JPH0423482A - Method for appreciation of refractive index difference - Google Patents

Method for appreciation of refractive index difference

Info

Publication number
JPH0423482A
JPH0423482A JP12688190A JP12688190A JPH0423482A JP H0423482 A JPH0423482 A JP H0423482A JP 12688190 A JP12688190 A JP 12688190A JP 12688190 A JP12688190 A JP 12688190A JP H0423482 A JPH0423482 A JP H0423482A
Authority
JP
Japan
Prior art keywords
diffusion region
refractive index
impurity diffusion
active layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12688190A
Other languages
Japanese (ja)
Inventor
Takuya Oizumi
卓也 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12688190A priority Critical patent/JPH0423482A/en
Publication of JPH0423482A publication Critical patent/JPH0423482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To appreciate readily and surely whether or not a desired refractive index difference is produced in an active layer by determining refractive index difference between an active layer and an impurity diffusion region on the basis of an impurity concentration in a known active layer and an impurity concentration in an impurity diffusion region which is found in advance. CONSTITUTION:Laser light is projected selectively to an action layer 2 part as it is and a P-type impurity diffusion region 4. PL wavelength is measured separately, and impurity concentration in a P-type impurity diffusion region 4 is obtained from the result. That is, since hole concentration po and PL wavelength are in positive correlation, hole concentration po can be known when the difference lambdaPL of PL wavelength values of the active layer 2 and the P-type impurity diffusion region 4 is obtained. Furthermore, since impurity concentration is known, the refractive index difference n between the P-type impurity diffusion region 4 and the active layer 2 can be obtained only by determining hole concentration po. Thereby, it is possible to appreciate readily and surely whether or not refraction factor difference is a proper value.

Description

【発明の詳細な説明】 〔概要〕 不純物拡散領域が選択的に形成された屈折率導波型半導
体レーザに於ける屈折率差を評価する方法に関し、 屈折率差Δnを生成させる為の選択的不純物拡散領域を
形成したウェハの段階で、活性層に所望の屈折率差Δn
が生成されているか否かを容易且つ確実に評価すること
ができるようにすることを目的とし、 活性層に不純物拡散領域を選択的に形成することで屈折
率差を生成させて横方向の光閉じ込めを行う屈折率導波
型半導体レーザに於ける前記活性層及び不純物拡散領域
にレーザ光を別個に照射してそれぞれのホトルミネセン
ス波長を測定し、次いで、該二つのホトルミネセンス波
長の差ΔλPLから前記不純物拡散領域の不純物濃度を
導出し、次いで、予め判っている前記活性層に於ける不
純物濃度及びさきに導出した不純物拡散領域に於ける不
純物濃度から該活性層と該不純物拡散領域との間の屈折
率差を導出するよう構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for evaluating a refractive index difference in an index-guided semiconductor laser in which an impurity diffusion region is selectively formed, At the stage of the wafer in which the impurity diffusion region is formed, the desired refractive index difference Δn is set in the active layer.
The purpose of this method is to easily and reliably evaluate whether or not a The active layer and the impurity diffusion region of the index-guided semiconductor laser that performs confinement are separately irradiated with laser light to measure their respective photoluminescence wavelengths, and then the difference between the two photoluminescence wavelengths is measured. The impurity concentration of the impurity diffusion region is derived from ΔλPL, and then the impurity concentration of the active layer and the impurity diffusion region is determined from the impurity concentration in the active layer known in advance and the impurity concentration in the impurity diffusion region derived earlier. The configuration is configured to derive the refractive index difference between.

〔産業上の利用分野〕[Industrial application field]

本発明は、不純物拡散領域が選択的に形成された屈折率
導波型半導体レーザに於ける屈折率差を評価する方法に
関する。
The present invention relates to a method for evaluating a refractive index difference in an index-guided semiconductor laser in which impurity diffusion regions are selectively formed.

現在、レーザ・プリンタ用半導体レーザ、或いは、ポン
ピング用半導体レーザなど可視短波帯で使用する半導体
レーザの高出力化が要求されている。
Currently, there is a demand for higher output semiconductor lasers used in the visible short wave band, such as semiconductor lasers for laser printers or pumping semiconductor lasers.

〔従来の技術〕[Conventional technology]

一般に、高出力化を狙った半導体レーザの一つとして、
選択拡散法を適用して不純物拡散領域を形成した、所謂
、ウィンドウ構造をもった屈折率導波型のものが知られ
ている。
In general, as a type of semiconductor laser aiming at high output,
A refractive index waveguide type device having a so-called window structure in which an impurity diffusion region is formed by applying a selective diffusion method is known.

この種の半導体レーザに於ける該ウィンドウの部分は、
レーザ光に対して透明であることから、高出力発振時に
於いてもレーザ光出射面が溶融するなどの事故は起き難
いので、半導体レーザの高出力化に対して極めて有効な
手段の一つとなっている。
The window portion in this type of semiconductor laser is
Since it is transparent to laser light, accidents such as melting of the laser light emitting surface are unlikely to occur even during high-output oscillation, making it an extremely effective means for increasing the output power of semiconductor lasers. ing.

さて、この屈折率導波型半導体レーザに於いては、選択
拡散法で不純物拡散領域を形成し、拡散部分と非拡散部
分との屈折率差を利用して光の閉じ込めを行うようにし
ている。
Now, in this refractive index guided semiconductor laser, an impurity diffusion region is formed using a selective diffusion method, and light is confined by utilizing the refractive index difference between the diffused and non-diffused areas. .

第6図は選択拡散法を適用して形成した不純物拡散領域
をもつ屈折率導波型半導体レーザを説明する為の図であ
って、(A)は要部切断正面図、(B)は屈折率分布を
示す線図をそれぞれ表している。
FIG. 6 is a diagram for explaining a refractive index guided semiconductor laser having an impurity diffusion region formed by applying a selective diffusion method, in which (A) is a cutaway front view of the main part, and (B) is a refractive index waveguide semiconductor laser. Each represents a line diagram showing the rate distribution.

図に於いて、11はn型クラッド層、12はn型活性層
、13はp型りラッド層、14はp型不純物拡散領域、
Δnは屈折率差をそれぞれ示している。尚、図の(B)
では、縦軸には屈折率を、また、横軸には距離をそれぞ
れ採っである。
In the figure, 11 is an n-type cladding layer, 12 is an n-type active layer, 13 is a p-type rad layer, 14 is a p-type impurity diffusion region,
Δn indicates the refractive index difference. In addition, (B) in the figure
Here, the vertical axis represents the refractive index, and the horizontal axis represents distance.

図示されているように、この屈折率導波型半導体レーザ
では、表面側から例えば亜鉛(Zn)を拡散し、特に、
n型活性層12の一部をp型に反転させ、屈折率を高め
ることで横方向に於ける屈折率差Δnを生成させ、光を
閉じ込めるようにしている。
As shown in the figure, in this refractive index guided semiconductor laser, for example, zinc (Zn) is diffused from the surface side, and in particular,
By inverting a part of the n-type active layer 12 to p-type and increasing the refractive index, a refractive index difference Δn in the lateral direction is generated and light is confined.

第7図はGaAsに於ける電子濃度及び正札濃度に依存
した屈折率の変化を説明する為の線図であり、縦軸には
屈折率nを、また、横軸には電子濃度n。並びに正孔濃
度p。をそれぞれ採っである。
FIG. 7 is a diagram for explaining changes in the refractive index depending on the electron concentration and the genuine plate concentration in GaAs, with the vertical axis representing the refractive index n and the horizontal axis representing the electron concentration n. and hole concentration p. are taken respectively.

図から明らかなように、電子濃度n。或いは正孔濃度p
。が変化すると、対応する屈折率nも変化するので、活
性層に於ける拡散部分(p型)と非拡散部分(n型)と
の間の屈折率差Δnが光を閉じ込めるのに有効な値とな
るよう拡散部分のp型不純物濃度を制御することが必要
である。
As is clear from the figure, the electron concentration n. Or the hole concentration p
. When , the corresponding refractive index n also changes, so the refractive index difference Δn between the diffusing part (p type) and the non-diffusing part (n type) in the active layer is an effective value for confining light. It is necessary to control the p-type impurity concentration in the diffusion portion so that .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記説明したような不純物拡散領域が選択的に形成され
た屈折率導波型半導体レーザに於いては、活性層に於け
るp型部分とn型部分との間の屈折率差Δnが充分に得
られているか、換言すれば、p型不純物拡散領域が活性
層に充分に到達し、且つ、所定の不純物濃度を維持して
いるか否かに依って、屈折率導波型半導体レーザとして
の機能が左右されることになる。
In the refractive index guided semiconductor laser in which impurity diffusion regions are selectively formed as described above, the refractive index difference Δn between the p-type part and the n-type part in the active layer is sufficient. In other words, the function as an index-guided semiconductor laser depends on whether the p-type impurity diffusion region sufficiently reaches the active layer and maintains a predetermined impurity concentration. will be affected.

然しながら、このp型不純物拡散領域のストライプ幅は
数〔μm〕程度、具体的には2〜3〔μm〕程度と大変
微細なものであることから、製造途中に於いて、不純物
濃度を予め測定することは困難であって、従来は、半導
体レーザが完成された後、実際にレーザ発振を行わせて
からでないと良品であるか否か、即ち、p型不純物拡散
が適切に行われたかどうかを判定することは不可能であ
った。しかも、そのような判定も、間接的な手段であっ
て、直接的に不純物濃度を測定するものではない。尚、
屈折率導波型半導体レーザを形成するウェハの適所にモ
ニタ用の不純物拡散領域を形成しておき、その不純物濃
度を観測することも行われているが、その場合も、前記
同様、レーザ自体を直接測定していることにはならない
However, since the stripe width of this p-type impurity diffusion region is very fine, on the order of several [μm], specifically on the order of 2 to 3 [μm], it is necessary to measure the impurity concentration in advance during manufacturing. Conventionally, after a semiconductor laser is completed, it is necessary to actually perform laser oscillation to determine whether it is a good product, that is, whether p-type impurity diffusion has been properly performed. It was impossible to determine. Moreover, such determination is also an indirect means and does not directly measure the impurity concentration. still,
It is also possible to form an impurity diffusion region for monitoring at a suitable location on a wafer on which an index-guided semiconductor laser is formed, and to observe the impurity concentration. This does not mean that it is being measured directly.

本発明は、屈折率差Δnを生成させる為の選択的不純物
拡散領域を形成したウェハの段階で、活性層に所望の屈
折率差Δnが生成されているか否かを容易且つ確実に評
価することができるようにしようとする。
The present invention aims to easily and reliably evaluate whether or not a desired refractive index difference Δn is generated in an active layer at the stage of a wafer in which a selective impurity diffusion region for generating a refractive index difference Δn is formed. I try to make it possible.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の詳細な説明する為の屈折率導波型半導
体レーザの要部切断正面図を表している。
FIG. 1 shows a cutaway front view of essential parts of a refractive index guided semiconductor laser for explaining the present invention in detail.

図に於いて、lはn型クラッド層、2は活性層、3はp
型クラッド層、4はp型不純物拡散領域をそれぞれ示し
ている。
In the figure, l is an n-type cladding layer, 2 is an active layer, and 3 is a p-type cladding layer.
type cladding layer, 4 indicates a p-type impurity diffusion region, respectively.

本発明では、屈折率導波型半導体レーザについて、図示
の構成がウェハに作り込まれた段階で、該屈折率導波型
半導体レーザの励起光源として微小スポットに絞ったレ
ーザ光を用い、それを活性層2そのもの、並びに、活性
層2に形成されたp型不純物拡散領域4に照射し、それ
ぞれホトルミネセンス(photoluminesce
nce:pI−)波長の測定を行なって1、それ等の測
定結果から屈折率差の評価を行うようにしている。
In the present invention, a laser beam narrowed to a minute spot is used as an excitation light source for the index-guided semiconductor laser when the configuration shown in the figure is fabricated on a wafer. The active layer 2 itself and the p-type impurity diffusion region 4 formed in the active layer 2 are irradiated to emit photoluminescence.
nce:pI-) wavelength is measured (1), and the refractive index difference is evaluated from the measurement results.

前記したところから、本発明に依る屈折率差評価方法に
於いては、 (1)活性層(例えばn型GaAs活性層23)に不純
物拡散領域(例えばp型不純物拡散領域27)を選択的
に形成することで屈折率差(例えば屈折率差Δn)を生
成させて横方向の光閉じ込めを行う屈折率導波型半導体
レーザに於ける前記活性層並びに不純物拡散領域にレー
ザ光を別個に照射してそれぞれのホトルミネセンス波長
(例えばPL波長)を測定し、次いで、該二つのホトル
ミネセンス波長の差から前記不純物拡散領域の不純物濃
度(例えば正孔濃度p。)を導出し、次いで、予め判っ
ている前記活性層に於ける不純物濃度及びさきに導出し
た不純物拡散領域に於ける不純物濃度から該活性層と該
不純物拡散領域との間の屈折率差を導出するか、或いは
、 (2)前記(1)に於いて、屈折率導波型半導体レーザ
に於ける活性層並びに不純物拡散領域にレーザ光を照射
するに際し該レーザ光を吸収し易い表面側半導体層(例
えばn型GaAsキャップ層26)を予め除去してから
行うか、 するようにしている。
From the above, in the refractive index difference evaluation method according to the present invention, (1) selectively forming an impurity diffusion region (for example, the p-type impurity diffusion region 27) in the active layer (for example, the n-type GaAs active layer 23); A laser beam is separately irradiated onto the active layer and the impurity diffusion region in the refractive index waveguide semiconductor laser which generates a refractive index difference (for example, refractive index difference Δn) and lateral optical confinement by forming the active layer and the impurity diffusion region. Then, from the difference between the two photoluminescence wavelengths, the impurity concentration (for example, hole concentration p.) of the impurity diffusion region is derived. Deriving the refractive index difference between the active layer and the impurity diffusion region from the known impurity concentration in the active layer and the previously derived impurity concentration in the impurity diffusion region, or (2) In (1) above, when the active layer and impurity diffusion region of the index-guided semiconductor laser are irradiated with laser light, the surface side semiconductor layer (for example, the n-type GaAs cap layer 26) that easily absorbs the laser light is ) is removed in advance, or

〔作用〕[Effect]

本発明に於いては、活性層を励起するレーザ光をp型不
純物が拡散されていない部分、即ち、活性層2そのまま
の部分とp型不純物拡散領域4とに選択的に照射し、そ
れぞれ別個にPL波長を測定し、その結果に依ってp型
不純物拡散領域4に於ける不純物濃度を知得している。
In the present invention, a laser beam that excites the active layer is selectively irradiated to a portion where p-type impurities are not diffused, that is, a portion of the active layer 2 as it is and the p-type impurity diffusion region 4, respectively. The PL wavelength is measured, and the impurity concentration in the p-type impurity diffusion region 4 is determined based on the result.

即ち、正孔濃度p。(!:PL波長とは正の相関関係が
あるので、活性層2及びp型不純物拡散領域4のPL波
長値の差ΔλPLが判れば、正孔濃度p。を知ることが
できる。
That is, the hole concentration p. (!: Since there is a positive correlation with the PL wavelength, if the difference ΔλPL between the PL wavelength values of the active layer 2 and the p-type impurity diffusion region 4 is known, the hole concentration p can be found.

第2図は正孔濃度p。対p型不純物拡散部分と非拡散部
分とに於けるPL波長値の差Δれ【の関係を説明する為
の線図を表し、縦軸には正札濃度poを、また、横軸に
はPL波長値の差Δれ、をそれぞれ採っである。
Figure 2 shows the hole concentration p. This is a diagram for explaining the relationship between the difference ΔΔ in PL wavelength value between the p-type impurity diffused part and the non-diffused part, with the vertical axis representing the original card concentration po, and the horizontal axis representing the PL wavelength value. The differences in wavelength values Δ and Δ are respectively taken.

この図があれば、活性層2及びp型不純物拡散領域4の
PL波長値の差Δλ、Lが判ると、正孔濃度P。を簡単
に求めることができる。尚、このより うな相関図を予め作成することは容易である。
If you have this diagram, and you know the difference Δλ, L between the PL wavelength values of the active layer 2 and the p-type impurity diffusion region 4, you can determine the hole concentration P. can be easily found. Incidentally, it is easy to create such a correlation diagram in advance.

ここで、活性層2自体に於ける不純物濃度は既知である
から、前記のようにして正孔濃度p。が判れば、第7図
を参照し、p型不純物拡散領域4と活性層2との屈折率
差Δnを求めることができる。
Here, since the impurity concentration in the active layer 2 itself is known, the hole concentration p is determined as described above. Once this is known, the refractive index difference Δn between the p-type impurity diffusion region 4 and the active layer 2 can be determined with reference to FIG.

〔実施例〕〔Example〕

第3図及び第4図は本発明一実施例に用いた製造途中の
屈折率導波型半導体レーザを説明する要部切断正面図を
表している。
FIGS. 3 and 4 are cutaway front views of essential parts for explaining a refractive index guided semiconductor laser that is in the process of being manufactured and used in an embodiment of the present invention.

評価の対称となる試料の作成について説先ず、 明する。First, I will explain how to prepare the sample for evaluation. I will clarify.

第3図に於いて、 21はn型GaAs基板、 22はn型AffiGaAsクラッド層23はn型Cr
aAs活性層、 24はn型Al2GaAsクラッド層 25はp型A I G a A s電流狭窄層、26は
n型GaAsキャップ層、 27ばp型不純物拡散領域 をそれぞれ示していて、このような構成は従来の技術で
容易に作成することができる。即ち、n型GaAs基板
21上に各半導体層を積層成長させてからp型不純物拡
散領域27を形成し、その段階でウェハの襞間を行ない
、図示のようにグイ化する。
In FIG. 3, 21 is an n-type GaAs substrate, 22 is an n-type AffiGaAs cladding layer 23 is an n-type Cr
24 is an n-type Al2GaAs cladding layer, 25 is a p-type AIGaAs current confinement layer, 26 is an n-type GaAs cap layer, and 27 is a p-type impurity diffusion region. can be easily made using conventional techniques. That is, after each semiconductor layer is laminated and grown on the n-type GaAs substrate 21, the p-type impurity diffusion region 27 is formed, and at that stage the wafer is folded to form a wafer as shown in the figure.

第4図に見られるように、ウェハの最上層、即ち、n型
GaAsキャップ層26を選択的にエツチングして除去
する。これは、GaAsがレーザ光を吸収する為、n型
GaAs活性層23に到達するまでに大きく減衰するこ
とを防止する為である。尚、このエツチングは、下地が
AI!、GaAsであることから、例えば、アンモニア
(NH3)十過酸化水素(H20□)の混合液をエッチ
ャントとするウェット・エツチング法を適用することで
、GaAsのみを容易に選択エツチングすることが可能
である。
As seen in FIG. 4, the top layer of the wafer, ie, the n-type GaAs cap layer 26, is selectively etched away. This is to prevent the laser light from being greatly attenuated before reaching the n-type GaAs active layer 23 since GaAs absorbs the laser light. In addition, the base of this etching is AI! Since it is GaAs, for example, by applying a wet etching method using a mixture of ammonia (NH3) and hydrogen peroxide (H20□) as an etchant, it is possible to easily selectively etch only GaAs. be.

■ n型GaAs活性層23並びにp型不純物拡散領域27
にレーザ光を照射してPL波長の測定をそれぞれ別個に
行う。
■ N-type GaAs active layer 23 and p-type impurity diffusion region 27
The PL wavelengths are measured separately by irradiating the laser beams on the PL wavelengths.

二つのPL波長の値から、それ等の差Δλ、Lが得られ
、その値と第2図とを利用してp型不純物拡散領域27
に於ける正孔濃度p。を求めることができる。
From the values of the two PL wavelengths, the difference Δλ, L between them is obtained, and the p-type impurity diffusion region 27 is determined using the values and FIG.
The hole concentration at p. can be found.

n型GaAs活性層23に於ける電子濃度n0は予め判
っているから、それと前記のようにして求めたp型不純
物拡散領域27に於ける正孔濃度poと第6図とからp
型不純物拡散領域27とn型GaAs活性層23との間
の屈折率差Δnを知得することができる。
Since the electron concentration n0 in the n-type GaAs active layer 23 is known in advance, the hole concentration po in the p-type impurity diffusion region 27 obtained as described above and from FIG.
The refractive index difference Δn between the type impurity diffusion region 27 and the n-type GaAs active layer 23 can be obtained.

第5図は前記(3)で説明したPL波長の測定を行うの
に用いた装置を解説する為の要部説明図を表している。
FIG. 5 shows an explanatory diagram of the main parts for explaining the apparatus used to measure the PL wavelength described in (3) above.

図に於いて、31はレーザ光源、32はレンズ、33は
ミラー、34はハーフ・ミラー、35はレンズ、36は
試料、37はレンズ、38はチョッパ、39は分光器、
40はディテクタ、41はロック・イン増幅器、42は
レコーダをそれぞれ示している。
In the figure, 31 is a laser light source, 32 is a lens, 33 is a mirror, 34 is a half mirror, 35 is a lens, 36 is a sample, 37 is a lens, 38 is a chopper, 39 is a spectrometer,
40 is a detector, 41 is a lock-in amplifier, and 42 is a recorder.

図示の装置に於いて、レーザ光−/R31は例えば波長
が647.1 (nm)のであるKr” レーザ、例え
ば波長が488.O(nm)或いは514.5(nm)
Ar” レーザなどを用いることができ、この場合の選
択基準としては、クラッド層を通過して活性層のみに吸
収される波長を選択できるレーザ、及び、それに近いも
のが良い。試料36に照射するレーザ光のスポット径は
5乃至10〔μm〕とする。ディテクタ40はシリコン
ルミnフォト・ダイオード或いは光電増倍管などを用い
ることができる。試料36からのPLは分光器39で分
光され、P L波長の測定結果はレコーダ42に記録さ
れる。
In the illustrated apparatus, the laser beam R31 is a Kr'' laser with a wavelength of 647.1 (nm), for example, a wavelength of 488.0 (nm) or 514.5 (nm).
An "Ar" laser can be used, and in this case, the selection criteria is a laser that can select a wavelength that passes through the cladding layer and is absorbed only by the active layer, or a laser that is close to that. Irradiate the sample 36. The spot diameter of the laser beam is set to 5 to 10 [μm].The detector 40 can be a silicon Lumin photodiode or a photomultiplier tube.The PL from the sample 36 is spectrally separated by a spectrometer 39, and the P The measurement results of the L wavelength are recorded on the recorder 42.

前記実施例は活性層がGaAsの場合であったが、例え
ばΔ12 G a A s、その他の材料の場合であっ
ても、ΔλPL+  no +  P O+  nなど
の相関関係が求められていれば、前記と同様にして評価
を行うことができることは云うまでもない。
In the above embodiment, the active layer is made of GaAs, but even if the active layer is made of Δ12 Ga As or other materials, if a correlation such as ΔλPL+ no + P O+ n is obtained, the above It goes without saying that evaluation can be carried out in the same manner as .

〔発明の効果〕〔Effect of the invention〕

本発明に依る屈折率差評価方法に於いては、屈折率導波
型半導体レーザに於ける活性層及び不純物拡散領域にレ
ーザ光を別個に照射してそれぞれのホトルミネセンス波
長を測定し、該二つのホトルミネセンス波長の差ΔλP
Lから前記不純物拡散領域の不純物濃度を導出し、予め
判っている前記活性層に於ける不純物濃度及びさきに導
出した不純物拡散領域に於ける不純物濃度から該活性層
と該不純物拡散領域との間の屈折率差を導出している。
In the refractive index difference evaluation method according to the present invention, the active layer and impurity diffusion region of an index-guided semiconductor laser are separately irradiated with laser light, and the photoluminescence wavelength of each is measured. Difference between two photoluminescence wavelengths ΔλP
The impurity concentration of the impurity diffusion region is derived from L, and the impurity concentration between the active layer and the impurity diffusion region is derived from the previously known impurity concentration in the active layer and the previously derived impurity concentration in the impurity diffusion region. The refractive index difference is derived.

前記手段を採ることに依り、屈折率導波型半導体レーザ
の製造途中、即ち、横方向の光閉じ込めを行う為の屈折
率差を生成させる不純物拡散領域を形成したウェハの段
階で、該屈折率差が適正な値になっているか否かを容易
且つ確実に評価することができ、従って、その評価結果
をもって、その後の製造工程を継続するか否かを判断す
ることが可能となり、無駄な製造作業の削減に寄与する
ところが大きい。
By employing the above method, the refractive index can be changed during the manufacture of the refractive index guided semiconductor laser, that is, at the stage of the wafer in which the impurity diffusion region that generates the refractive index difference for lateral optical confinement is formed. It is possible to easily and reliably evaluate whether the difference is an appropriate value, and therefore, it is possible to use the evaluation results to decide whether or not to continue the subsequent manufacturing process, thereby reducing wasteful manufacturing. This greatly contributes to reducing work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する為の屈折率導波型半導
体レーザの要部切断正面図、第2図は正孔濃度p。対P
型不純物拡散部分と非拡散部分とに於けるPL波長値の
差Δλptの関係を説明する為の線図、第3図及び第4
図は本発明一実施例に用いた製造途中の屈折率導波型半
導体レーザを説明する要部切断正面図、第5図はPL波
長を測定する装置の要部説明図、第6図は選択拡散法を
適用して形成した不純物拡散領域をもつ屈折率導波型半
導体レーザを説明する為の図であり、(A)は要部切断
正面図、(B)は屈折率分布を示す線図、第7図はGa
Asに於ける電子濃度及び正孔濃度に依存した屈折率の
変化を説明する為の線図をそれぞれ表している。 図に於いて、 21ばn型GaAs基板、 22はn型AffiGaAsクラッド層23はn型Ga
As活性層、 24はn型Aj2GaAsクラッド層 25はp型Aj2GaAs電流狭窄層、26はn型Ga
Asキャップ層、 27はp型不純物拡散領域 をそれぞれ示している。 特許出願人   冨士通株式会社 代理人弁理士  相 谷 昭 司
FIG. 1 is a cutaway front view of essential parts of a refractive index guided semiconductor laser for explaining the present invention in detail, and FIG. 2 is a diagram showing the hole concentration p. Against P
Diagrams 3 and 4 for explaining the relationship of the difference Δλpt in PL wavelength value between the type impurity diffused part and the non-diffused part
The figure is a cut-away front view of the essential parts to explain the refractive index guided semiconductor laser in the process of being manufactured used in one embodiment of the present invention, Figure 5 is an explanatory diagram of the essential parts of the device for measuring the PL wavelength, and Figure 6 is the selected part. FIG. 2 is a diagram for explaining a refractive index guided semiconductor laser having an impurity diffusion region formed by applying a diffusion method, in which (A) is a cutaway front view of the main part, and (B) is a diagram showing the refractive index distribution. , Figure 7 shows Ga
Each of these diagrams shows a diagram for explaining the change in refractive index depending on the electron concentration and hole concentration in As. In the figure, 21 is an n-type GaAs substrate, 22 is an n-type AffiGaAs cladding layer 23 is an n-type GaAs substrate, and 22 is an n-type AffiGaAs cladding layer 23.
24 is an n-type Aj2GaAs cladding layer 25 is a p-type Aj2GaAs current confinement layer, and 26 is an n-type GaAs active layer.
27 indicates an As cap layer, and a p-type impurity diffusion region. Patent Applicant Fujitsu Co., Ltd. Representative Patent Attorney Shoji Aitani

Claims (2)

【特許請求の範囲】[Claims] (1)活性層に不純物拡散領域を選択的に形成すること
で屈折率差を生成させて横方向の光閉じ込めを行う屈折
率導波型半導体レーザに於ける前記活性層並びに不純物
拡散領域にレーザ光を別個に照射してそれぞれのホトル
ミネセンス波長を測定し、 次いで、該二つのホトルミネセンス波長の差から前記不
純物拡散領域の不純物濃度を導出し、次いで、予め判っ
ている前記活性層に於ける不純物濃度及びさきに導出し
た不純物拡散領域に於ける不純物濃度から該活性層と該
不純物拡散領域との間の屈折率差を導出すること を特徴とする屈折率差評価方法。
(1) A refractive index waveguide semiconductor laser in which lateral optical confinement is achieved by selectively forming an impurity diffusion region in the active layer to generate a difference in refractive index. Light is irradiated separately to measure each photoluminescence wavelength, and then the impurity concentration of the impurity diffusion region is derived from the difference between the two photoluminescence wavelengths. A refractive index difference evaluation method comprising deriving a refractive index difference between the active layer and the impurity diffusion region from the impurity concentration in the active layer and the previously derived impurity concentration in the impurity diffusion region.
(2)屈折率導波型半導体レーザに於ける活性層並びに
不純物拡散領域にレーザ光を照射するに際し該レーザ光
を吸収し易い表面側半導体層を予め除去してから行うこ
と を特徴とする請求項1記載の屈折率差評価方法。
(2) A claim characterized in that, when irradiating the active layer and impurity diffusion region of an index-guided semiconductor laser with laser light, the surface-side semiconductor layer that easily absorbs the laser light is removed in advance. Item 1. The refractive index difference evaluation method according to item 1.
JP12688190A 1990-05-18 1990-05-18 Method for appreciation of refractive index difference Pending JPH0423482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12688190A JPH0423482A (en) 1990-05-18 1990-05-18 Method for appreciation of refractive index difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12688190A JPH0423482A (en) 1990-05-18 1990-05-18 Method for appreciation of refractive index difference

Publications (1)

Publication Number Publication Date
JPH0423482A true JPH0423482A (en) 1992-01-27

Family

ID=14946156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12688190A Pending JPH0423482A (en) 1990-05-18 1990-05-18 Method for appreciation of refractive index difference

Country Status (1)

Country Link
JP (1) JPH0423482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529310A (en) * 2013-09-25 2014-01-22 中国科学院半导体研究所 Method for measuring GaN-based LED (light emitting diode) polarization electric field by utilizing photoluminescence spectra
CN111355118A (en) * 2018-12-20 2020-06-30 中科芯电半导体科技(北京)有限公司 VCSEL structure epitaxial material structure for photoluminescence test and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529310A (en) * 2013-09-25 2014-01-22 中国科学院半导体研究所 Method for measuring GaN-based LED (light emitting diode) polarization electric field by utilizing photoluminescence spectra
CN111355118A (en) * 2018-12-20 2020-06-30 中科芯电半导体科技(北京)有限公司 VCSEL structure epitaxial material structure for photoluminescence test and preparation method
CN111355118B (en) * 2018-12-20 2021-07-20 中科芯电半导体科技(北京)有限公司 VCSEL structure epitaxial material structure for photoluminescence test and preparation method

Similar Documents

Publication Publication Date Title
DE3887840T2 (en) Superluminescent diode.
Burnham et al. Single-heterostructure distributed-feedback GaAs-diode lasers
Hofstetter et al. Quantum-well intermixing for fabrication of lasers and photonic integrated circuits
US4518456A (en) Light induced etching of InP by aqueous solutions of H3 PO4
US11824326B2 (en) Semiconductor laser element, testing method, and testing device
JPH06349925A (en) Epitaxial growth layer evaluation method and process evaluation test pattern structure
JP2003179309A (en) Method for manufacturing semiconductor light emitting element and oxidizing furnace
JPH0423482A (en) Method for appreciation of refractive index difference
US6859478B2 (en) Semiconductor light emitting device in which near-edge portion is filled with doped regrowth layer, and dopant to regrowth layer is diffused into near-edge region of active layer
US7016384B2 (en) Second-harmonic generation device using semiconductor laser element having quantum-well active layer in which resonator length and mirror loss are arranged to increase width of gain peak
US5940423A (en) Semiconductor laser, optical pickup device, and optical record and/or reproducing apparatus
JP2567437B2 (en) Semiconductor laser device, evaluation method thereof, and manufacturing method thereof
JPH0376287A (en) Broad area laser
JPH118438A (en) Manufacture of semiconductor laser device
JPH03196689A (en) Semiconductor laser
JPS5861695A (en) Semiconductor laser element
JPH0278291A (en) Semiconductor laser element
JPS6139596A (en) Evaluation of semiconductor crystal wafer
KR101149478B1 (en) Apparatus and method for optical modal gain characteristics measurement
Nakamura et al. Double-core-slab-waveguide semiconductor lasers for end optical pumping
JP2705130B2 (en) Manufacturing method of semiconductor laser
JPH07161682A (en) Etching control method of semiconductor chip
JP2677708B2 (en) Method for manufacturing semiconductor device
JPH06275694A (en) Measuring method for light emission output
JP2728401B2 (en) Semiconductor laser