JPS58214678A - Collective device of wave energy - Google Patents

Collective device of wave energy

Info

Publication number
JPS58214678A
JPS58214678A JP57096279A JP9627982A JPS58214678A JP S58214678 A JPS58214678 A JP S58214678A JP 57096279 A JP57096279 A JP 57096279A JP 9627982 A JP9627982 A JP 9627982A JP S58214678 A JPS58214678 A JP S58214678A
Authority
JP
Japan
Prior art keywords
wave
wave energy
energy recovery
waves
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57096279A
Other languages
Japanese (ja)
Inventor
Hirotada Kasai
宏直 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57096279A priority Critical patent/JPS58214678A/en
Publication of JPS58214678A publication Critical patent/JPS58214678A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/144Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which lifts water above sea level
    • F03B13/145Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which lifts water above sea level for immediate use in an energy converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Revetment (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To improve collective efficiency of wave energy, by arranging a collecting part of the wave energy to an area, in which reflected waves are concentrated, in an incident surface of the wave. CONSTITUTION:In protecting sea walls 23, 23' having recessed curve shaped reflective surfaces 23a, 23'a, reflected waves are concentrated to focuses 35 on the surface of the sea in the vicinity of the center in a small bay formed by said surfaces 23a, 23'a and height of the wave is amplified. Then a collecting part of wave energy is arranged to the focus 35 in this way, collective efficiency of the wave energy can be remarkably increased.

Description

【発明の詳細な説明】 海岸におけろ波浪のエネルギを回収しようとする場合、
海岸または海岸線形状が在来形状のままでは波高が低い
ことが多く、通常波浪エネルギの回収効率が著しく低く
、海象平穏な場合にはエネルギ回収の試みを断念せざる
を得ないことが多い。
[Detailed Description of the Invention] When attempting to recover the energy of waves on the coast,
If the coast or coastline remains in its original shape, wave heights are often low, and wave energy recovery efficiency is usually extremely low, and attempts to recover energy are often forced to be abandoned when sea conditions are calm.

これは波浪のエネルギの海岸線に沿った一部分だけを取
出そうとするために生起する現象である。
This phenomenon occurs because only a portion of the wave energy is extracted along the coastline.

第1図乃至第6図は従来の波浪エネルギ回収装置を示す
ものである。
1 to 6 show a conventional wave energy recovery device.

第1図は港湾の内外に設けられた防波堤の一例を示し、
海底11)上に設けられた捨石マウンド(2)上にコン
クリート製ブロックよりなる防波堤(3)が構築されて
いる。図中(4)は海面線である。
Figure 1 shows an example of a breakwater built inside and outside a port.
A breakwater (3) made of concrete blocks is constructed on a rubble mound (2) provided on the seabed 11). (4) in the figure is the sea level line.

また第2図は港湾内外の陸岸を防護するために設けられ
た防護堤の一例を示し、海底fil上に構築されたコン
クリート製防穫堤(5)の前面には波浪による基礎の洗
掘を防11ユするために消波コンクリートブロック(6
)が抱込まれるか組積されている。
Figure 2 also shows an example of a breakwater built to protect the land shore inside and outside a port. Wave-dissipating concrete blocks (6
) is enclosed or masonry.

第3図は波浪海面に面した陸岸における防護堤、防波堤
の構築個所におけろ従来の波浪エネルギ回収装置を示す
もので、(7)は同エネルギ回収装置を構成する波浪発
電船で、錨鎖(8)を介して海底に素止されている。(
9)は前言己船上に搭載された波浪発電装置類、00)
は発電々力を陸上に送るための海底型カケープル、(1
11は発電々力を利用、若しくは変電配送するために使
用される陸上建築物である。
Figure 3 shows a conventional wave energy recovery device for the construction of breakwaters and breakwaters on land facing the ocean surface. (8) is anchored to the seabed via (
9) is the wave power generation equipment installed on board the previous ship, 00)
is an undersea capeple for transmitting electrical power to land (1
Reference numeral 11 indicates a land-based building used for utilizing electrical power generation or for transforming and distributing electricity.

更に他の波浪エネルギ回収装置として、浮体02I及び
同浮体(121の上下動に対して海底固定の基礎を準備
するたぬの着底塔状構造物(13が配設さねている0図
中(14)は同装置によって得られた電力を陸上に送る
ブこめの送電線、 f151は送電線用鉄塔、(10は
発電々力を第1」用、若しくは変電配送するために使用
される陸」二構築物である。
Furthermore, as other wave energy recovery devices, floating body 02I and the tower-like structure (13 is installed in Figure 0) that prepares the foundation for fixing to the seabed against the vertical movement of floating body 02I and the same floating body (121). (14) is a bulk transmission line that sends the electric power obtained by the device to land, f151 is a transmission line tower, and (10 is a land line used for generating electricity for the first purpose or for transforming and distributing electricity. ” It is a two-construct.

前記した従来の波浪エネルギ回収装置において(す、第
41ツIK示すように沖合より押寄せろ波浪のエネルギ
を、波長純に沿う長さB(波浪エネルギ回収装置のエネ
ルギli=!l収有効幅)の範囲内において一部分回収
しようと才ろものであるが、この場合?7v長λげ勿論
、波高h も当該地点1c自然に打寄せろ波浪のそれで
あって、その地点で回収目標とt「る波浪エネルギは前
記λ及びh によって却定されろ大きさである。
In the above-mentioned conventional wave energy recovery device (as shown in Part 41), the energy of the waves pushing in from offshore is absorbed by the length B along the wavelength net (the energy li of the wave energy recovery device = !l collection effective width) ), but in this case, the wave height h is also that of the wave that crashes naturally at the point 1c, and at that point, the recovery target and t The wave energy is determined by the above-mentioned λ and h.

前記波浪エネルギ回収装置は、従来型式の海岸防蝕堤、
防波堤構造の下で配設使用されるものであり、従って波
浪エネルギ回収点の海面はその近傍の海面と波長、波高
が大同小異であって、この海面に生起する波浪のエネル
ギが回収の対象となる。
The wave energy recovery device is a conventional type of coastal embankment,
It is installed and used under a breakwater structure, and therefore the sea surface at the wave energy recovery point has the same wavelength and wave height as the sea surface in the vicinity, and the energy of waves generated on this sea surface is the target of recovery. .

即ちその海岸海域、湾内海域の広域的な海象のt1′1
位海面々積尚りの有する波浪エネルギが回収の対象とさ
れ、広域的に平穏な海象であれば波浪エネルギ回収の効
率が著しく低下するが、または回収が不可能となる。
In other words, t1'1 of the wide-area sea conditions in the coastal waters and bay waters.
Wave energy possessed by the entire surface of the ocean is the object of recovery, and if the sea conditions are calm over a wide area, the efficiency of wave energy recovery will be significantly reduced, or recovery will become impossible.

即ち波浪の1波長間、幅B、水深Hの内部に含まれろ全
エネルギをEとすると、 E−一ρ9Bh  λ 16       W 但し ρ:水の密度 g:重力の加速度 h :波高 λ:波長 H:水深 であって、波浪エネルギ回収装置附近の広域的な海域の
波高を平均してん とすると、平均してh λに比例し
た波浪エネルギが回収の対象となる。
That is, if the total energy contained within one wave length, width B, and water depth H is E, then E-1 ρ9Bh λ 16 W where ρ: Density of water g: Acceleration of gravity h: Wave height λ: Wavelength H: If we average the water depth and the wave height in a wide area around the wave energy recovery device, wave energy proportional to h λ will be recovered on average.

換言すると海面に分布する波浪エネルギをあるがままに
局部的に抽出することとなり、この際の抜取りの効率は
あるがままの密度の波浪エネルギ分布に全面的に依存す
ることとなり、これを格段に高めろことは困雛である。
In other words, the wave energy distributed on the sea surface will be extracted locally as it is, and the extraction efficiency in this case will depend entirely on the density of the wave energy distribution as it is. It is difficult to raise the level.

本発明はこのような問題点を解決するために提案された
もので、海岸に内陸側に凹入する波浪の反射面を形成し
、同反射面からの前記波浪の反射波の集中する個所に波
浪エネルギ回収部を配設してなることを特徴とする波浪
エネルギ回収装置に係るものである。
The present invention was proposed in order to solve such problems, and it forms a reflection surface for waves that intrude inland on the coast, and provides a reflection surface at a location where the waves reflected from the reflection surface are concentrated. The present invention relates to a wave energy recovery device characterized in that a wave energy recovery section is provided.

本発明においては前記したように、海岸に内陸側に凹入
する波浪の反射面を形成し、同反射面における波浪の反
射波の集中する個所に波浪エネルギ回収部を配設したの
で、波浪エネルギの回収効率が向上されるものであり、
更に前記波浪エネルギ回収部に集中する反射波の同調に
よって波高の重畳が生起し、波高の増幅親象が生起して
、波浪エネルギ回収効率が著しく向上されろものである
As described above, in the present invention, a reflecting surface for waves that intrude inland on the coast is formed, and a wave energy recovery section is disposed at a location where the reflected waves of the waves on the reflecting surface are concentrated. This will improve the collection efficiency of
Further, due to the synchronization of the reflected waves concentrating on the wave energy recovery section, wave heights are superimposed, a phenomenon of wave height amplification occurs, and the wave energy recovery efficiency is significantly improved.

以下本発明を図示の実施例について説明する。The present invention will be described below with reference to the illustrated embodiments.

第5図において、海底(2I)上に施工された捨石マウ
ンド曽上には、海側の面の汀線が内陸側に凹入する円弧
若しくは抛物線若しくはこれらに近似した凹曲面状を呈
する反射面(23α〕に形成されたコンクリート製防護
堤(ハ)が構築されていて、海水と接する面の鉛直断面
は大部分が鉛直に近い直線、若しくは紗徐rc曲線状を
’jc1−てぃろ。図中(2i)はコンクリートタイビ
ーム、 f251は遊歩道、C26+は海面である0 第6図は第5図に示した捨石マウンド及びコンクリート
製防護堤を鋼構造物より構成した、前記反射面(23り
と同一構造の反射面(23′α)を有する鋼製防護光(
23’)で置換した場合を示し、図中(2ηは同鋼製防
護堤(23’)の補強、補剛用内側強度部材、(28j
は同防霞堤碇着用のコンクリートまたは鋼製杭い1)を
貫通させるための筒状部材である。図中前記実施例と均
等部分には同一符号が附されている。
In Figure 5, the rubble mound Sogami constructed on the seabed (2I) has a reflective surface (having a circular arc or parapetal line where the shoreline on the sea side indents inland, or a concave curved surface similar to these). 23α] has been constructed, and the vertical section of the surface in contact with the seawater is mostly a straight line that is close to vertical, or a curved line. Middle (2i) is a concrete tie beam, f251 is a promenade, and C26+ is the sea surface.0 Figure 6 shows the reflective surface (23 A steel protective light (23′α) with a reflective surface (23′α) of the same structure as
23'), and in the figure (2η is the inner strength member for reinforcing and stiffening the same steel protection embankment (23'), (28j
is a cylindrical member for penetrating concrete or steel pilings 1) for use in anchoring the haze barrier. In the figure, parts equivalent to those of the above embodiment are given the same reference numerals.

第7図は前記防護光C231(23’)K向って沖合か
ら波浪が入射した際の状態を示し、例えば破線(30+
で示l、た入射側の波浪は、防護光C2:’J (23
’ )Kおける凹曲面状反射面(23α)(23’α)
上の点Aで反射したのち、実線(31)で示した径路を
進む。即ち海面の波浪も波動の有する一般的な性質を持
っていて、スネル(snell)の法則に従った反射特
性を有するので、前記反射面(23α)(23’りが第
7A図に示す如く揚物反射面の場合、その軸(321方
向から入射したθ(1浪は前記反射面によって反射した
のち、その焦点(2:1に集中てろ。従ってここで波高
の重畳が生起し、波高が増幅される。
FIG. 7 shows the state when waves are incident from offshore toward the protective light C231 (23')K, for example, the broken line (30+
The wave on the incident side, denoted by l, is the protective light C2:'J (23
' ) Concave curved reflective surface at K (23α) (23'α)
After being reflected at point A above, it proceeds along the path shown by the solid line (31). In other words, waves on the sea surface also have the general properties of wave motion, and have reflective characteristics according to Snell's law, so the reflecting surface (23α) (23') In the case of a reflective surface, the wave incident from the axis (321 direction) (1 wave is reflected by the reflective surface and then concentrated at its focal point (2:1).Therefore, superimposition of wave heights occurs here, and the wave height is amplified. Ru.

また第7B図に示す円弧反射面(23α) (23’ 
(Z)の場合、波浪の反射方向の包絡線は尖璋状の集中
を生じ、揚物反射面の年点の場合とは多少異なるが、(
34゛で示f領域附近には矢張り反射方向線の集中度が
著しく高い状態となる。
Further, the arcuate reflective surface (23α) (23'
In the case of (Z), the envelope of the wave reflection direction produces a cuspid-like concentration, which is somewhat different from the case of the year point of the floating object reflecting surface, but (
In the vicinity of the f region shown at 34°, the concentration of arrow-shaped reflection direction lines is extremely high.

第8図は前記防霞堤(23+ (23’ )の反射面(
23α)(23′α)の軸C3Z方向に対して、第7図
の場合と異なる方向から波浪が入射した場合の反射方向
線の集中点(33’ ) (34’ )を概念的に示し
たもので、第8A図に示す揚物反射面(23α)(23
’α)の場合焦点は第7A図のG3)より(33’ )
に移動する。
Figure 8 shows the reflective surface (
23α) (23'α), the concentration points (33') (34') of the reflection direction lines are conceptually shown when waves are incident from a direction different from that in Figure 7. The object reflecting surface (23α) (23
In the case of 'α), the focus is (33') from G3) in Figure 7A.
Move to.

また第8B図に示す円弧反射面(23α)(23’d)
の場合、反射方向線の包絡線位置、形状が移動し、第7
B図の領域S4:は(34’)に移動する。
Also, the arcuate reflective surface (23α) (23'd) shown in Figure 8B
In the case of , the envelope position and shape of the reflection direction line move, and the seventh
Area S4: in figure B moves to (34').

なお海岸に打寄せる波浪は陸岸線とほぼ平行な波頂線を
持つようになり、その進行方向は一時的な強風時を除き
年間を通じてほぼ一定方向に近いとみて差支えない。従
って前記凹曲面状の反射面(23α)(23’α)の軸
t31+を海岸の平均線に対してほぼ垂直方向に指向し
て設置することによって、入射波?lllけ反射後、前
記伸点鄭及び領域(34゛に対応する集中点t3mに集
中する。(第9図及び第10図)前記防護堤23+(2
3’)の如き凹曲面状に形成された小湾状に形成された
反曲面(23α)(23’a)部分の内部では、進入波
と反射後とが干渉する結果定常波が生じろ。従って入射
する波浪で出世、瀕度の最も高い波長に対して防護堤(
231(23’)の反射面(23α)(23′α)波浪
集中点(個との距離を適当に定めてお(と、同集中点0
9が前記定常波の腹部になる頻度を高めることができろ
Furthermore, the waves that hit the coast now have crest lines that are almost parallel to the shoreline, and it is safe to assume that their direction of travel remains almost the same throughout the year, except during periods of temporary strong winds. Therefore, by installing the axes t31+ of the concavely curved reflecting surfaces (23α) (23'α) to be oriented in a direction substantially perpendicular to the mean line of the coast, it is possible to control the incident wave. After 100 seconds of reflection, it is concentrated at a concentration point t3m corresponding to the stretch point 23+(2
A standing wave is generated as a result of interference between the incoming wave and the reflected wave inside the curved surface (23α) (23'a) formed in a small curved shape such as 3'). Therefore, the breakwater (
The reflecting surface (23α) (23'α) of 231 (23') is set at an appropriate distance from the wave concentration point (and the concentration point 0
It is possible to increase the frequency at which 9 becomes the abdomen of the standing wave.

従って第10図に示すように、前記凹曲面状反射面(2
3α)(23’α〕を有する防護堤(231(23Nに
おいて、同反射面によって形成された小湾内の中央附近
の海面の前記集中点(:伺に反射波を集中せしめ、波圓
を増幅せしめることができるので、同集中点(、(51
に波浪エネルギ回収部を配設することによって、波浪エ
ネルギの回収効率を著しく増大せしめることができる。
Therefore, as shown in FIG.
3α) (23'α]) (231 (23N), which concentrates the reflected waves at the concentration point (:) on the sea surface near the center of the small bay formed by the same reflecting surface and amplifies the wave field. Therefore, the same concentration point (, (51
By disposing a wave energy recovery section in the wave energy recovery section, the wave energy recovery efficiency can be significantly increased.

なお簡単な実験に示す処によれば5本装置による波高の
増幅率には数倍というオーダに達することがある。従っ
て前記集中点(351におけろ波浪エネルギは在来の防
護堤の場合に比してん となるので、エネルギ増幅度は
に−2,3,4で夫々4.9.16倍となることが期待
できる。このため従来著しく低かった波浪エネルギ回収
の稼動時間率を格段に高めることができ、このことは波
浪エネルギ回収上、著しく有効であるものと考えられる
A simple experiment shows that the wave height amplification factor of the five-piece device can reach several times the order of magnitude. Therefore, since the wave energy at the concentration point (351) is smaller than that in the case of a conventional breakwater, the energy amplification degree will be -2, 3, and 4, respectively, 4.9.16 times. Therefore, the operating time rate for wave energy recovery, which has been extremely low in the past, can be significantly increased, and this is considered to be extremely effective in terms of wave energy recovery.

更に波浪のエネルギを海岸から至近距離に引寄せて増幅
することにより、発電装置の架構、送電線対策の面で陸
上設備と変らなくなるので、遠距離沖合に波浪発電装置
等を設置する場合に比して著しく有利である。
Furthermore, by drawing wave energy close to the coast and amplifying it, the structure of the generator and the countermeasures for power transmission lines are no different from those on land, making it easier to install wave energy generators far offshore. This is a significant advantage.

以上本発明を実施例について説明したが、本発明は勿論
このような実施例にだけ局限されろものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである0
Although the present invention has been described above with reference to embodiments, the present invention is, of course, not limited to these embodiments, and can be modified in various ways without departing from the spirit of the present invention. 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々従来の防護堤の斜面図、第6図
は従来の波浪エネルギ回収装置の斜面図、第4図は波浪
エネルギの)説明図、第5図及び第6図は夫々本発明に
係る波浪エネルギ回収装置に適用される防護堤の各実施
例を示′1″斜面図、第7A図及び第7B図、第8A図
及び第8B図は夫々前記防護堤の反射面におけろ波浪の
反射状態を示す説明図、第9図は本発明に係る波浪エネ
ルギ回収装置の要部の作用説明図、第10図は本発明に
係る波浪エネルギ回収装置の一実施例を示す斜面図であ
る。 シ3+ (23’) −−一防護堤、(23α)(23
’α)−m−反射面0 復代理人 弁理士岡本重文 外2名 オフ八V 矛7515 オ8A図 才88図
Figures 1 and 2 are slope views of a conventional protection embankment, Figure 6 is a slope view of a conventional wave energy recovery device, Figure 4 is an explanatory diagram of wave energy, and Figures 5 and 6 are The '1'' slope view, Figures 7A and 7B, and Figures 8A and 8B respectively show embodiments of the protection levee applied to the wave energy recovery device according to the present invention. FIG. 9 is an explanatory diagram showing the state of wave reflection in the present invention, FIG. 9 is an explanatory diagram of the operation of the main parts of the wave energy recovery device according to the present invention, and FIG. 10 is an illustration showing an embodiment of the wave energy recovery device according to the present invention. This is a slope diagram.
'α)-m-reflection surface 0 Sub-agent Patent attorney Okamoto important literature and 2 persons off 8 V spear 7515 O 8 A figure 88 figure

Claims (1)

【特許請求の範囲】[Claims] 海岸に内陸測知凹入する波浪の反射面を形成し、同反射
面からの前記波浪の反射波の集中する個所に波浪エネル
ギ回収部を配設してなることを特徴とする波浪エネルギ
回収装置。
A wave energy recovery device comprising: forming a reflecting surface for waves intruding inland on the coast; and arranging a wave energy recovery section at a location where reflected waves of the waves from the reflecting surface are concentrated. .
JP57096279A 1982-06-07 1982-06-07 Collective device of wave energy Pending JPS58214678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57096279A JPS58214678A (en) 1982-06-07 1982-06-07 Collective device of wave energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57096279A JPS58214678A (en) 1982-06-07 1982-06-07 Collective device of wave energy

Publications (1)

Publication Number Publication Date
JPS58214678A true JPS58214678A (en) 1983-12-13

Family

ID=14160680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57096279A Pending JPS58214678A (en) 1982-06-07 1982-06-07 Collective device of wave energy

Country Status (1)

Country Link
JP (1) JPS58214678A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951817U (en) * 1982-09-25 1984-04-05 赤井 功 reflective breakwater
JPS62148705A (en) * 1985-12-24 1987-07-02 Shimizu Constr Co Ltd Wave-amplifying facility
JP2013234545A (en) * 2012-05-11 2013-11-21 Yamashita System Zosaku:Kk Tsunami/tidal wave protection embankment
JP2014152449A (en) * 2013-02-05 2014-08-25 Chugoku Electric Power Co Inc:The Steel tower protection structure
WO2015190297A1 (en) * 2014-06-12 2015-12-17 公立大学法人大阪市立大学 Wave-activated power generation system
CN109268196A (en) * 2018-11-21 2019-01-25 江苏科技大学 A kind of poly- wave reflection multistage wave lens system of floatation type

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951817U (en) * 1982-09-25 1984-04-05 赤井 功 reflective breakwater
JPS62148705A (en) * 1985-12-24 1987-07-02 Shimizu Constr Co Ltd Wave-amplifying facility
JPH0588324B2 (en) * 1985-12-24 1993-12-21 Shimizu Construction Co Ltd
JP2013234545A (en) * 2012-05-11 2013-11-21 Yamashita System Zosaku:Kk Tsunami/tidal wave protection embankment
JP2014152449A (en) * 2013-02-05 2014-08-25 Chugoku Electric Power Co Inc:The Steel tower protection structure
WO2015190297A1 (en) * 2014-06-12 2015-12-17 公立大学法人大阪市立大学 Wave-activated power generation system
CN109268196A (en) * 2018-11-21 2019-01-25 江苏科技大学 A kind of poly- wave reflection multistage wave lens system of floatation type
CN109268196B (en) * 2018-11-21 2024-06-07 江苏科技大学 Floating wave-gathering reflection multistage wave gathering system

Similar Documents

Publication Publication Date Title
Silvester et al. Sines revisited
US10400406B2 (en) Wave dissipation systems, modules and methods for constructing the same
JPS58214678A (en) Collective device of wave energy
WO2011123870A1 (en) Breakwater structure
JP5067703B1 (en) Sea buoyancy type wave absorber and sea wave attenuation system using the same
JP5267440B2 (en) Legged transmission type wave-absorbing structure
JP3197382U (en) Floating structure
KR102542325B1 (en) Buoy-type wave power reduction device
Raju et al. Concrete Caisson For Also Kw Wave Energy Pilot Plant: Design, Construction And Installation Aspects
CN215052632U (en) Novel floating frame breakwater
JPS622151B2 (en)
JPH03129005A (en) Lattice type floating wave suppressing bank incorporating wave power generation
WO1995023895A1 (en) Method and apparatus for focusing wave energy on collecting devices
KR100696066B1 (en) Retaining wall for preventive corrosion
JPS5996313A (en) Sand protecting and breakwater dam
CN114960541B (en) Comprehensive wave-proof type shore protection structure of sea-enclosing dyke
US20230235521A1 (en) Floating wave-attenuation device
JP3247665U (en) Gantry crane type pendulum wave power generator
JP3112741B2 (en) breakwater
SU1017764A1 (en) Marine breakwater arrangement
JPH01190808A (en) Wave elimination and breakwater structure
JPH0823129B2 (en) Double slope breakwater
Neelamani A decade of wave power development in India—the challenges
KR20240078944A (en) Structure to prevent loss of breakwater blocks including tetrapods
Kehnemuyi et al. Breakwater for Atlantic Generating Station