS6428970A (en) * 1987-07-24 1989-01-31 Nec Corp Semiconductor photodetector
US4974061A (en) * 1987-08-19 1990-11-27 Nec Corporation Planar type heterostructure avalanche photodiode
JPH01144687A (en) * 1987-11-30 1989-06-06 Nec Corp Semiconductor photodetector

Similar Documents

Publication Publication Date Title
US9818893B2 (en) Microstructure enhanced absorption photosensitive devices
JP3425185B2 (en) Semiconductor element
EP0131437B1 (en) Heterojunction avalanche photodiode
JPH065784B2 (en) Avalanche photodetector
JPS62128183A (en) Device with distortion introducing region
JP5090668B2 (en) Semiconductor optical modulator with quantum well structure with increased effective photocurrent generation capability
JPS5984589A (en) Semiconductor photodetector
JP7422922B1 (en) Semiconductor photodetector
EP0223240A2 (en) Silicon germanium photodetector
JPS58215084A (en) Semiconductor photo detector
JPS62259481A (en) Semiconductor light receiving device
JPH07123170B2 (en) Light receiving element
JPS60234384A (en) Electronic avalanche photodetector
JPH051629B2 (en)
JPS63108782A (en) Semiconductor photodetector
JPS59163878A (en) Semiconductor photo detector
JPS60110177A (en) Manufacture of semiconductor photodetector
JPH0437591B2 (en)
JPH04342174A (en) Semiconductor photoelectric receiving element
JPS639163A (en) Semiconductor photodetector
JPH06151940A (en) Semiconductor photodetector
Wang et al. Top-Illuminated Avalanche Photodiodes With Cascaded Multiplication Layers for High-Speed and Wide Dynamic Range Performance
JPH06232443A (en) Superlattice avalanche photodiode and manufacture thereof
WO2022018860A1 (en) Optical receiver
JPS59232470A (en) Semiconductor light receiving element