JPS58213922A - Landslide preventive work for soft ground of slope - Google Patents

Landslide preventive work for soft ground of slope

Info

Publication number
JPS58213922A
JPS58213922A JP57094432A JP9443282A JPS58213922A JP S58213922 A JPS58213922 A JP S58213922A JP 57094432 A JP57094432 A JP 57094432A JP 9443282 A JP9443282 A JP 9443282A JP S58213922 A JPS58213922 A JP S58213922A
Authority
JP
Japan
Prior art keywords
ground
soft ground
water
composition
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57094432A
Other languages
Japanese (ja)
Other versions
JPH0160619B2 (en
Inventor
Yuichiro Takahashi
雄一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57094432A priority Critical patent/JPS58213922A/en
Publication of JPS58213922A publication Critical patent/JPS58213922A/en
Publication of JPH0160619B2 publication Critical patent/JPH0160619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Abstract

PURPOSE:To economically prevent the landslide of the ground in a short time by a method in which pipe wedges are driven into the landslide portion of sloped soft ground on rock-bed, the surrounding ground of the pipe wedges is solidified, and ground water around the pipe wedges is discharged to the ground's surface. CONSTITUTION:Plural pipe wedges 3 are set with rods in the boundary area between soft ground 2 distributed on sloped rock-bed 1 and the rock-bed 1 and a water-permeable structure 8 through which water around the pipe wedges 3 is discharged to the ground's surface is provided from the boundary of the soft ground 2 to the ground's surface. Then, the soft ground in and aroung the boundary of the soft ground 2 is solidified around the pipe wedges 3.

Description

【発明の詳細な説明】 この発明は、固結し1こ岩盤上に接して未固結の軟弱地
盤が分布しているような、傾斜地の軟弱地盤に発生する
地盤破壊の防止−工法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a construction method for preventing ground failure that occurs in soft ground on a slope where unconsolidated soft ground is distributed in contact with consolidated rock.

一般に、固結した岩盤上に接して未固結の軟弱地盤が分
布していりような傾斜地の地盤条件で、さらに地盤の境
界部または軟弱地盤中に、降雨時や融雪時などKfi透
水や地下水が流下して複数規模で多面構造の伏流水が形
成されている場合、これらの境界部を破壊面として地盤
崩壊や地上りなどの災害が発生する例が多い。
In general, in the ground condition of a slope where unconsolidated soft ground is distributed in contact with the consolidated bedrock, Kfi permeation and groundwater may occur at the boundary of the ground or in the soft ground during rain or snow melting. When water flows down to form underground water with multiple scales and multifaceted structures, there are many cases in which disasters such as ground failure and ground failure occur with these boundaries serving as failure surfaces.

上記地盤崩壊や地上りの発生箇所乞しらべてみると、地
形的には平地から山地にかかるような傾斜地に多発して
おり、上記地盤条件に加えて地下水の条件が加わって発
生している例が多(認められる。
When we examine the locations where the above ground collapses and ground failures occur, we find that they frequently occur on slopes ranging from flatlands to mountains, and are often caused by groundwater conditions in addition to the above ground conditions. There are many (accepted).

そこで、傾斜地の軟弱地盤における地盤崩壊や地上り等
の発生を防止する従来の対策工法には、(イ)、軟弱地
盤層の一部を入れ換える置換工法、(ロ)、杭打工法、
0→、杭打工法と水平方向に穿孔されろ水抜きのための
排水ポーリング等、種々の対策工法が用いられているが
、上記いずれの工法でも、軟弱地盤が5〜10m以上の
厚さで広範囲に分布しているような場合には、何らかの
地盤処理を行なわずに直接用エイることは技術的にも、
経済的にも困難なことであり、殊に杭打工法では軟弱層
が厚い程長尺の杭を必要と丁7)ため、傾斜地に大型の
重機類を搬入するための搬入路Zつ(つ1こり、施工機
械の足場を確保し1こり、或いは仮設工事ン施工″vる
ことが極めて困難である。仮に長尺の杭暑打設するごと
ができγことしても、軟弱地盤を構成している軟弱土が
地下水の条件によって泥状になり、杭間2丁り抜けて打
設杭による抑止力の効果が減殺されがちである。
Therefore, the conventional countermeasure methods for preventing the occurrence of ground collapse and ground failure in soft ground on slopes include (a) replacement method of replacing a part of the soft ground layer, (b) pile driving method,
0 → Various countermeasure construction methods are used, such as pile driving method and drainage polling by drilling holes in the horizontal direction to drain drainage water, but all of the above construction methods do not work if the soft ground is 5 to 10 meters thick or more. In cases where it is widely distributed, it is technically impossible to use it directly without any kind of ground preparation.
This is economically difficult, especially with the pile driving method, which requires longer piles as the soft layer becomes thicker. It is extremely difficult to secure a foothold for the construction machine and carry out temporary construction work.Even if long piles could be driven hot, the ground would be soft Depending on the groundwater conditions, the soft soil in the ground becomes muddy and tends to slip through between the two piles, reducing the deterrent effect of the driven piles.

まfこ、これらの対策として地盤改良による場合、軟弱
±7改良しようとしても、傾斜しTこ地盤中7流れる地
下水の流下を妨げれば、背後にタームアツプする恐れが
あ勺ので、かえって危険な状態?招くことKなろ。
However, if ground improvement is used as a countermeasure for these problems, even if an attempt is made to improve the soft ground by ±7, if the ground slopes and obstructs the flow of groundwater into the ground, there is a risk of term ups occurring behind the ground, which can be dangerous. situation? It's okay to invite.

ま1こ、多面構造の地下水層から効果的に排水させるに
は、水平方向に限られた少数規模の穿孔では必らずしも
水抜きが十分に行なわれず、多数孔のポーリングで穿孔
しない限り十分な排水7行7..Cうことは困難である
。特に排水ポーリングによって穿孔し1こ後は空間がで
きろりで、土庄や流入’1’−る土砂で埋まり易く、一
般には有孔の塩ビ管等が挿入されているが、長期間経過
すると次第に通水能力が失われて排水機能が低下Tるこ
とは避けられブエいことである。
First, in order to effectively drain water from a groundwater aquifer with a multifaceted structure, a small number of holes limited to the horizontal direction will not necessarily drain water sufficiently, and unless drilling is done by drilling multiple holes. Adequate drainage 7 lines 7. .. It is difficult to do so. In particular, after the first hole is drilled by drainage poling, there is a space that is easily filled with soil and sand that flows in. Generally, a perforated PVC pipe is inserted, but after a long period of time, it gradually becomes clear. It is inevitable that the water capacity will be lost and the drainage function will deteriorate.

しかるに、傾斜地の軟弱地盤における地盤崩壊や地上り
等の発生乞防止する対策の基本は、地下排水をもつとも
効果的に行なうことであり、この地下排水乞有効に行な
うには、施工中に対象地盤欠食く乱丁ことな(、穿孔等
によって排水孔となる空間部ケつくらずにそのま瓦透水
性の拐料で置換することであり、しかも、これらの施工
を必要な範囲に亘って平面的な拡がりをもたせるととも
に、垂直的にも岩盤層に達する全深度で相互に連結し合
った構造の排水施設乞形成することができれば、上述し
た地盤崩壊や地上りの対策として最も望ましいことであ
る。
However, the basis of measures to prevent the occurrence of ground collapse and ground failure on soft ground on slopes is to effectively implement underground drainage. The method is to replace the tiles with water-permeable filler instead of creating spaces that will serve as drainage holes by drilling holes, etc. It would be most desirable as a countermeasure against the above-mentioned ground failure and ground failure if drainage facilities could be constructed with a structure that expands and is interconnected vertically at the full depth reaching the bedrock layer.

この発明は、上述した従来工法による欠点や問題At解
決したものであって一つには、傾斜地の軟弱地盤に発生
する地盤破壊や地上り馨未然に防止する防災工法と、も
う一つには、災害で被災した地盤ン早急に復旧させろ1
、二めの工法とを目的とし、固結しに岩盤上に軟弱地盤
が分布する傾斜地において、上記岩盤と軟弱地盤の境界
部を中心とし1こ所定の範囲にパイプくさび乞設置する
第一工程と、上記パイプくさびを設置し1こ軟弱地盤中
に地盤破壊の原因となる地下水ン対象地盤外に排除する
ことと第三工程の地盤注入で脱水されて(ろ間隙水の排
水路とする1こめの排水網ヶ形成させろ透水性未固化組
成物を用いた地盤注入ケ行なう第二工程と、上記打設し
たパイプ(さびを中核にしてパイプ(さびの周囲に固化
用組成物を注入してパイプくさびの周囲7取点的に改良
強化する第三工程との三工8χ連続的に施工することに
よって得られる傾斜地の軟弱地盤に発生する地盤破壊の
防止工法欠提供するものである。
This invention solves the above-mentioned drawbacks and problems of the conventional construction methods.One, it is a disaster prevention construction method that prevents ground failure and ground failure that occur on soft ground on slopes, and the other is , restore the ground damaged by the disaster as soon as possible 1
For the purpose of the second construction method, the first step is to install a pipe wedge in a predetermined area centered on the boundary between the bedrock and soft ground on a slope where soft ground is distributed on the bedrock for consolidation. Then, the above pipe wedge is installed to remove the groundwater that causes ground failure in the soft ground outside the target ground, and the third step is to drain the water (filtered water into a drainage channel for pore water). The second step involves injecting the water-permeable unsolidified composition into the ground to form a drainage network in the rice field, and then injecting the solidifying composition into the pipe (with the rust as the core). The present invention provides a method for preventing ground failure that occurs in soft ground on a slope, which is obtained by continuously constructing a third process of improving and strengthening the pipe wedge at seven points around the pipe wedge.

以下、この発明による工法ン添付した図面を参照して詳
細に説明する。
Hereinafter, the construction method according to the present invention will be described in detail with reference to the attached drawings.

まず、この発明によるt6−エ程では、第1図に示すよ
5に平地から山地にかかる傾斜地で固結した岩盤1上に
未固結の軟弱地盤2か分布している場合、岩盤1と軟弱
地盤2を縫合させて一体化するfこめ、必要とする所定
の範囲に限定して第2図ないし第3図に示すようなパイ
プくさび3を設置するものである。
First, in the t6-E step according to the present invention, as shown in FIG. In order to integrate the soft ground 2 by suturing it together, pipe wedges 3 as shown in FIGS. 2 and 3 are installed only in a necessary predetermined area.

一般に第1図に示すような1頃斜地の軟弱地盤では、主
として岩盤1と軟弱地盤2との境界面に清って地下水か
流下する例が多く、a−a’ 線、又はb−b’線が地
盤破壊面又は予想されろ地盤破壊向である。
In general, in soft ground with a slant as shown in Figure 1, there are many cases where clean groundwater flows down mainly to the interface between bedrock 1 and soft ground 2, and the line a-a' or b-b ' line is the ground failure plane or expected ground failure direction.

従来技術では、大型の施工機械を用いて設計上必要とさ
れる深度まで長尺の杭乞打設しなければならなかったが
、この発明による工法では、自走機能を有する小型のポ
ーリング機械を使用して容易にパイプ(さび6の設置地
点に移動可能であl)、あらかじめ事前の設計で安定度
を検討した材質と必要な強度を備えたパイプ(さび乙に
ロッド4を継足して、計画した所定の深度にセットでき
ろようにしたことである。この場合、パイプくさび3の
長さは地盤破壊の起る可能性のある範囲の長さ、又は丁
でに地盤破壊7起した範囲と将来予測されろ範囲を含め
1こ長さとし、パイプ(さび3にロッド4を接続するに
は第2図に示すように、パイプくさび3の上端接続部3
aに固着され1こ固定ピン5をロッド4の下端接続部に
形成しTこ係合溝4aに嵌めこむことによってなされる
In the conventional technology, long piles had to be driven to the depth required by the design using a large construction machine, but with the construction method of the present invention, a small polling machine with a self-propelled function is used. A pipe that is easy to use and move (can be moved to the installation point of the rust 6), made of a material whose stability has been considered in advance in the design, and a pipe with the necessary strength (by adding the rod 4 to the rust, In this case, the length of the pipe wedge 3 is the length of the range where ground failure is likely to occur, or the range where ground failure has occurred. In order to connect the rod 4 to the pipe (wedge 3), the upper end of the pipe wedge 3 should be
This is accomplished by forming a single fixing pin 5 fixed to the rod 4 at the lower end connection portion of the rod 4 and fitting it into the T engagement groove 4a.

なお、上記パイプくさび6の先端部には掘削用のビット
6が固着され、内部には補強用鉄筋7が適宜組、み込ま
れている。
An excavation bit 6 is fixed to the tip of the pipe wedge 6, and reinforcing reinforcing bars 7 are appropriately set and inserted inside.

つぎに、上記第一工程につづいて行なわれる第二工程で
は、岩盤1と軟弱地盤2の境界部または、軟弱地盤2火
流れる地下水を排除するためパイプくさび6ケ設置しγ
こ周辺の所定範囲に透水性の未固化組成物からなる注入
液を用いて地盤注入を行/工うことにより、はぼ垂直方
向に形成される複数の板状の透水性構造体8が形1或さ
れる。
Next, in the second step that is carried out following the first step, six pipe wedges are installed at the boundary between the bedrock 1 and the soft ground 2, or in order to exclude groundwater flowing through the soft ground 2.
By injecting/constructing the ground into a predetermined area around this area using an injection liquid made of a water-permeable unsolidified composition, a plurality of plate-shaped water-permeable structures 8 formed in a substantially vertical direction are formed. 1 will be given.

上記透水性構造体8は前記地I−境界部まγこは軟弱地
盤2を流れる地下水乞排水させろとともに、後述丁本第
三工程で脱水されてくる間隙水の排水路として機能する
ことになる。
The permeable structure 8 functions as a drainage channel for the groundwater flowing through the soft ground 2 at the boundary between the ground I and the ground, and also as a drainage channel for pore water that is dewatered in the third step described below. .

ここで上記未固化組成物からなる注入液の特徴は、地盤
注入中に所定の範囲に網状に拡散する間は粘性ケ有して
注入中に最小限度必要とされる流動性を保持しており、
計画しTこ範囲に網状の排水系である透水性構造体6が
形成されTこ後は、未固化組成物中の流動性付加材料が
排水の妨げにならないようにするため、付加材料だけが
できるだけ短時間の間に地下水と一緒に流出して、注入
材本体の排水機能が損なわれないようにし1こことであ
り、地下水に混入しても無公害な付加材料が選定される
。丁なわち、この発明に供されろ未固化組成物は、種々
の実験の結果、組成物の主成分として粒径0,2闘〜0
.5wnの間に分布し重量四分率が80チ以上を占めろ
砂を用い、これに注入中、必要とされる最少限の流動性
をも1こせる1こめ補助組成物として澱粉類やセルロー
ズなどの易分解性高分子膠質有機物と水ン加えたもので
あって、それぞれの配合割合は車量比で 砂、補助組成物:水=1:0.002〜0.004 :
0.563〜0786とすることが最良である。
Here, the characteristics of the injection liquid made of the above-mentioned unsolidified composition are that it remains viscous while being dispersed in a network in a predetermined area during ground injection, and maintains the minimum required fluidity during injection. ,
After the permeable structure 6, which is a net-like drainage system, is formed in the planned area, only the additional material is removed in order to prevent the fluid added material in the unsolidified composition from interfering with drainage. An additional material is selected to prevent it from flowing out together with groundwater in as short a time as possible and impairing the drainage function of the injection material itself, and which does not cause pollution even if it mixes with groundwater. In other words, as a result of various experiments, the unsolidified composition used in the present invention has a particle size of 0.2 to 0 as the main component of the composition.
.. Using sand with a weight distribution of 80 mm or more and having a weight quarter of 80 cm or more, starch, cellulose, etc. are added as auxiliary compositions to provide the required minimum fluidity during pouring. The easily decomposable polymer colloid organic material and water are added, and the mixing ratio of each is sand, auxiliary composition: water = 1: 0.002 to 0.004:
It is best to set it between 0.563 and 0786.

さらに上記第二工程につづいて行なわれろ第三工程では
、楊一工程でパイプ(さび3を設置して固定させ、第二
工程で未固化組成物を注入して網状の透水性構造体8を
形成し1こ後、−上記パイプくさび6と透水性構造体8
との周辺に同化用組成物からなる注入液を集中的に注入
して強化構造体9が形成され、パイプくさび5を設置し
1こ範囲の軟弱地盤か改良強化されろものであり、上記
第一工程から第三工程までの三つの工程を有機的に連続
して行なうことにより、最終的に岩盤1と軟弱地盤2と
?一体的に縫合し強度的にも、水理的にも安定した地盤
構造とするものである。
Furthermore, in the third step, which is carried out following the second step, the pipe (rust 3) is installed and fixed in the first step, and the unsolidified composition is injected in the second step to form the net-like water permeable structure 8. After forming - the pipe wedge 6 and the permeable structure 8;
A reinforcing structure 9 is formed by intensively injecting an injection liquid made of an assimilating composition around the area, and a pipe wedge 5 is installed to improve and strengthen the soft ground in this area. By organically performing the three processes from the first process to the third process, the final result is rock 1 and soft ground 2. It is sewn together to create a ground structure that is both strong and hydraulically stable.

以下、この発明による工法の第一工程から第三工程まで
の三つの工程ケ第4図(イ)、仲)、←Jにもとづいて
詳細に説明する。
Hereinafter, the three steps from the first step to the third step of the construction method according to the present invention will be explained in detail based on FIGS.

図において第4図(イ)はこの発明による第一工程であ
り、パイプ(さび6が岩盤1と軟弱地盤2と馨縫合する
如く設置され1こ状態であり、つづいて第二工程でパイ
プくさび3乞設置した周辺の所定範囲に透水性の未固化
組成物からなる注入iv用いて地盤注入7行なうことに
より、はぼ垂直方向に板状の透水性構造体が形成される
1、つぎに第4図(ロ)に示す如(、パイプくさび3の
内外部に同化組成物が集中的に注入充填されてパイプ(
さび乞設置した範囲の軟弱地盤の改良強化がなされるも
のであり、その後パイプくさび6の上方のロッド4が切
り離されて抜きとられろ。第4図(]→はこの発明によ
る工法で地盤排水とパイプ(さび周辺部の改良強化かな
され1こ状態を示す説明図であり、軟弱地盤2は、パイ
プくさび3によって岩盤1と縫合されるとともに、この
パイプ(さびろと地盤排水との周辺部が同化組成物で強
化されTこ強化構造体?となり、この強化構造体90周
辺部は、透水性未固化組成物による透水性構造体8とな
り、地下水の排水が効果的になされるものである。
In the figure, Fig. 4 (a) shows the first step according to the present invention, in which the pipe (the wedge 6 is installed so as to be connected to the bedrock 1 and the soft ground 2), and then in the second step, the pipe wedge is A plate-shaped water-permeable structure is formed in a vertical direction by performing ground injection (IV) of a water-permeable unsolidified composition in a predetermined area around the installation. As shown in FIG.
The soft ground in the area where the pipe wedge has been installed will be improved and strengthened, and then the rod 4 above the pipe wedge 6 will be separated and removed. Figure 4 (]→ is an explanatory diagram showing the state of ground drainage and pipes (improved and strengthened around the rust) using the construction method according to the present invention, where the soft ground 2 is sutured to the bedrock 1 by the pipe wedge 3. At the same time, the surrounding area of this pipe (Sabiro and ground drainage) is reinforced with an assimilated composition to form a reinforced structure 90, and the surrounding area of this reinforced structure 90 is a water permeable structure 8 made of a water permeable unsolidified composition. Therefore, underground water can be effectively drained.

以上詳細に説明したように、この発明の工法によれば、
短時間で経済的な方法で傾斜地の軟、弱地盤に発生する
地盤崩壊を防止すること力(苛コ能であり、集中豪雨や
融雪期などにおける異常間隙水圧の発生又は降雪期の積
雪による偏荷重や集中荷重に耐えて、地盤崩壊ン未然に
防止し1こり、或いは災害によって破壊した地盤馨早急
に復旧することができろものである。
As explained in detail above, according to the construction method of this invention,
The ability to prevent ground failures that occur in soft and weak ground on slopes in a short time and economically. It should be able to withstand loads and concentrated loads, prevent ground collapse, and quickly restore ground that has been destroyed by a disaster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すものであって、傾斜
地の軟弱地盤の改良状態乞示すρi而面、第2図はこの
発明に使用されるパイプ(さびの一部乞しめしTこ9イ
・1祝図、第6図は第2図の連結状態乞示す斜視図、第
4図はこの発明による工程を説明する断面図である。 1・・・岩盤、2・・・軟弱地盤、6・・・パイプくさ
び、4・・・ロッド、5・・・固定ピン、6・・・ビッ
ト、7・・・補強用鉄筋、8・・・透水性構造体、?・
・・強化構造体。 特許出願人 高 橋 雄一部
Figure 1 shows an embodiment of the present invention, showing the state of improvement of soft ground on a slope. Figure 6 is a perspective view showing the connected state of Figure 2, and Figure 4 is a sectional view explaining the process according to the present invention. 1... Rock, 2... Soft ground. , 6... Pipe wedge, 4... Rod, 5... Fixed pin, 6... Bit, 7... Reinforcement bar, 8... Water permeable structure, ?-
...Reinforced structure. Patent applicant Yuichi Takahashi

Claims (1)

【特許請求の範囲】 tll  固結した岩盤上に軟弱地盤が分布する傾斜地
において、上記岩盤と軟弱地盤の境界部を中心としγこ
所定の範囲にパイプくさびを設置する第一工程と、上記
パイプくさびを設置した軟弱地盤中に地盤破壊の原因と
なる地下水を対象地盤外に排除する目的と第三工程で行
う地盤注入によって脱水されてくる間隙水の排水路とす
るための排水網を形成させる透水性未固化組成物ケ用い
た地盤注入を行なう第二工程と、上記設置したパイプく
さびを中核にしてパイプ(さびの周囲に同化用組成物を
注入してパイプくさびの周囲の地盤乞集中的に改良強化
する第三工程とにより、上記傾斜地における軟弱地盤の
改良強化2行なうことを特徴とjる傾斜地の軟弱地盤に
発生する地盤破壊の防止工法。 (2)上記軟弱地盤ン改良強化する第二工程において、
軟弱地盤中に注入されて排水網を形成させる透水性未固
化組成物は、粒径0.2yn+n〜05−の間に分布し
重量ば分率80%以上馨占めろ砂と、澱粉類やセルロー
ズなどの易分解性高分子膠質有機物からなる補助組成物
と、上記砂と補助組成物を液状にする1こめの水とから
なり、上記砂、補助組成物、及び水の配合割合乞重量比
で1対0.002〜0004対056ろ〜0786にし
たこと乞特徴とする特許請求の範囲第1項記載の傾斜地
の軟弱地盤に発生する地盤破壊の防止工法。
[Claims] tll A first step of installing a pipe wedge in a predetermined range around the boundary between the bedrock and the soft ground on a slope where soft ground is distributed on solidified bedrock; A drainage network is formed in the soft ground where wedges are installed to remove groundwater that can cause ground failure out of the target ground, and to serve as a drainage channel for pore water that will be dehydrated by ground injection in the third step. The second step involves injecting the water-permeable unsolidified composition into the ground, and pouring the assimilating composition into the pipe around the pipe wedge installed above (by injecting the assimilating composition around the pipe wedge into the ground). A method for preventing ground failure that occurs in soft ground on a slope, characterized in that the third step is to improve and strengthen the soft ground on the slope. (2) The third step to improve and strengthen the soft ground. In the second step,
The water-permeable unsolidified composition injected into soft ground to form a drainage network consists of sand, starch, and cellulose, which has a particle size distribution of between 0.2yn+n and 05-05-0, and has a weight fraction of 80% or more. It consists of an auxiliary composition consisting of an easily decomposable high-molecular colloidal organic substance such as, and one cup of water to liquefy the sand and the auxiliary composition, and the proportions of the sand, auxiliary composition, and water are as follows: 1: 0.002-0004: 056-0786 The method for preventing ground failure occurring in soft ground on a slope as claimed in claim 1.
JP57094432A 1982-06-02 1982-06-02 Landslide preventive work for soft ground of slope Granted JPS58213922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57094432A JPS58213922A (en) 1982-06-02 1982-06-02 Landslide preventive work for soft ground of slope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57094432A JPS58213922A (en) 1982-06-02 1982-06-02 Landslide preventive work for soft ground of slope

Publications (2)

Publication Number Publication Date
JPS58213922A true JPS58213922A (en) 1983-12-13
JPH0160619B2 JPH0160619B2 (en) 1989-12-25

Family

ID=14110076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57094432A Granted JPS58213922A (en) 1982-06-02 1982-06-02 Landslide preventive work for soft ground of slope

Country Status (1)

Country Link
JP (1) JPS58213922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075283A (en) * 2006-09-19 2008-04-03 Dam Gijutsu Center Landslide prevention method
JP2013194418A (en) * 2012-03-19 2013-09-30 Kyokado Kk Earthquake-proof and soil pressure resistant structure
JP2019131964A (en) * 2018-01-29 2019-08-08 鹿島建設株式会社 Flow suppressing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075283A (en) * 2006-09-19 2008-04-03 Dam Gijutsu Center Landslide prevention method
JP2013194418A (en) * 2012-03-19 2013-09-30 Kyokado Kk Earthquake-proof and soil pressure resistant structure
JP2019131964A (en) * 2018-01-29 2019-08-08 鹿島建設株式会社 Flow suppressing method

Also Published As

Publication number Publication date
JPH0160619B2 (en) 1989-12-25

Similar Documents

Publication Publication Date Title
DE69736200T2 (en) LOCAL CONSTRUCTION OF A PROTECTION TANK UNDER A RADIOACTIVE OR HAZARDOUS STORAGE
CN103958780B (en) The method for forming cementing retaining wall
CN108797598A (en) The construction technology of pre-loaded support struts in a kind of deep basal pit
DE69635549T2 (en) METHOD AND DEVICE FOR ESTABLISHING ENDLESS UNDERGROUND WALLS
US20140154012A1 (en) Assembled mud-rock flow debris dam and construction method thereof
CN111364486B (en) Remediation and reinforcement device and method for emergency rescue of slide-resistant pile side slope
CN107489106B (en) A kind of rocky bed subaqueous bearing platform construction method
CN105040707B (en) Combine the construction method of close pile deep foundation pit support building enclosure
JPS58213922A (en) Landslide preventive work for soft ground of slope
JPH11229418A (en) Underground water recharge method in earth-retaining wall composed of steel pipe column row
JPS5998933A (en) Prevention of landslide
JP4612356B2 (en) How to create a slope
CN112813996A (en) Construction method of deepwater cast-in-place concrete cofferdam
JP2835799B2 (en) Construction method of continuous underground water barrier with pumping well
Kulkarni et al. Lining of Irrigation Canals and Economics of Lining, the Review and Selection of Lining
KR102625776B1 (en) Construction method of CIP retaining wall with improved water protection and ground subsidence prevention function
CN114775620B (en) Construction method for progressive excavation of plain riverbank under mucky soil condition
DE864685C (en) Procedure for lowering and lining pigs
JP3841679B2 (en) Ground improvement method
JP2524579B2 (en) Reinforcement method of existing retaining wall under water surface
EP1067243A2 (en) Catchment basin for above ground water and construction method thereof
EP1637658A2 (en) Method for renovating and securing a deich
Bell et al. Control of groundwater by exclusion
RU2283915C1 (en) Bank-protective structure erection method
Walker DSM saves the dam