JPS58213825A - Reinforcing method of spring steel - Google Patents

Reinforcing method of spring steel

Info

Publication number
JPS58213825A
JPS58213825A JP9801982A JP9801982A JPS58213825A JP S58213825 A JPS58213825 A JP S58213825A JP 9801982 A JP9801982 A JP 9801982A JP 9801982 A JP9801982 A JP 9801982A JP S58213825 A JPS58213825 A JP S58213825A
Authority
JP
Japan
Prior art keywords
temp
steel
tempering
stage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9801982A
Other languages
Japanese (ja)
Other versions
JPH0123524B2 (en
Inventor
Akira Ono
明 大野
Hiroshi Koyama
博 小山
Toyoyuki Tono
東野 豊之
Akira Tange
彰 丹下
Tomohiko Ayada
倫彦 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP9801982A priority Critical patent/JPS58213825A/en
Publication of JPS58213825A publication Critical patent/JPS58213825A/en
Publication of JPH0123524B2 publication Critical patent/JPH0123524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain spring steel which is increased in strength by tempering the spring steel which is subjected to a hardening treatment in a prescribed temp. range, tempering the same in the temp. region where the change in the 3rd stage arises or the temp. below said region and subjecting the steel to shot peening simultaneously in the tempering process. CONSTITUTION:Electricity is conducted through electrodes 2, 3 to the spring steel A which is subjected beforehand to coiling and a hardening treatment to heat the steel quickly in a short time, for example, for about 30sec, and the steel is tempered at the temp. at which the change in the 3rd stage of the tempering arises or the temp. below said temp. The temp. in this case is <=350 deg.C, more preferably about 200-250 deg.C with middle carbon steel. The heating speed, heating temp., holding time, etc. in this stage are controlled with a computer 3 for control in accordance with the surface temp. of the steel A while aid temp. is detected with a temp. measuring device 4. Shot peening devices 5, 5 are operated simultaneously in the above-described tempering stage to apply warm peening to the steel with the prescribed coverage, arc height and projection time controlled with the computer 3, whereby the intended spring steel is obtained.

Description

【発明の詳細な説明】 本発明は、コイルばねや板ばね、自動車用スタビライプ
等に使用されるばね用鋼を高強度化させる方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the strength of spring steel used in coil springs, leaf springs, automobile stabilizer bars, and the like.

従来、ばね用鋼の耐疲労性を向上させる目的でショット
ピーニングを施すことが知られている。
Conventionally, it has been known to subject spring steel to shot peening for the purpose of improving its fatigue resistance.

この種のピーニング加工法としては、一般に、■ 焼入
れ・焼もどしを行なったソルバイト組織のばね鋼に常温
下でピーニングを加える方法と、 ■ 焼入れ・焼もどしを行なったソルバイト組織のばね
鋼を、焼もどし後に200〜400℃の温間域でピーニ
ングを加える方法がある。
Generally speaking, this type of peening process is: ■ peening quenched and tempered spring steel with a sorbite structure at room temperature, and ■ peening quenched and tempered spring steel with a sorbite structure. There is a method of adding peening in a warm range of 200 to 400°C after reconstitution.

これらはいずれもソルバイト組織をマトリックス(母体
)としたものであって、硬く強靭であるため一般ばね用
としては充分な性質を有している1、シかしながら近時
、車輛用ばねの軽駄化等を図る目的で、より高強度なば
ね用鋼が要求されておυ、従来のばね鋼では高強度ばね
を得る上で比例限や耐へたlea耐疲労性等の機械的性
質に多少難点があった。
All of these have a sorbite structure as a matrix, and are hard and strong, so they have sufficient properties for general springs1. Higher strength spring steel is required for the purpose of reducing waste, etc., and conventional spring steel has problems with mechanical properties such as proportionality limit and fatigue resistance in order to obtain high strength springs. There were some difficulties.

ところで焼入れされた鋼を焼もどしする場合、焼もどし
温度を種々に変化させて機械的性質を測定すると、単な
る温度による両道的な変化の他に、第1段階、第2段階
8第3段階と呼ばれる特異な変化が見られることが知ら
れている。これら各段階を生じる温度は、例えば中炭素
鋼では、第1段階は200℃以下、第2段階は200〜
300℃付近、第3段階は250℃以上で生じるのであ
る。
By the way, when tempering hardened steel, if you measure the mechanical properties by varying the tempering temperature, you will notice that in addition to the two-way change due to temperature, there are also changes in the first stage, second stage, eight third stage, and so on. It is known that unique changes called so-called For example, in medium carbon steel, the temperature at which each of these stages occurs is 200°C or less in the first stage, and 200°C or less in the second stage.
The third stage occurs at around 300°C and above 250°C.

すなわち、第1段階では変態転位の炭素原子による固着
と炭化物の析出により、破断応力。
That is, in the first stage, rupture stress occurs due to fixation of transformation dislocations by carbon atoms and precipitation of carbides.

降伏応力、比例限の−F昇が見られる。また、第2段階
では残留オーステナイトが低炭素マルテンサイトと6炭
化物に分解(7、硬化を伴なう。
Yield stress and -F increase in proportional limit are observed. In the second stage, retained austenite decomposes into low carbon martensite and hexacarbide (7, accompanied by hardening).

更に第3段階に至るとC炭化物が浩解し、セメンタイト
が析出する。この段階で弾性限界は極大を示す。
Further, in the third stage, C carbide is dissolved and cementite is precipitated. At this stage, the elastic limit reaches its maximum.

第1図は中炭素鋼の場合の焼もどし温度と各機械的性質
の関係分示す実測例であって、aは破断応力、bは降伏
応力、0は比例限、dは破断塑性伸び分水して−る。こ
の実測例からも明らかなように、ばね用銅として重要な
降伏応力すと比例限Cは焼もどし温度が150℃を越え
る句近から高捷り、250℃のとき、つまシ第2段階の
温度域のところに最大価があり、しかも疲れ強さに悪影
響を及はす破断塑性伸びdは、第3段階で俵小となるこ
とが判る。
Figure 1 is an actual measurement example showing the relationship between the tempering temperature and each mechanical property for medium carbon steel, where a is the breaking stress, b is the yield stress, 0 is the proportional limit, and d is the plastic elongation at break water. I'm doing it. As is clear from this measurement example, the proportional limit C of the yield stress, which is important for copper for springs, becomes high when the tempering temperature exceeds 150°C, and when the tempering temperature is 250°C, the second stage of It can be seen that the plastic elongation at break d, which has a maximum value in the temperature range and has an adverse effect on fatigue strength, becomes small in the third stage.

一方、ショットピーニングを施こす場合の温度と残留応
力との関係は、実測によると第2図に示すようになる。
On the other hand, the relationship between temperature and residual stress when shot peening is actually measured is as shown in FIG. 2.

すなわち、室温でショットピーニングを行なった場合の
残留応力e(実線で示す曲線)が最も大きく、温度が上
昇するほどピーニング効果が漸減することが判る。(曲
線f・・300℃時9曲線g・・350℃時1曲線h・
・400℃時) 特に350℃以上では室淵下でのピーニングに比べてか
なり効果が低下する。つまり、鋼表面に圧縮残留応力を
生じさせるためには、なるべく室温に近く、少なくとも
350℃以下好捷しくけ300℃以下の温度でピーニン
グを行なうことが必要である。本発明者らは、このピー
ニングの残留応力による強面向上に加えて前記した焼も
どし温度組織変化が機械的性質に及ぼす影響に着目し、
焼もどし温度を第3段階変化を生じる温度までとし、こ
の焼もどし過程で焼もどしと同時にピーニングを施すこ
とによシ、表面層に強加工を与え、炭化物の微細析出の
促進と転位の固着との相互作用によってばね用銅の高強
度化が図れることを見出した。
That is, it can be seen that the residual stress e (the curve shown by the solid line) is the largest when shot peening is performed at room temperature, and the peening effect gradually decreases as the temperature rises. (Curve f... 9 curves g at 300℃... 1 curve h at 350℃...
- At 400°C) In particular, at temperatures above 350°C, the effectiveness is considerably lower than that of peening under Murobuchi. That is, in order to generate compressive residual stress on the steel surface, it is necessary to perform peening at a temperature as close to room temperature as possible, preferably at least 350°C, and preferably 300°C or less. In addition to improving the surface strength due to the residual stress of this peening, the present inventors focused on the influence of the above-mentioned tempering temperature structure change on mechanical properties,
By setting the tempering temperature to the temperature at which the third stage change occurs, and performing peening at the same time as tempering in this tempering process, the surface layer is strongly worked, promoting fine precipitation of carbides and fixing of dislocations. It was discovered that the strength of copper for springs can be increased through the interaction of

本発明は上記事情にもとづきなさ扛たものでその目的と
するところは、焼戻しマルテンサイ)k母体として、比
例限、引張り強さ、降伏応力が高く耐へたり性、酬切欠
感受性に優れるとともに耐疲労性の優れた高強度のばね
が得られるばね用銅の強イヒ方法を提供することKある
The present invention has been developed based on the above-mentioned circumstances, and its purpose is to provide a tempered martensitic matrix (K) with high proportional limit, tensile strength, and yield stress, excellent fatigue resistance, and notch sensitivity, as well as excellent fatigue resistance. It is an object of the present invention to provide a method for strengthening copper for springs by which a high-strength spring with excellent properties can be obtained.

すなわち本発明方法は、焼入れ処理を施したばね用銅を
、焼もどしの第3段階変化を生じるまでのffr1度で
かつ350℃越えない温度で焼もどすとともに、この焼
もどしの途中で同時にショットピーニング1r:施こす
ようにしたばね用銅の強化方法である。
That is, in the method of the present invention, spring copper that has been hardened is tempered at an ffr of 1 degree and at a temperature not exceeding 350°C until the third stage of tempering occurs, and at the same time, shot peening is carried out for 1r during this tempering. : This is a method of strengthening copper for springs.

以下本発明の一実施例について図面を参照して説明する
。第3図μ本発明方法を実施する装置の一例を示」−た
ものであり、図中Aはコイリングされたばね用銅を示す
。このばね用銅Aの両端部には加熱装置1′fr構成す
る電極2.2が取着され、図示しない電源トランスを介
して所望の通電蓋を与えられるようになっている。3は
制御用コンピュータでめっで、加熱速度や加熱温度、加
熱保持時間等を制御できるようになっている。また、ば
ね用銅Aの表面温度を検出5− する温度測定器4が設けられている。この温度測定器4
としては、周知の放射温度計を採用し、検出した温度信
号を上記制御用コンピータ3に入力するようになってい
る。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows an example of an apparatus for carrying out the method of the present invention, in which A indicates a coiled spring copper. Electrodes 2.2 constituting the heating device 1'fr are attached to both ends of the spring copper A, so that a desired electrical current can be provided via a power transformer (not shown). 3 is a control computer that can control heating speed, heating temperature, heating holding time, etc. Further, a temperature measuring device 4 for detecting the surface temperature of the spring copper A is provided. This temperature measuring device 4
A well-known radiation thermometer is used, and the detected temperature signal is input to the control computer 3.

また、上記ばね用銅Aにピーニング処理を施こすだめの
ショットピーニング装置5,5が設けられている。この
ショットピーニング装置5゜5は周知の一般的なもので
あってもよく、好ましくは上記制御用コンビ、−夕3に
よってカパレーノやアークハイト、投射時間等を制御で
きるようなものがよい。
Further, shot peening devices 5, 5 are provided for peening the spring copper A. This shot peening device 5.5 may be of a well-known general type, and is preferably one in which the capereno, arc height, projection time, etc. can be controlled by the above-mentioned control combination.

上記実施例装置を用いてばね用銅Aを強化するには、予
めコイリングされかつ焼入れ処理を施したばね用銅Aに
、電極2,2を通じて通電し、短時間たとえば30秒程
度で1急速加熱して、焼もどしの第3段階の変化を生じ
る温度またはこれ以下の温度(中炭素鋼で350℃以下
、好ましくは200c〜250℃程度)で焼もどしを行
なう。このときの加熱速度や加熱温度、保持時間等は、
温度測定器4によってばね用銅Aの表面6− 温度を検出しつつ、その温度信号にもとづいて制御用コ
ンビーータ3によって制御する。
In order to strengthen the spring copper A using the above embodiment device, the spring copper A, which has been coiled and hardened in advance, is energized through the electrodes 2, 2, and rapidly heated for a short period of time, for example, about 30 seconds. Then, tempering is carried out at a temperature that causes the change in the third stage of tempering or a temperature lower than this temperature (350° C. or lower for medium carbon steel, preferably about 200° C. to 250° C.). The heating rate, heating temperature, holding time, etc. at this time are as follows:
The temperature of the surface 6 of the spring copper A is detected by the temperature measuring device 4 and controlled by the control converter 3 based on the temperature signal.

そして上記焼もどし工程において同時にシ。And at the same time in the above tempering process.

ットビーニンダ装置5,5を作動させ、制御用コンビー
ータ3によって制御された所定のカパレーゾ、アークハ
イト、投射時間で温間ピーニングを実施する。このショ
ットピーニング加工を付加することにより、ばね用銅A
の表面層に強加工が与えられ、旧材表面での生成転位が
固着して微細析出が助長される。すなわち加工誘起析出
がなされるものであり、このときのばね用銅Aの温度は
焼入れマルテンサイトの第3段階までの焼もどし時効硬
化を生じる温度に保持されているから、この泥1を域で
の焼戻し途中でのピーニングは微細析出を得る上できわ
めて効果的となp、焼もどしマルテンサイトを母体とし
た高強度のばね用銅が得られるのである。
The hot peening apparatuses 5, 5 are operated, and warm peening is carried out at a predetermined capa-reso, arc height, and projection time controlled by the control conbeater 3. By adding this shot peening process, spring copper A
The surface layer of the steel is subjected to severe processing, and dislocations generated on the surface of the old material are fixed and fine precipitation is promoted. In other words, deformation-induced precipitation occurs, and since the temperature of spring copper A at this time is maintained at a temperature that causes age hardening through tempering to the third stage of hardened martensite, this mud 1 is Peening during tempering is extremely effective in obtaining fine precipitates, and high-strength copper for springs using tempered martensite as a matrix can be obtained.

しかも上記のように350℃以下の温度であれば、前記
したように(第2図)、従来の室温ショットピーニング
とほぼ同勢の圧縮残留応力を付与することができるから
、耐疲労性に関して従来とほぼ同等の効果が得られる。
Moreover, as mentioned above, if the temperature is below 350°C, it is possible to apply compressive residual stress that is almost the same as that of conventional room temperature shot peening, as described above (Fig. 2). Almost the same effect can be obtained.

しかもこの温度域においては、前記したように(第1図
参照)、比例限と降伏応力が最大となるから、酬へたり
性と疲れ強さが向上し、ショットピーニング効果との相
乗効果によって優れた高強度ばねが得られるものである
Moreover, in this temperature range, as mentioned above (see Figure 1), the proportional limit and yield stress are at their maximum, so the fatigue resistance and fatigue strength are improved, and the synergistic effect with the shot peening effect makes it excellent. A high strength spring can be obtained.

本実施例では150℃〜250℃に焼戻しでこの温度域
でショットピーニングを施こしたところ、特に焼もどし
温度が200℃付近において最も良好な結果を得ること
ができた。
In this example, shot peening was performed in this temperature range after tempering at 150°C to 250°C, and the best results were obtained especially when the tempering temperature was around 200°C.

しかも本実施例によれば、焼もどし工程とショットピー
ニング工程全同時に行なうため、従来のように焼もどし
たのちショットピーニングを行なうため、従来の雰囲気
炉で数十分以上必要とした焼もどし時間が数十秒程度に
側網でき、作業能率を大幅に向上できる。
Moreover, according to this embodiment, since the tempering process and the shot peening process are performed at the same time, shot peening is performed after tempering as in the conventional method. Side netting can be done in about tens of seconds, greatly improving work efficiency.

なお、静もどし温度が第3段階の変化を生じる温度金越
えると、比例限と降伏応力が漸減し、而jへたり性が低
下するとともに、破断塑性伸びが最小となるため疲れ強
さに悪影響を及ばずことになる。また、350℃を越え
る高漉ではシ、ットビーニング効果が大幅に減少し、所
望の圧縮残留応力が得られなくなる。よって本発明では
、焼もどし温度の上限會第3段階変化を生じる温度域ま
でとし、かつ350℃を越えない温度とする。また、焼
もどし温度が150℃未満では前記したように(第1図
参照)降伏応力と比例限の増加が望めないため、150
℃以上の焼もとL7渦度とする。
Furthermore, when the restoring temperature exceeds the temperature at which the third stage of change occurs, the proportional limit and yield stress gradually decrease, and the fatigue strength decreases, and the plastic elongation at break becomes minimum, which has an adverse effect on fatigue strength. It will fall short of that. Furthermore, if the temperature exceeds 350°C, the sheet beaning effect will be significantly reduced, making it impossible to obtain the desired compressive residual stress. Therefore, in the present invention, the upper limit of the tempering temperature is set to a temperature range that causes the third stage change, and the temperature is set not to exceed 350°C. Furthermore, if the tempering temperature is lower than 150°C, as mentioned above (see Figure 1), an increase in yield stress and proportional limit cannot be expected;
The vorticity is set to be L7 vorticity above ℃.

なお焼もどし第3段階の変化を生じる温度は一般的Vこ
は250℃程度からであるが、ばね用銅の組成によって
も変化するため具体的数値は本実施例に制約されるもの
ではない。
The temperature at which the change occurs in the third stage of tempering is generally about 250° C., but since it changes depending on the composition of the spring copper, the specific value is not limited to this example.

また、本発明は上町1、した直接通電加熱装置1以外の
加熱炉を用いても所期の目的は勿論達成できる。
Further, the present invention can of course achieve the intended purpose even if a heating furnace other than the direct current heating device 1 used in the Kamimachi 1 is used.

また・本発明はコイルげね會始めとして板ば9− ねやトーションバー、車輌用スタビライプなどに用いら
れる各種のばね用銅に同様に適用できる。
Furthermore, the present invention can be similarly applied to various types of spring copper used in coil springs, leaf springs, torsion bars, vehicle stabilizers, and the like.

越えない温度で焼もどすため、焼入れマルテンサイトの
時効硬化による炭化物の析出によって強く硬い燵戻しマ
ルテンサイトを母体としたばね用銅が得られ、比例限、
降伏応力1引張り践さが向上する。そしてこの焼もどし
の過程において上記温度域でショットピーニングを実施
するようにしたから、従来の室温ピーニングとほぼ同等
の圧縮残留応力をばね用鋼表面に付与できるとともに、
この温間ピーニングによって炭化物の微細析出と転位の
固着の相互作用が促進され疲れ強さと耐へたシ性が大幅
に改善される。
Because it is tempered at a temperature that does not exceed the temperature range, spring copper made from strong and hard tempered martensite is obtained by precipitation of carbides due to age hardening of the quenched martensite.
Yield stress 1 tensile strength is improved. Since shot peening is carried out in the above temperature range during this tempering process, it is possible to impart compressive residual stress to the surface of the spring steel that is almost equivalent to that of conventional room temperature peening.
This warm peening promotes the interaction between the fine precipitation of carbides and the fixation of dislocations, significantly improving fatigue strength and fatigue resistance.

しかも上記条件下で行なわれるショットピーニングによ
って、ばね用銅の表面疵が大幅に減少し、肌目がこまか
くなりかつ圧縮残留応力を付与できることから、いわゆ
る耐切欠感受性がlO− 向上して耐疲労性が大幅に向上するなど、これらの相乗
効果によって耐疲労性に優れた高強度のばねを得ること
ができる。
Furthermore, shot peening performed under the above conditions significantly reduces surface flaws in spring copper, makes the texture finer, and imparts compressive residual stress, improving so-called notch sensitivity and improving fatigue resistance. Through these synergistic effects, a high-strength spring with excellent fatigue resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はばね用鋼の機械的性質と焼もどし温度との関係
を示す図、第2図はシ、ットビーニング効果と温度との
関係を示す図、第3図は本発明を実施するための一実施
例装置の概略図である。 1・・・加熱装置、5・・・シ、、トピーニング装置、
A・・ばね用鋼。 出願人代理人  弁理士 鈴 江 武 彦11− 第1図 煙もと’L!7ij(C’)
Fig. 1 is a diagram showing the relationship between the mechanical properties of spring steel and tempering temperature, Fig. 2 is a diagram showing the relationship between the sheet beaning effect and temperature, and Fig. 3 is a diagram showing the relationship between the mechanical properties of spring steel and tempering temperature. FIG. 1 is a schematic diagram of an example device. 1... Heating device, 5... Topeening device,
A: Steel for springs. Applicant's agent Patent attorney Suzue Takehiko 11- Figure 1 Smoke Moto'L! 7ij (C')

Claims (1)

【特許請求の範囲】[Claims] 焼入れ処理を施したばね用鋼を150℃以上350℃以
下の温度範囲内でかつ焼もどし第3段階変化を生じる温
度域またはそれ以下の温度で焼もどすとともに、この焼
もどしの過桿で同時にショットピーニングを施すことを
特徴とするばね用鋼の強化方法。
The hardened spring steel is tempered within the temperature range of 150°C to 350°C and at or below the temperature range where the third stage of tempering occurs, and simultaneously shot peened using the over-tempered rod. A method for strengthening spring steel, characterized by subjecting it to.
JP9801982A 1982-06-08 1982-06-08 Reinforcing method of spring steel Granted JPS58213825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9801982A JPS58213825A (en) 1982-06-08 1982-06-08 Reinforcing method of spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9801982A JPS58213825A (en) 1982-06-08 1982-06-08 Reinforcing method of spring steel

Publications (2)

Publication Number Publication Date
JPS58213825A true JPS58213825A (en) 1983-12-12
JPH0123524B2 JPH0123524B2 (en) 1989-05-02

Family

ID=14208142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9801982A Granted JPS58213825A (en) 1982-06-08 1982-06-08 Reinforcing method of spring steel

Country Status (1)

Country Link
JP (1) JPS58213825A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225008A (en) * 1991-11-18 1993-07-06 Nhk Spring Co., Ltd. Method for manufacturing a high-strength spring
JPWO2004085685A1 (en) * 2003-03-26 2006-06-29 中央発條株式会社 Manufacturing method of high strength spring
US8460483B2 (en) 2010-03-23 2013-06-11 Nhk Spring Co., Ltd. Method for heat treatment of coiled spring
US9814100B2 (en) 2009-08-07 2017-11-07 Radyne Corporation Heat treatment of helical springs or similarly shaped articles by electric resistance heating
WO2024075314A1 (en) * 2022-10-05 2024-04-11 日本発條株式会社 Coil spring manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225008A (en) * 1991-11-18 1993-07-06 Nhk Spring Co., Ltd. Method for manufacturing a high-strength spring
JPWO2004085685A1 (en) * 2003-03-26 2006-06-29 中央発條株式会社 Manufacturing method of high strength spring
US7699943B2 (en) 2003-03-26 2010-04-20 Chuo Hatsujo Kabushiki Kaisha Method for manufacturing high-strength spring
DE112004000474B4 (en) * 2003-03-26 2013-02-21 Chuo Hatsujo K.K. Method for producing a high-strength spring
US9814100B2 (en) 2009-08-07 2017-11-07 Radyne Corporation Heat treatment of helical springs or similarly shaped articles by electric resistance heating
US8460483B2 (en) 2010-03-23 2013-06-11 Nhk Spring Co., Ltd. Method for heat treatment of coiled spring
WO2024075314A1 (en) * 2022-10-05 2024-04-11 日本発條株式会社 Coil spring manufacturing method

Also Published As

Publication number Publication date
JPH0123524B2 (en) 1989-05-02

Similar Documents

Publication Publication Date Title
US6610154B2 (en) Surface treatment of austenitic Ni-Fe-Cr based alloys for improved resistance to intergranular corrosion and intergranular cracking
JPH0261339B2 (en)
US4404047A (en) Process for the improved heat treatment of steels using direct electrical resistance heating
US4457789A (en) Process for annealing steels
JPS58213825A (en) Reinforcing method of spring steel
US6939418B2 (en) Process for the thermomechanical treatment of steel
JPH0561324B2 (en)
US3454435A (en) Method of treating precipitation hardened alloys
JP2003073737A (en) Method for manufacturing coil spring with high tensile strength and yield strength
JP2978059B2 (en) Link chain
JP4333282B2 (en) Manufacturing method of high-strength steel sheet
JPS58188531A (en) Manufacture of hollow stabilizer
JPH0641631A (en) Method for reinforcing spring
CA2466829C (en) Surface treatment of austenitic ni-fe-cr based alloys
Cryderman et al. Short Time Austenitizing Effects on the Hardenability of Some 0.55 wt. pct. Carbon Steels
US3235415A (en) Heat treatment and alloy
JPS5913568B2 (en) Manufacturing method for cold-formed coil springs
JP2835057B2 (en) Spring steel and manufacturing method thereof
CA1151513A (en) Process for annealing steels
JP2716141B2 (en) Spring material
SU389152A1 (en) METHOD FOR TREATING ALLOYS
JPS6321727B2 (en)
JPS5964717A (en) Cold-formed coil spring
Koppenaal Preliminary thermomechanical treatment of D6AC steel
Hougardy et al. Occurrence of Stresses and Internal Stresses During Quenching of Steel