JPS5821330A - Positioning method for semiconductor wafer surface and exposing unit - Google Patents

Positioning method for semiconductor wafer surface and exposing unit

Info

Publication number
JPS5821330A
JPS5821330A JP56119629A JP11962981A JPS5821330A JP S5821330 A JPS5821330 A JP S5821330A JP 56119629 A JP56119629 A JP 56119629A JP 11962981 A JP11962981 A JP 11962981A JP S5821330 A JPS5821330 A JP S5821330A
Authority
JP
Japan
Prior art keywords
wafer
layer
mask
luminescence
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56119629A
Other languages
Japanese (ja)
Inventor
Yoshinari Matsumoto
松本 良成
Yuzo Morihisa
守久 友三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56119629A priority Critical patent/JPS5821330A/en
Publication of JPS5821330A publication Critical patent/JPS5821330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize a precise positioning by a method wherein photoluminescent signals obtained by laser scanning of a wafer surface are observed for their intra-wafer distribution, when the mask surface for exposure and a buried hetero-structured semiconductor wafer surface are positioned together. CONSTITUTION:This relates to a method of positioning the surface of a buried hetero-structured wafer 30 consisting of an undoped InGaAsP active layer 13 with a forbidden band gap of -0.96eV, an InGaAsP electrode forming layer 17 with a forbidden band gap of -1.05eV, or the like, and the surface of a glass mask 32 for exposure. That is, an impurity diffusion preventing SiO2 film 19 and a photoresist film 31 are provided on the surface of the wafer 30, and a glass mask 32 consisting of a non-light transmitting section 321 and a light transmitting section 322 is arranged facing the rear side of the wafer 30. Parallel laser beams 341 and 342 with an internal between them are applied to the mask 32 and a change in the luminescent signal level which the laser beams generate upon arriving at the active layer 13 is detected by a light detecting unit with the intermediary of optical fibers 33 whereby the relative positions of the wafer 30 and the mask 32 are determined.

Description

【発明の詳細な説明】 本発明は半導体デバイス製作時に広(用−られるリソグ
ラフィ技術のうち、露光用マスタO半導体つェフツへの
目金せO方法と露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and an exposure apparatus for attaching an eye to an exposure master semiconductor substrate among lithography techniques widely used in the production of semiconductor devices.

ストライブ量ダブル、ヘテ薗亭導体V−ずO優れた一構
造として良く知られて−る糟め込みへテ謬(通常BHと
略称する。)構造中チャンネル、?ブストレート構造(
例えば昭10!It年特願第0062鵞@号1手導体レ
ーず素子1等参@0こと・)では禁制帯幅の小さ一半導
体領域、即ち活性領域がそれら牛導体し−ザ用つェアv
内で局所的に存在あるいは局所的に厚みを変え、しか亀
上記活性領域は禁制帯領O広い半導体、タララド虻より
おお−か(された構造を持って−る。即ちこれら苧導体
レーず用ウェア1では活性領埴は厚さだけでは記述でき
ない二次元的あるいは三次元的構造を持っており、かつ
活性層の二あるいは三次元的構造はタララドによりおお
われている。二あるいは三次元的構造を持っ九活性層構
造を有するストライプ形半導体レーザの構造は上記した
二つの例以外にも閾値電流の低域と発振光姿態の制御の
ために多(の構造が提案されている。上記半導体レーザ
O構造に限らず結晶内部に二あるいは三次元的構造【有
する特殊層を含み、かつ表面観察によってはこの特殊層
の構造を把握することのできない内部構造tもった半導
体素子用ウェファは数多く。
Strive amount double, Hete Sonotei conductor V-ZO is well known as an excellent structure, and the channel in the Kamekomi Hete-Fall (usually abbreviated as BH) structure. Brass straight structure (
For example, Showa 10! In the 1st year patent application No. 0062 (1), a semiconductor region with a small forbidden band width, that is, an active region, is used as a conductor.
However, the active region of the tortoise has a forbidden zone area that is larger than that of a wide semiconductor, i.e., these conductor lasers. In Wear 1, the active layer has a two-dimensional or three-dimensional structure that cannot be described by thickness alone, and the two- or three-dimensional structure of the active layer is covered with tararad. In addition to the two examples mentioned above, a structure of a striped semiconductor laser having a nine active layer structure has been proposed in order to control the low threshold current and the oscillation optical state. Many wafers for semiconductor devices include a special layer with a two- or three-dimensional structure inside the crystal, and the structure of this special layer cannot be understood by surface observation.

また選択エピタキシー技術の進展に伴ない素子特性の改
良、Toるいは新票子構造を作る上で増々、重要なもの
として考えられている。半導体レーザ以外の一例として
研究段階でijあるが将来の高速電界効果トランジスタ
即ち、パーミアブル、トランジスタH例、ttf197
9年インターナシ層ナル。
In addition, with the progress of selective epitaxy technology, it is becoming increasingly important to improve device characteristics and to create new structures. As an example other than semiconductor lasers, there is an ij in the research stage, but it is a future high-speed field effect transistor, i.e. permable, transistor H example, TTF197.
9th grade international level.

エレクトロンデバイス構造概念を簡単に示す。A simple explanation of the electron device structure concept.

ンーテンダテクニカルダイジェスト384ペー ジC6
O,Boiler氏らKよって提案されているが。
Tenda Technical Digest Page 384 C6
Although it has been proposed by Mr. O., Boiler et al.

そのパーiアブル、トランジス−として提案されたもの
は半導体層の中間にメツシ轟状の数10OAから100
OA程度の金属層YrIIめ込み、この金属層をシ■ッ
トキー障壁形のベースとしてメツシ。
What has been proposed as a parable transistor is a mesh-like structure in the middle of a semiconductor layer with a number of tens to 100 OA.
A YrII metal layer of about OA is embedded, and this metal layer is used as the base of a Schittky barrier type.

の穴に相当する位置の半導体層への空間電荷層の広がり
tメッ7.状金属膜ペースへの電圧印加により制御し電
流の流れを制御する電界効果トランジスタでこの場合に
:もメツシ轟状金属膜のパターンは上に積まれた半導体
層におおわれ半導体層表面からはメツシェ形金属層、す
なわち特殊層の構造を観察することは回置である。
Spreading of the space charge layer in the semiconductor layer at the position corresponding to the hole 7. In this case, the field effect transistor controls the flow of current by applying a voltage to the metal film pattern: The metal film pattern is covered by the semiconductor layer stacked on top, and it is visible from the surface of the semiconductor layer in a mesh shape. Observing the structure of the metal layer, that is, the special layer, is an inversion.

従って上記し九ような特殊層が半導体内部に存在する場
合特殊層の構造に目合せして半導体表面に電極等を配置
するには特別な工夫が必要となる。
Therefore, when a special layer like the one described above exists inside a semiconductor, special measures are required to arrange electrodes and the like on the semiconductor surface in alignment with the structure of the special layer.

例えばBHレーザ構造ウつェTK電流注入のための不純
物選択拡散領域を形成する場合の工夫について従来行っ
た例を示す、!1図はBHレーザ構造用ウつェγの累子
化後ファブリペロ共振器錆面となる断面からみた概念図
である。ここに示すBl(レーずは長波長用のInPど
[nGaAsPからなるヘテロ構造より成るもので目形
IoP基板ll上にa−InPバッフ1層12.アンド
ーグInGaAsP活性層13、p−IaPクラッド層
14を第1の連続液相エビタ中シャル法で成長1次に数
μ両幅のストライプ状メサ部を残すように第1図のよう
にノナ。エツチングを行なう1次に第2のメサ部埋め込
み用連続液相エビタ中シャル法でp −1ssP電流ブ
ロック層15. n−IrIPJi!め込み層16およ
びn ?−InGaAsP電極形成層17を形成する。
For example, here is an example of how to form a selective impurity diffusion region for TK current injection in a BH laser structure. FIG. 1 is a conceptual diagram of the cross section of the BH laser structure groove γ which becomes the rusted surface of the Fabry-Perot resonator after reciprocating. The Bl laser shown here consists of a heterostructure made of InP or nGaAsP for long wavelengths, and consists of an a-InP buffer layer 12, an undoped InGaAsP active layer 13, and a p-IaP cladding layer on an eye-shaped IoP substrate. 14 is grown in the first continuous liquid phase using the Schall method in Evita. The first layer is then etched to leave a striped mesa portion with a width of several micrometers on both sides as shown in Figure 1. A p-1ssP current blocking layer 15, an n-IrIPJi! inlay layer 16, and an n?-InGaAsP electrode forming layer 17 are formed using the continuous liquid phase Evita-in-Shall method.

こうして得られたn−InGaAsP電極形成層170
表面はほぼ平滑化し、もけやメサ部の位置を表面から正
確に把握することはできない。
The n-InGaAsP electrode forming layer 170 thus obtained
The surface is almost smooth, and it is not possible to accurately determine the location of moles and mesas from the surface.

BHレーザを作るKはn−InGaAaP電極形成層1
7のメサ部直上部K Z o+Cd k選択拡散してp
形領域18に反転する必要がある。このためにはまず8
量02や81.N4膜等の不純物拡散阻止膜19をa−
InGmAiP電極形成層17上に気相反応法等で形成
し、不純物の選択拡散用窓20t−正確にストライプ状
メーgl″部直上に目合せしてホトリソグラフィ技術管
用いて作らな叶ればならない、しかし。
K to make BH laser is n-InGaAaP electrode forming layer 1
Right above the mesa part of No. 7 K Z o + Cd k Selectively diffuse and p
It is necessary to invert to the shape area 18. To do this, first 8
Amount 02 or 81. The impurity diffusion prevention film 19 such as N4 film is a-
A window 20t for selective diffusion of impurities must be formed on the InGmAiP electrode formation layer 17 by a gas phase reaction method, aligned precisely with the striped matrix GL'' portion, and made using a photolithography technique. but.

表面からメt4を正確に知ることはで亀ないため。Because it is difficult to accurately determine MET4 from the surface.

ストライプ状メサ部と直角方向のウェア10辺を数置の
浅い角度で第2図に示すように角度研磨し。
The 10 sides of the wear perpendicular to the striped mesa were polished at a shallow angle of several degrees as shown in Figure 2.

角変形書面11t7エリシアンカリウムとカセイカリお
よび水よりなる混液によ)ステイニングすると第1面の
断面構造が角度研磨面21に層厚方向に拡大されて表わ
れる。この浅い角度研磨面21に表われたメサ部位置に
フォト、IJソグラフイ用のガラスマスクを目合せする
こきにより、不純物拡散阻止膜19に選択拡散用窓2G
tメサ部直上に正確にフォトリングラフイ技術を用いて
あけることができる。上記した角度研磨性以外にもスト
ライプ状メサ部管出す方法社工夫されているもむの、い
ずれもウェア1のストライプに直角な方向にらるウェフ
ァの辺を加工するもので角度研磨法と同@0ものである
。ウェア10辺を角度研磨した抄、加工する工程は研磨
あるい社加工が煩雑であるばかりか、ウェファに汚れを
生じるため洗浄工程等が追加され、tたウェア1周辺部
は当然のことながら使用不能となり工数の増大と歩留り
減少の原因となる。
When the angular deformation paper 11t7 is stained with a mixture of Elysian potassium, caustic potash, and water, the cross-sectional structure of the first surface is enlarged in the layer thickness direction and appears on the angularly polished surface 21. By aligning a glass mask for photo and IJ lithography to the mesa portion position appearing on this shallow angle polished surface 21, a window 2G for selective diffusion is formed in the impurity diffusion prevention film 19.
It is possible to accurately drill a hole directly above the t-mesa using photolithography technology. In addition to the angle polishing described above, there are other devised methods for producing striped mesa tubes, but these methods process the sides of the wafer in a direction perpendicular to the stripes of ware 1, which is the same as the angle polishing method. @0 thing. The paper is made by angle-polishing the 10 sides of the wafer, and the processing process is not only complicated in terms of polishing or grinding, but also requires additional cleaning steps to avoid stains on the wafer. This results in an increase in man-hours and a decrease in yield.

さらKこのような角度研磨工程そのものがきわめて実験
室的工程であり%製品化プロセスとして工数の増大を招
き好ましくない。
Furthermore, such an angle polishing process itself is a very laboratory-like process, which is undesirable as it increases the number of man-hours required for the production process.

本発明の目的は上記従来の欠点を解決せしめ九牛導体つ
ェフ1へO0合せ方法および露光装置を提供することK
ある。
An object of the present invention is to solve the above-mentioned conventional drawbacks and to provide a method and an exposure apparatus for aligning O0 to a nine-point conductor.
be.

本発明によれば半導体素子用ウェファのうちウェファ表
面を光励起した場合に得られるルばネツセンス強III
L+1ルξネツセンス波長、ルミネ′ノセンススペクト
ル形状等のホトルミネッセンス信号が面内分布を有する
半導体ウェア1に適用されるもOで半導体ウェファの表
面あるいは表面材料層を上記ホトルミネッセンス信号の
面内分布と規則的関係をもって加工する場合の目合せ方
法において上記ホトル考ネツセンス信!?面内分布t−
観測することにより目合せすることを特徴とする半導体
クエ71への目合せ方法が得られる。このようなホトル
ミネッセンス信号の面内分布を目安にしたリソグラフィ
用の露光装置としては被露光半導体ウェファを光励起す
べく光源と該披露光半導体ウェアγからの光励起による
ルミネッセンス光を検  出する光検出器管そなえたこ
とt特徴とする露光装置、特に光励起光の被露光半導体
ウェファ照射位置とルミネッセンス光の光検出器あるい
はルミネッセンス光を光検出器に導ぐ良めの先導波路の
光検出端の相対位置が一定であるような光励起光源と光
検出系をそなえた露光装置が得られる。
According to the present invention, a strong rubanesense III obtained when the surface of a wafer of a wafer for semiconductor devices is optically excited.
When applied to the semiconductor wafer 1 in which a photoluminescence signal such as L+1 luminescence wavelength and luminescence spectrum shape has an in-plane distribution, the surface or surface material layer of the semiconductor wafer is applied to the semiconductor wafer surface or surface material layer with an in-plane distribution of the photoluminescence signal. The above-mentioned method of alignment when processing with a regular relationship with ? In-plane distribution t-
A method for aligning the semiconductor cube 71 is obtained, which is characterized by aligning by observing. An exposure apparatus for lithography using such in-plane distribution of photoluminescence signals as a guide includes a light source for optically exciting a semiconductor wafer to be exposed, and a photodetector for detecting luminescent light generated by the optical excitation from the exposed semiconductor wafer γ. An exposure apparatus characterized by having a tube, in particular, the relative position of the irradiation position of a semiconductor wafer to be exposed with optical excitation light and the photodetector end of a photodetector for luminescence light or a good leading waveguide for guiding luminescence light to the photodetector. It is possible to obtain an exposure apparatus equipped with a photoexcitation light source and a photodetection system in which the value is constant.

上記本発明によればウェファになんら加工することなく
結晶内部に二あるいは三次元的構造をもった特殊層を含
んだウェア1で表面形状からはこの内部パターンを観測
できない半導体素子用ウェア1に対しても内部パターン
に沿った正確な目合せ全行なうことができる・ 次に本発明の半導体ウェファへの目合せ方法および露光
装置について1.図を用いて詳細に説明する。
According to the present invention, the semiconductor device wear 1 includes a special layer with a two- or three-dimensional structure inside the crystal without any processing on the wafer, and the internal pattern cannot be observed from the surface shape. Accurate alignment along the internal pattern can be carried out even when using a semiconductor wafer.Next, the method and exposure apparatus for aligning a semiconductor wafer according to the present invention will be described below.1. This will be explained in detail using figures.

lI3 図はBHシレー用ウェアTに不純物選択拡散用
マスクを形成する場合t2:、第1図および!s2図で
示した従来法にかわって本発明の半導体ウェア1への目
合せ方法および露光装at適用した場合の実施例を示す
ものである。
lI3 The figure shows the case of forming an impurity selective diffusion mask on the BH silicone wear T2:, Figure 1 and! s2 shows an embodiment in which the alignment method and exposure device AT of the present invention are applied to the semiconductor wafer 1 in place of the conventional method shown in FIG.

第3図ではBHHレーザウェファ30に隣接してホトリ
ソグラフィ用ガラスマスク32をおいた場合の断面図を
示している。第3図に示したBHHレーザウェファはT
nPとInGaAsPからなるもので第1図に示したも
のと同類である。また第1図の場合には説明全省略した
がアンドープInGaAsP活性層13の禁制帯幅が〜
0.96eVであるのに対しn−InGaA@P電極形
成層17の禁制帯幅は〜1.05 eVである。BHレ
ーザ用ラウェ71表面は8301等の不純物拡散l11
1止膜19がつけられ、さらにフォトレジスト膜31か
つけられて−ろ。
FIG. 3 shows a cross-sectional view of a case where a glass mask 32 for photolithography is placed adjacent to a BHH laser wafer 30. The BHH laser wafer shown in Figure 3 is T
It is made of nP and InGaAsP and is similar to the one shown in FIG. Although the explanation is omitted in the case of FIG. 1, the forbidden band width of the undoped InGaAsP active layer 13 is ~
0.96 eV, whereas the forbidden band width of the n-InGaA@P electrode forming layer 17 is ~1.05 eV. The surface of Lawe 71 for BH laser is doped with impurities such as 8301 l11
A stopper film 19 is applied, and then a photoresist film 31 is applied.

畜て第3図中に341あるいは342で示した矢印はY
AGレーザ光(波長1.06J1tllkM制帯幅L1
7eVに相当する。)を示すものである。今。
The arrow marked 341 or 342 in Figure 3 is Y.
AG laser light (wavelength 1.06J1tllkM bandwidth L1
This corresponds to 7 eV. ). now.

第3図1a)に示すようにフォトレジストガラスマスク
32の光透過N312の真下にBHHレーザウェファ3
0のアンドープInGaAsP活性層13が存在しない
場合IC341の矢印でレーザ光を照射し九場合、レー
ず光はガラスマスク32の非光透過11321にぶつか
?、BHレーず用ウェアY30に至らなず、342の矢
印で示したように光透過部321tぬけてBHシレー用
ウェア130に至った場合にもYムGレーず光はInP
結晶ある唯電極形成層171C対して吸収tはとんどう
けない。
As shown in FIG. 3 1a), a BHH laser wafer 3 is placed directly under the light transmission N312 of the photoresist glass mask 32.
If the undoped InGaAsP active layer 13 of 0 does not exist, laser light is irradiated with the arrow of IC 341. In the case of 9, the laser light hits the non-light transmitting part 11321 of the glass mask 32? , even if it does not reach the BH laser wear Y30 and passes through the light transmitting part 321t and reaches the BH laser wear 130 as shown by the arrow 342, the Y laser light is InP.
The absorption t is almost impossible for the electrode forming layer 171C which is crystalline.

即ちBHシレー用ウェア130は励起されずルミネッセ
ンスを生じない。−万@5aabsのようにフォトレジ
ストガラスマスク320光透過部312の真下にBHシ
レー用ウェアF30OアンドープInGaAsP活性層
13が存在するようにおかれ友場合には341の矢印で
レーザ光を照射した場合にはYAGレーザ光はガラスマ
スク32の非光透過5321にぶつかりBHシレー用ウ
ェファSOK至らないことは第3図(1)の場合と同様
であるがレーザ光が3420矢印の如く照射されれdY
AGレーザはガラス、マスク32の光透過部312を通
過し活性層13で吸収さn、即ち活性層13はYAGレ
ーザ光で励起されルミネッセンスを生じる。こOkルミ
ネッセンス生じた場合にルミネッセンス光#1YAGレ
ーザ光の照射位ffiに同期して動(331hるいは3
32に示されt光ファイバー33によりG@等ででt九
光検出器に導かれる・ すなわち第4図KYAGレーザ光の照射位11t341
.342のように第3図で左から右へ順次移動した場合
[YAGレーザ照射位置に同期して動(光ファイバー3
3に導かれたルミネッセンス強度を示す・このルミネッ
センス強度はGe検出器につなiだ縦列抵抗の両端にあ
られれる電圧で示されるe但し、 Ge検出器と光71
イパー33の間にはこの鳩舎、IuGaA亀P活性層1
3からのルミネッセンス光を透過する中心波長1.3μ
町半値幅2oeo*の干渉フィルターtつけYAGレー
ず光のGC検出IIIに入ることを防いである。$4図
で(mlは第3II (a) K対応するものでYAG
レーザ光の照射位置を変えても光出力Fi観測さ五ず6
)の場合#Cは光出力がBHレーザウェフ1の活性層1
3領域に対応して生じる様子を示しである。即ちガラス
、マスタO光透過部とBHシレーウェアF30のストラ
イプ状活性層13の位置が合致した時にルミネッセンス
が生じ、もっとも合致した位置でルミネッセンス強度は
もっとも強くなる。この1合せ製作は自動的になされる
もので1mちYAGレーザ光の照射位置管ガラスマスク
面内で自動的にスキャンする方法とガラス、マスク32
あるいFiB HL/−ザ用つェフデ會自動的に面内方
向および面内での回転を行なえばよい、しかし現実的に
はガラス。
That is, the BH silage wear 130 is not excited and does not produce luminescence. - If the BH silage wear F30O undoped InGaAsP active layer 13 is placed directly under the photoresist glass mask 320 and the light transmitting part 312 as shown in 10,000@5aabs, then the laser beam is irradiated with the arrow 341. In this case, the YAG laser beam hits the non-light transmitting portion 5321 of the glass mask 32 and does not reach the BH silage wafer SOK, as in the case of FIG.
The AG laser passes through the light transmitting portion 312 of the glass mask 32 and is absorbed by the active layer 13. In other words, the active layer 13 is excited by the YAG laser beam and generates luminescence. When luminescence occurs, the luminescence light moves in synchronization with the irradiation position ffi of #1 YAG laser light (331h or 3
32 and is guided to the photodetector at G@ etc. by the optical fiber 33. In other words, the irradiation position of the KYAG laser beam in Figure 4 11t341
.. 342, when moving sequentially from left to right in Figure 3 [moves in synchronization with the YAG laser irradiation position (optical fiber 3
3. This luminescence intensity is indicated by the voltage across the series resistor connected to the Ge detector. However, when the Ge detector and the light 71
Between Iper 33 is this pigeon house, IuGaA turtle P active layer 1
Center wavelength 1.3 μ that transmits luminescence light from 3
An interference filter with a half width of 2 oeo* is attached to prevent YAG laser light from entering GC detection III. In the $4 figure (ml is the one corresponding to No. 3 II (a) K and YAG
Even if the laser beam irradiation position is changed, the optical output Fi is still observed.
), #C is the active layer 1 of the BH laser wafer 1 whose optical output is
This figure shows how this occurs in three areas. That is, luminescence occurs when the positions of the glass, master O light transmitting portion and the striped active layer 13 of the BH Silleyware F30 match, and the luminescence intensity becomes the strongest at the most matching position. This one-piece manufacturing is done automatically, and there is a method of automatically scanning the irradiation position of the YAG laser beam within the surface of the tube glass mask, and the glass and mask 32.
Alternatively, it would be possible to automatically perform in-plane direction and in-plane rotation, but in reality, it would be better to use glass.

マスク32あるiはBHレーザ用ウつ7デ30の移動を
自動化しなくとも手1llVcより面内方向、水平継横
移動と若干の回転を行なうことにより容品に目合せがえ
られる。
The mask 32 can be aligned with the container by manually moving the mask 32 in the in-plane direction, horizontally and laterally, and slightly rotating it, without automating the movement of the BH laser rollers 7 and 30.

ま念フォトレジスト膜31t以上の説明ではAZN等の
ホジレジストを用いたが逆に0MR等のネガレジストを
用iた場合にはガラスマスク32としては光透過部32
2(!−非光透過部321を反転したものを用いな妙れ
ばならないがこのと1!は目合せが行なわれたことをル
ミネッセンスが生じないt*、はルミネッセンスが最も
弱くなることをもって判定することがで龜ることは言う
までもな−・以上II!明しえように本発明の半導体ウ
ェア1への目合せ方法および露光装置lを用いるならば
B’Hレーずのように飴晶内部に構造をもった特殊層管
も・、たウニフッへの目合せKきわめて有効であり。
In the above explanation of the photoresist film 31t, a photoresist such as AZN is used, but if a negative resist such as 0MR is used, the light transmitting portion 32 is used as the glass mask 32.
2 (! - It is strange to use an inverted version of the non-light transmitting part 321, but in this case, in 1!, it is determined that the alignment has been carried out at t*, when no luminescence occurs, and at t*, the luminescence is at its weakest). Needless to say, it takes a long time to do this.As mentioned above, if the method for aligning the semiconductor wafer 1 and the exposure device 1 of the present invention are used, it will be difficult to The special layered tube with a structure is also extremely effective in aligning the surface of the seam.

etaやs2図の従来例で示したようにウニフッへO0
合せ前の加工の心要がない1本発明が前記し食チマノネ
ルサブストレート構造の半導体レーずに適用した場合に
ついて説明する、第5図は長波長平凸導波路形(PCW
と略称)レーザウェッブOIIfIMslIである。P
CWレーザを溝I!3〜4μs。
As shown in the conventional example of eta and s2 diagram, O0 to sea urchin
FIG. 5 shows a long-wavelength plano-convex waveguide (PCW) structure in which the present invention is applied without a semiconductor laser having the above-mentioned monolithic chimanonel substrate structure.
(abbreviated as) Laser Web OIIfIMslI. P
Groove I with CW laser! 3-4 μs.

欅″1ifLl〜(L8sms8mの溝をストライプ状
に櫂ったn形InP基板51上に禁制帯幅〜1−13e
V()a−InGaAsPガイド層52.禁制層幅2Q
、96eV()LssGaAsl’活性層53、p−I
n1’クラッド層14および1lllIll帯幅〜1.
05eVOn −I@Gaムsr電極形成層5[−$1
次液相エビタキVヤルlR畳して作られる。このLうな
PCWレーザ用ウェつ1t−YAGレーずで励起して得
られるルミネッセンス成分のうち波長1.1μ調(エネ
ルギー換算1.1S@V)のn −1nGaAsPガイ
′ド層52から生じるJ&−ζネツセンス党を光フ1イ
パ−33とG@検出器の間で分光hQe機出口でとると
励起場所に応じて第5図(b)のj5にルミネッセンス
強度がガイド層52の厚いチャフネル部で強くなる。
Keyaki"1ifLl~(Forbidden band width~1-13e on n-type InP substrate 51 with grooves of L8sms8m shaped like stripes.
V()a-InGaAsP guide layer 52. Forbidden layer width 2Q
, 96eV ()LssGaAsl' active layer 53, p-I
n1' cladding layer 14 and 1llllIll band width ~1.
05eVOn -I@Gamu sr electrode forming layer 5[-$1
Next liquid phase Ebikitaki is made by tatami. Of the luminescence components obtained by excitation with this laser laser for PCW lasers, J & When the ζ netsense particle is taken at the exit of the spectroscopic hQe machine between the optical fiber 33 and the G@detector, the luminescence intensity changes to j5 in FIG. Become stronger.

これは薄い結晶部はどヘテ四界面再結合、活性層s3の
YAGレーザIlb起キ、 +17の流れ込みの割合が
ガイド層52パルタ内再結合キャリアに比して大きくな
るためである。従ってルミネッセンス強度化が溝部と*
S以外で変ることt利用すれば前期BHレーザウェファ
30へO0合せ方法はその1會適用できる。
This is because the ratio of the recombination at the four interfaces in the thin crystal part, the YAG laser Ilb activation in the active layer s3, and the inflow of +17 becomes larger than the recombined carriers in the guide layer 52. Therefore, the luminescence intensity increases with the groove *
The O0 alignment method can be applied to the first half of the BH laser wafer 30 by utilizing things other than S.

1友前記したバー電アプル、トツyジスIのように金属
層t−111結蟲内部に存在する場合にも適用される。
This also applies to the case where the metal layer t-111 is present inside the metal layer as in the case of the above-mentioned bar electrodes and totsuyisu I.

パーミアブル、トラyジスタのよう虻金属層?!F1導
体内部に含んだ試料は現状では得られて@VSが本発明
の方法がパーζアプルトツyジスIOようなデバイスに
%適用できることは第anのような断面構造のウェアt
からのルミネッセンスについて実験が行なえる。
A permable metal layer like a transistor? ! The sample contained inside the F1 conductor is currently obtained, and the fact that the method of the present invention can be applied to devices such as the IO with a cross-sectional structure like the anth one.
Experiments can be conducted on luminescence from .

即ちh GaAs基榎の上K n −A I 0.30
a 0.7AS層61を約166m@、次−てGaAs
 1162 t #lS 7+111成長したウェアT
を用い、まずウェア1のGaAs層620表面の一部領
域をエツチング等で約4μ四Ilシ下げ、このIip下
げたWKku蒸着膜63をつけた試料管用意した。さら
KAu 851M1 s s上にGaAs層を形成すれ
ば上記パーミアブルトランジスタと同一の層構造となる
が現状ではAu蒸着膜aSV上lIcGaA1 jl 
k形成することはできていな−−さてこのように加工し
た91kGa人$基板!−除去し九のが116図のウェ
ア!である。第6図でクリプトン、レーザ光tm中天印
341の位置に照射した場合にはGaA@層62から生
じるルきネッセンスはクリプトン、レーザ光により励起
された午ヤダアがムU蒸着11163によりGa48層
62中に広がった空間電荷層にすわれるため弱くなる暴
一方食蒸膜のないところを励起するとルミネッセンスは
明るくなる。但しム1α4GaO,6As層61におい
てはクリプトン、レーザおよびル電ネッセンス党は吸収
tうけす+nものl”AIo、40g0.6As層61
a ? Ja 7 Fのハンドリングの丸めのウェア1
補強層として形成したものでら一1本来この実験に社い
ら1kvhllI?ある。i素光検出器として社B1検
出at−用いた。
That is, h GaAs basic K n −A I 0.30
a 0.7AS layer 61 of about 166 m@, then GaAs
1162 t #lS 7+111 grown wear T
First, a part of the surface of the GaAs layer 620 of the ware 1 was lowered by about 4 μ4 Il by etching or the like, and a sample tube was prepared with the WKku vapor deposited film 63 coated with this Iip lowered layer. Furthermore, if a GaAs layer is formed on the KAu 851M1 s s, it will have the same layer structure as the above-mentioned permable transistor, but at present, it is formed on the Au vapor deposited film aSV.
I haven't been able to form a 91kGa substrate processed in this way! - Removed nine pieces of wear with 116 figures! It is. In FIG. 6, when krypton is irradiated to the position of the sky mark 341 in the laser beam tm, the luminescence generated from the GaA@ layer 62 is krypton, and the luminescence generated from the GaA layer 62 is due to krypton. Luminescence becomes brighter when excited in areas where there is no eclipsed film, which weakens because it is covered by a space charge layer that spreads inside. However, in the 1α4GaO, 6As layer 61, krypton, laser, and luminescence particles are absorbed t+n, but the 40g0.6As layer 61
a? Ja 7 F handling round wear 1
Since it was formed as a reinforcing layer, it was originally 1kvhlllI for this experiment. be. A company B1 detection at- was used as an i-element photodetector.

また本発明O@合せ方法は表MK局部的に金属膜があり
曳9絶縁膜があるつ恩7ツや表ll0一部領域に不純物
ドーピングや導電moa1にる領域がある場合に、上記
金属膜、絶縁属あるいはドーピングあるiF!導電形の
異なるウェア1等においても轟然ながら適用できる・ 
ドーピングO異なり良領域をもつウェファではホトルン
ネッセンス強度O達いあるいけスペクトル形状の違−生
じ本発明は適用で龜る。一般的(は半導体表NHK:異
物質が局部的に形成されたウェアY、あるいは半導体ウ
ェア1のル電ネッセンス強度、波長、スペクトル形状郷
の変化した領域がある場合にはすべて本発明は適用てき
る鬼のである。
In addition, the O@ alignment method of the present invention is applicable to cases where there is a metal film locally on the surface MK and an insulating film, or when there is a region doped with impurities or a conductive moa1 in some regions of the surface MK. , insulating material or doped iF! Can be applied to clothing with different conductivity types.
In wafers having good regions with different doping levels, differences in photoluminescence intensity and spectral shape occur, making the present invention more difficult to apply. In general (semiconductor table NHK: semiconductor wear Y), the present invention can be applied to all cases where there is a region in which a foreign substance is locally formed, or a region in which the luminescence intensity, wavelength, or spectral shape of the semiconductor wear 1 has changed. It's a demon.

さらに本発明の半導体ウェアtへの目合せ方法1*現す
るためには通常の露光装置にはウェア1*iwhガッス
マスタの移動機構はついていルタめ#C手導体ウつフ1
からのホトルンネッセンス励lI1党源およびルミネッ
センスの検出器管そなえた露光11!l倉咋ればよ〈従
来装置く上記光源と検出at付加すればよぐ従来設置が
そのま1使用で龜る・
Furthermore, in order to realize the alignment method 1 for the semiconductor wafer t of the present invention, a normal exposure apparatus is equipped with a moving mechanism for the ware 1*iwh gas master.
Exposure with a photoluminescence excitation source and a luminescence detector tube from 11! If you add the above-mentioned light source and detection AT to the conventional equipment, the conventional installation will be slowed down with just one use.

【図面の簡単な説明】 I11図はBHHレーザ断面構造図、第2図はBHHレ
ーザ電流注入不純物選択拡散マスクを製作するためのリ
ングラフィ前に目合せのために角度研1it(I#cス
テイニングを#′!どこしBHHレーザ内部構造を表面
パターンとして観測できるようにしあげ良つェフデの図
、第3図は本発明のホトルンネツセンス観欄を用いた方
法によるBHレーザ用ツウエフ1の目合せ方法を説明す
るための図、第4IIl#i第3図に対応したウェア1
からのホトルミネッセンス強度のウェファ面内の分布【
示す図、第5図Fipcwレーザウェ゛〕1への本発明
による目合せ方法を示すall (a)と、ホトルζネ
ッセンス強度O分布を示す図1)でTol、第6図はパ
ーにアプルトランジスタ用りエフTの模式ウェアtへ0
本発−011合せ方法を適用した場合tI!咽する図で
ある。 図において341>よび34!が被露光中導体ウェア1
への励起光源の光路を示し、33は光励起により生じた
被露光牛導体つェツツからホトルきネッ七ンス党を光検
出器に導くため0光7シイパーを示す。 第 1 国 82 図 第 3 目
[Brief explanation of the drawings] Figure I11 is a cross-sectional structure diagram of the BHH laser, and Figure 2 is the angle grinding 1it (I#c stay) for alignment before phosphorography for manufacturing the BHH laser current injection impurity selective diffusion mask. The internal structure of the BHH laser can be observed as a surface pattern. Figure 3 is a diagram of the BHH laser's internal structure by the method using the photoluminescence viewing column of the present invention. Diagram for explaining the alignment method, Wear 1 corresponding to Fig. 4IIl#i Fig. 3
In-wafer distribution of photoluminescence intensity from [
Figure 5 shows the alignment method according to the present invention for the FipCW laser beam 1 (all (a)), and Figure 1) shows the photonescence intensity distribution (O) for Tol and Figure 6 for par. riF T's model wear t 0
When applying the present invention-011 matching method, tI! This is a heartwarming figure. In the figure 341> and 34! Conductor wear 1 while being exposed
33 shows the optical path of the excitation light source to the photodetector, and 33 shows the 0-light 7 shielder for guiding the hot light beams generated by the optical excitation from the exposed conductor to the photodetector. 1st Country 82 Figure 3

Claims (1)

【特許請求の範囲】 1、 ウェア1表面を光励起した場合に得られるに1ネ
号センス強度、ル(ネツセンス波長、ル電ネツセンスス
ベタトル形状等のホトルミネッ竜yxJ号が面内分布を
有する半導体ウェア10表面あるいは表面上に形成され
九材料層を上記傘トル書本ツーセンス信号の面内分布と
規則的関係會もって加工する場合の目合せ方法において
、上記ホトルミネッセンス信号の面内分布をm−するこ
とによりg合せすることを特徴とする牛導体りエ71の
目合せ方法 1 被露光半導体ウェア1を光励起すべく光源と披露m
体つェフtからの光励起によるルミネッセンス光を検出
する光検出器とをそなえたこと1−特徴とする露光装置 1 上記露光装置にお−て力蘭洸O被露光牛導体つェy
yll射位置と◆ンネツセンス光検出器ある%Aはルミ
ネツ七yス党検出器へ0党導波路のルンネツセンス検出
開口部の相対位置が一定である特許請求のlll1第3
項記I!O露光装置。
[Claims] 1. A semiconductor having an in-plane distribution of photoluminescence y In the alignment method when processing the surface of the wear 10 or the nine material layers formed on the surface in a regular relationship with the in-plane distribution of the two-sense signal, the in-plane distribution of the photoluminescence signal is m- A method 1 for aligning a cow conductor rie 71, which is characterized by aligning g by
and a photodetector for detecting luminescence light due to optical excitation from the body t.
The relative position of the luminescence detection aperture of the luminescence waveguide and the luminescence detection aperture of the luminescence photodetector is constant.
Entry I! O exposure device.
JP56119629A 1981-07-30 1981-07-30 Positioning method for semiconductor wafer surface and exposing unit Pending JPS5821330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56119629A JPS5821330A (en) 1981-07-30 1981-07-30 Positioning method for semiconductor wafer surface and exposing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56119629A JPS5821330A (en) 1981-07-30 1981-07-30 Positioning method for semiconductor wafer surface and exposing unit

Publications (1)

Publication Number Publication Date
JPS5821330A true JPS5821330A (en) 1983-02-08

Family

ID=14766168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56119629A Pending JPS5821330A (en) 1981-07-30 1981-07-30 Positioning method for semiconductor wafer surface and exposing unit

Country Status (1)

Country Link
JP (1) JPS5821330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572886A (en) * 1983-11-03 1986-02-25 Texas Instruments Incorporated Optical method for integrated circuit bar identification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572886A (en) * 1983-11-03 1986-02-25 Texas Instruments Incorporated Optical method for integrated circuit bar identification

Similar Documents

Publication Publication Date Title
CN103777467B (en) A kind of overlay error measurement apparatus and method
DE3887840T2 (en) Superluminescent diode.
DE69419370T2 (en) Optical device
US6177710B1 (en) Semiconductor waveguide type photodetector and method for manufacturing the same
US5477325A (en) Method for evaluating epitaxial layers and test pattern for process evaluation
DE69520901T2 (en) Optical device
JPS5821330A (en) Positioning method for semiconductor wafer surface and exposing unit
JPS6387766A (en) Integrated semiconductor device
EP1041630A2 (en) Method of accurately performing alignment of patterning in the manufaturing of a semiconductor device, and mask for exposure
WO2022053292A1 (en) Optical measuring system and method for measuring the distance or speed of an object
KR100485029B1 (en) Glass substrate for an electron device, photomask blank and photomask using the same
JPH11307806A (en) Photodetector and its manufacture
JPH01270284A (en) Semiconductor laser element and its manufacture
JP2998673B2 (en) Wafer, method and apparatus for aligning the wafer
Sooryakumar et al. Resonant Brillouin scattering in cadmium telluride
JPS62269036A (en) System for automatically measuring diffraction efficiency distribution of diffraction grating
JPH08202053A (en) Alignment method
JPH07201804A (en) Stripe etching method for semiconductor wafer
DE102020123560A1 (en) LASER SOURCE, LIDAR SYSTEM AND METHOD OF CONTROLLING A LASER SOURCE
DE19840725A1 (en) Optical interferometer for measuring e.g. semiconductor surface microstructure
JPS58162090A (en) Semiconductor laser
JPS597234B2 (en) Method for manufacturing semiconductor light emitting device
JPS63172482A (en) Optical integrated element
JPS6139596A (en) Evaluation of semiconductor crystal wafer
JPH0423482A (en) Method for appreciation of refractive index difference