JPS58213233A - Method and device for continuously measuring nickel ion concentration - Google Patents

Method and device for continuously measuring nickel ion concentration

Info

Publication number
JPS58213233A
JPS58213233A JP9664582A JP9664582A JPS58213233A JP S58213233 A JPS58213233 A JP S58213233A JP 9664582 A JP9664582 A JP 9664582A JP 9664582 A JP9664582 A JP 9664582A JP S58213233 A JPS58213233 A JP S58213233A
Authority
JP
Japan
Prior art keywords
light
wavelength
absorption
nickel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9664582A
Other languages
Japanese (ja)
Inventor
Shiro Sato
史郎 佐藤
Sakae Kato
加藤 榮
Masaya Imai
正也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP9664582A priority Critical patent/JPS58213233A/en
Publication of JPS58213233A publication Critical patent/JPS58213233A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure Ni<++> concn. continuously in an instant from both light transmittance values, by measuring the light transmittances of the Ni<++> absorption peak and at the same time, the light of the wavelength of the sample water contg. Ni<++> continuously flowing at the bottom of the absorption near said peak of Ni<++> as the background. CONSTITUTION:The sample water contg. Ni<++> is passed through a deaerator 8 and a filter 7 to the sample inlet 3a of an absorption cell 3 made changeable in cell length in accorance with Ni<++> concn. by controlling plastic bellows provided in the middle of the cell. The water is passed through the cell 3 and the outlet 3b. The transmittance of Ni<++> is measured at 400nm or 720nm absorption peak by using 250-900nm light emitted by a light source 1a, a semireflective mirror 2b, and a photoelectric element 2b, and that of the water sample is measured at the same time at a wavelength where Ni<++> is not absorbed, and near said peak, e.g., 500nm, with a photoelectric element 2c. The Ni<++> concn. is recorded with a record control signal generating circuit 12 by eliminating the background value of the water from the peak absorbance value through an amplifying computing circuit 11, and control of an Ni recovery device, etc. are carried out with the circuit 12, thus permitting continuous and instantaneous measurement of Ni<++> concn.

Description

【発明の詳細な説明】 本発明は水中のニッケルイオンの測定方法及び装置、特
に流動水中のニッケルイオン連続測定方法及び連続測定
装置に[るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring nickel ions in water, particularly a method and apparatus for continuously measuring nickel ions in flowing water.

従来ニッケル二次電解水洗水中のニッケル濃度の測定方
法として一般に行なわれている方法としては、採取した
検水を実験室に持ち帰り通常の化学分析法によって定量
する方法(例えばJISKOlolあるいはJISKO
102)あるいは簡易水質分析計を用い【適時現場にて
分析する方法などがあるが、前者は分析結果の精度は高
いが分析操作に長時間を要し、著しく迅速性に欠けるの
でニッケル回収装置への導入水中のニッケルm*□ を連続的に管理づる場合には適当でなく、又、後者は前
者より迅速な方法ではあるが、連続的にニッケル濃度の
変動を管理覆る場合には適当ではなかった。また、両者
とも検水に対して試薬類を添加しニッケルの早色反応あ
るいはニッケルの原子吸光度等を測定りる方法であり、
測定後の廃液は別途処理しなければならなかった。
The conventional method for measuring the concentration of nickel in secondary nickel electrolytic washing water is to take the collected sample water to the laboratory and quantify it using a standard chemical analysis method (for example, JISKOlol or JISKO).
102) Alternatively, there are methods such as timely on-site analysis using a simple water quality analyzer, but the former provides high accuracy of analysis results, but requires a long time for analysis operations and is extremely slow, so it is not recommended to use a nickel recovery device. This method is not suitable for continuously controlling nickel m*□ in introduced water, and although the latter method is faster than the former, it is not suitable for continuously controlling fluctuations in nickel concentration. Ta. In addition, both methods add reagents to sample water and measure the early color reaction of nickel or the atomic absorption of nickel.
The waste liquid after measurement had to be treated separately.

本発明は上記のごとくニッケルイオン濃度測定の煩しさ
、効率の悪さを解決し、測定対象のニッケルイオンを3
右する水が流動状態のままで、連続的に測定できる方法
及びその測定装置を提供するものである。
The present invention solves the troublesome and inefficient measurement of nickel ion concentration as described above, and reduces the amount of nickel ions to be measured into three
The present invention provides a method and a measuring device that can continuously measure water while it is in a fluid state.

即ち、第1の発明の要旨とするところは、流動状態の検
水中を透過1ノだ光の内、波長250乃至900 n1
llの範囲内のニッケルイオン吸収ピーク波長光により
、ニッケルイオンとニッケルイオン以外の物質とを含む
水の光透過量を求め、同時に」−記吸収ピーク波長近傍
の吸収底部分の波長光により、ニッケルイオン以外の物
質を含む水の光透過量を求め、両者の透過量からニッケ
ルイオン濃度を求めることを特徴とjるニッケルイオン
濃度連   □続測定方法にあり、第2の発明の要旨と
づるところは、吸収セルの一端に設けられた光源より該
セル中の検水に光を照射し、該セルの他端に設置プられ
/j透過光検出部により、イの透過光の強度が測定され
、ぞの強度に基づき演粋回路により検水中の物質S度を
測定(る装置において、吸収セルがイの一端から検水が
流入し゛(他端J:り流出するよ′)構成され、透過光
検出部が波長250乃至900nmの範囲のニッケルイ
オン吸収ピーク波長光の測定部位と該吸収ビーク波長近
傍の吸収底部分の波長光の測定部位とから構成され、演
粋回路が両測定部位により同時に測定された透過光強度
に基づいてニッケルイオンの濃度を演粋するように構成
され(いることを特徴とするニッケル濃度連続測定装置
にある。
That is, the gist of the first invention is that among the light transmitted through the test water in a flowing state, wavelengths of 250 to 900 n1
The amount of light transmitted through water containing nickel ions and substances other than nickel ions is determined using light with a nickel ion absorption peak wavelength within the range of A continuous measurement method for nickel ion concentration characterized by determining the amount of light transmitted through water containing substances other than ions, and determining the nickel ion concentration from the amount of transmission of both, and the second gist of the invention. The sample water in the cell is irradiated with light from a light source installed at one end of the absorption cell, and the intensity of the transmitted light in A is measured by the transmitted light detector installed at the other end of the cell. In this device, the concentration of a substance S in the sample water is measured by a theoretical circuit based on the intensity of the absorption cell. The photodetecting section is composed of a measuring part for measuring light with a nickel ion absorption peak wavelength in the wavelength range of 250 to 900 nm and a measuring part for light having a wavelength at the absorption bottom near the absorption peak wavelength. A continuous nickel concentration measuring device is characterized in that it is configured to extract the concentration of nickel ions based on the measured intensity of transmitted light.

上記の発明は、発明者らの研究による次のような新たな
知見に基づきなされたものである。それは、ニッケルイ
オン(IT 価)の吸収スペクトルが第1図に示すごと
く液tW5〜50℃、PH2,5〜5で変化なく、第一
吸収ピーク波長400 nm。
The above invention was made based on the following new findings from research by the inventors. As shown in FIG. 1, the absorption spectrum of nickel ions (IT value) remains unchanged at a temperature of 5 to 50° C. and a pH of 2.5 to 5, and the first absorption peak wavelength is 400 nm.

第二吸収ピーク波長720nmのどちらを主波長に用い
てもニッケルイオン濃度とその吸光度の関係が一次関係
にあること、及びこの吸収特性を利用し、低い11度の
ニッケルは作成した200〜250011Illの長吸
収セルを用いて測定できることである。ここで第1図に
示す吸光度のグラフはニッケルイオン(Niz+)1度
110l11/m立、吸収セル長10IIIIIlで測
定した結果である。
The relationship between the nickel ion concentration and its absorbance is linear regardless of which of the second absorption peak wavelengths of 720 nm is used as the dominant wavelength, and by utilizing this absorption characteristic, the low 11 degree nickel This can be measured using a long absorption cell. The absorbance graph shown in FIG. 1 is the result of measurement using nickel ions (Niz+) at 1 degree 110 l11/m and an absorption cell length of 10 III l.

第1の発明において利用される透過光は白色光を用いる
が、実際に測定される波長は400nm又は720 r
in部分の波長及びイの近傍の吸収底部分の波長である
ので、400nm又は720nl11部分及びその吸収
底の光のみを使用してもよい。この内400 nm又は
720n111部分の光、例えば380〜440nm又
は70(1〜750nmの透過光によりその検水中での
ニッケルイオンとニッケルイオン以外の物質とを含む水
の光吸収量を求め、400 nm又は720nmの近傍
の吸収底部分の波長、例えば480〜540 nmで、
ニッケルイオン以外の物質を含む水自体の光吸収3m(
以下バックグランド吸収量という)を求める。
The transmitted light used in the first invention is white light, but the wavelength actually measured is 400 nm or 720 r.
Since this is the wavelength of the in part and the wavelength of the absorption bottom part near a, only the 400 nm or 720nl11 part and the light at its absorption bottom may be used. Of these, the light absorption amount of water containing nickel ions and substances other than nickel ions in the sample water is determined by the transmitted light of 400 nm or 720n111 part, for example 380 to 440 nm or 70 (1 to 750 nm), and the amount of light absorbed by water containing nickel ions and substances other than nickel ions is determined by or at the wavelength of the absorption bottom near 720 nm, e.g. 480-540 nm,
The light absorption of water itself, which contains substances other than nickel ions, is 3 m (
(hereinafter referred to as background absorption amount).

一般に透過光と11度との間には式(1)に示すランバ
ート・ベールの法則が成り立つ。
Generally, the Lambert-Beer law shown in equation (1) holds between transmitted light and 11 degrees.

log、、  (io/I) =εcd・・・(1)式
(1)においてIoは溶媒の透過光の強さ、rは溶液の
透過光の強さ、εはモル吸光係数、Cはモル11i1度
、dは吸収層のりさである。前記4゜Qnm又は720
nm部分の透過光の強さを△、400nm又は720n
m近傍のニッケルイオンの吸収底の波長透過光の強さを
Bとすると、△は式(1)の1に相当し、Bは式(1)
の10に相当づるとみな1ことができ、式(2)の関係
に表ね寸ことができる。
log,, (io/I) = εcd... (1) In formula (1), Io is the intensity of transmitted light of the solvent, r is the intensity of transmitted light of the solution, ε is the molar extinction coefficient, and C is the molar 11i1 degree, d is the thickness of the absorbing layer. Said 4゜Qnm or 720
The intensity of the transmitted light in the nm part is △, 400nm or 720n
If the intensity of the wavelength transmitted light at the absorption bottom of the nickel ion in the vicinity of m is B, △ corresponds to 1 in formula (1), and B corresponds to formula (1).
It can be assumed that the value corresponding to 10 is 1, which can be expressed in the relationship of equation (2).

10g1゜ (B/A)=εcd−−・(2)それ故、
A、Bの値の他、ε、dが明らかになればモル濃度Cを
求めることができる。上述したニッケルイオンの吸収ピ
ーク近傍のニッケルイオンの吸収をほとんど受りない吸
収底部分の波長を利用してバックグランドの吸収量を、
ニッケルイオンの吸収量測定と同時にbなうことにより
、流動する検水においてもその瞬間毎のニッケルイオン
8度を連続測定することが可能となる。そのl〔め適切
な水洗用水量の制置あるいはニツクル回収装置の制御が
可能どなる。しかも従来の方法と比較して極めて迅速で
あり、特殊試薬を使用しないので検水は(のまま放流あ
るいは再利用できる。
10g1゜ (B/A)=εcd−-・(2) Therefore,
If ε and d are known in addition to the values of A and B, the molar concentration C can be determined. Using the wavelength of the absorption bottom near the absorption peak of nickel ions mentioned above, where there is almost no absorption by nickel ions, the amount of background absorption can be calculated as follows:
By simultaneously measuring the absorbed amount of nickel ions, it is possible to continuously measure 8 degrees of nickel ions at each moment even in flowing sample water. This makes it possible to set an appropriate amount of water for washing or control the nickel recovery device. Moreover, it is extremely quick compared to conventional methods, and since no special reagents are used, the sample water can be discharged or reused as is.

次に第1発明の実施に直接使用される第2発明の連続測
定装置について図に基づき説明づる。
Next, the continuous measuring device of the second invention, which is directly used in carrying out the first invention, will be explained based on the drawings.

第2図は第2発明の一実施例を示づ10ツク図である。FIG. 2 is a ten-piece diagram showing an embodiment of the second invention.

ここにおいて1は光源用安定化電′m10より電気の供
給を受G〕でいるアーク灯あるいは白熱灯などの光源及
びぞの附属品、2は記録・制御信号弁1回路12ど増幅
・演粋回路11に接続している透過光検出部、3はガラ
ス又は耐酸及び耐熱性のプラスチック製吸収セル(管状
又は角型状)で、それぞれ両端の光路面には可視域の光
を吸収しない光学的に平面を有する光学ガラス板を融着
又は接着して作られており、光源1が吸収セル3の−9
−に設りられ、他端に例えば回折格子と光電管等よりな
る透過光検出部2が設けられ、光源1より発せられた光
が吸収セル3を透過した後、透過光検出部2で測定され
るように構成されている。
Here, 1 is a light source such as an arc lamp or an incandescent lamp and its accessories which receive electricity supply from a light source stabilizing voltage (10), and 2 is a recording/control signal valve 1 circuit 12, etc. The transmitted light detection unit 3 connected to the circuit 11 is an absorption cell (tubular or square shape) made of glass or acid-resistant and heat-resistant plastic, and the optical path planes at both ends are equipped with optical cells that do not absorb light in the visible range. The light source 1 is made by fusing or gluing an optical glass plate having a flat surface on the absorption cell 3.
- and at the other end, a transmitted light detection section 2 consisting of, for example, a diffraction grating and a phototube is provided, and after the light emitted from the light source 1 passes through the absorption cell 3, it is measured by the transmitted light detection section 2. It is configured to

又、送水ポンプ9ににす、採取された検水は、ガラス細
管を詰めた傾斜脱気器8に入り脱気され、次いで濾過器
7を通って水中の固形物が除かれた後、透過光検出部2
側から、吸収セル3中に流れ込み、次いでセル3内部を
流れ、光源1側から外部へ排出される。
In addition, the sample water collected by the water pump 9 is deaerated by entering an inclined deaerator 8 filled with glass tubes, and then passed through a filter 7 to remove solid matter from the water. Photodetector 2
It flows into the absorption cell 3 from the side, then flows inside the cell 3, and is discharged to the outside from the light source 1 side.

13a及び13bは電磁バルブ、14はセル洗浄用水通
水タンク、15はその水位調節バルブ、16は水道水供
給調節バルブであり、ポンプ9の停止時にバルブ13a
を開放−4ればタンク14内の水道水により吸収セル3
の中を洗浄づることがひきるよう構成されている。バル
ブ131)は検水のリンブリング、空気の排出、セルの
洗浄剤の1捷入笠に使用される。
13a and 13b are electromagnetic valves, 14 is a cell cleaning water tank, 15 is a water level adjustment valve, and 16 is a tap water supply adjustment valve. When the pump 9 is stopped, the valve 13a is closed.
If you open −4, the absorption cell 3 will be absorbed by the tap water in the tank 14.
It is constructed in such a way that it can be used to clean the inside of the container. The valve 131) is used for rimbling water testing, discharging air, and injecting cleaning agent into the cell.

第3図は光mi、透過光検出部2及び吸収セル3部分の
一層具体的tKJm成を表わす説明図である。
FIG. 3 is an explanatory diagram showing a more specific tKJm composition of the light mi, the transmitted light detector 2, and the absorption cell 3. In FIG.

吸収ヒルは200〜2500mmの範囲で検水のニッケ
ルイオン8度に応じてその長さが可変eきる構造、例え
ば中間をプラスチックの蛇腹等で構成してもよく、イの
透過光検出部2側に検水流入口3a、光源側にta出口
3bを有しでいる。光源1は発光体1aと凸レンズ1b
とからなり、発光体1aからの光はレンズ1bによって
平行光線となり、セル3を通って、透過光検出側に至り
、透過光の一部は反射鏡2aを通り扱け、ピーク波長光
測定部位Cある光電素子2bに入り、又、反射鏡2aで
反射され1=一部の透過光は吸収底波長光測定部位であ
る光電素子2Gに入る。光電素子2bでは波長400 
nm又は720nm部分の光の強度が測定され検水中の
ニッケルイオンとニッケルイオン以外の物質とを含む水
の透過量が求まり、同時に、光電素子2Cぐは波長40
0nm又は720nlll近傍の吸収底の波長、例えば
500 nmにおりる透過量が測定されニッケルイオン
以外の物質を含む水の透過量が求まる。この両者のデー
タ信号は増幅・演綽回路11にて処理され、前記式(2
)に示(ごとくの演拌により、ニッケルイオン11r!
Iが鋒出される。次いでイの結果は記録・制御信号発生
回路12にて記録され、ニラクルイオン濃度に応じて制
御信号が発生し、例えばニッケル回収装16への導入水
中のニッケルイオン濃度を連続的に管理りる制ill装
置を自動的に」ントロールづることが可能となる。
The absorption hill has a structure in which the length can be varied in the range of 200 to 2500 mm depending on the nickel ion concentration of the sample water.For example, the middle part may be made of a plastic bellows, etc. It has a test water inlet 3a on the side and a ta outlet 3b on the light source side. The light source 1 includes a light emitter 1a and a convex lens 1b
The light from the light emitter 1a becomes parallel light by the lens 1b, passes through the cell 3, reaches the transmitted light detection side, and a part of the transmitted light passes through the reflector 2a and is handled at the peak wavelength light measurement site. C enters a certain photoelectric element 2b, and is also reflected by a reflecting mirror 2a. 1=Some of the transmitted light enters a photoelectric element 2G, which is the absorption bottom wavelength light measurement site. In the photoelectric element 2b, the wavelength is 400
The intensity of the light in the nm or 720 nm region is measured, and the amount of water that passes through the water containing nickel ions and substances other than nickel ions in the sample water is determined.
The amount of transmission at the wavelength of the absorption bottom in the vicinity of 0 nm or 720 nm, for example, 500 nm, is measured, and the amount of transmission of water containing substances other than nickel ions is determined. These two data signals are processed by the amplification/operation circuit 11, and the above formula (2
) As shown in (), nickel ion 11r!
I is launched. Next, the result of step (a) is recorded in the recording/control signal generation circuit 12, and a control signal is generated according to the concentration of nickel ions. It becomes possible to control the device automatically.

」−記構成の制御はマイク0 ’JンピュータにJ、る
自動制御としてちJ、く、例えば第4図に示づフローヂ
t・−トに従ったブOグラムによつ−Cなす口とがCき
る。ここでステップ21は吸収セル長の標準状態設定、
更に電磁バルブ13a、ニッケル回収装置の標準状態設
定等各種装置データの初期設定の処理を表わす。次のス
テップ22はバックグランドの透′A呈の状態を測定し
て、その透過量が38111in B tを越えている
場合、吸収セル長が不足していると判定する処理を表わ
し、この場合スフツブ23にて吸収セルを一定量伸長し
、再びスミ−ツブ22に戻る。ステップ22で81以ト
と判定されて次にステップ24にてバックグランドの透
過量が基準値82未満であれば吸収セル長が艮過ぎると
判定し、ステップ25にて吸収セルを一定、鞘知縮し、
再びステップ24に戻る。ここで82<8+である。ス
テップ24で82以上と判定されれば処理はステップ2
6へ移る。スブッ126では例えば400 nmぐの透
過光の測定がむされ、次にステップ27に−(、バック
グランド透過量、400 n1llの透過量及びコンピ
ュータのメモリ」−のデータから、前出の式(2)に従
った演算がなされニッケルイA>14度が求められる。
The configuration described above is controlled by automatic control using a computer, for example, according to a program according to the flowchart shown in FIG. 4. C is cut. Here, step 21 is to set the standard state of the absorption cell length.
Furthermore, the processing of initial setting of various device data such as standard state setting of the electromagnetic valve 13a and the nickel recovery device is shown. The next step 22 represents a process of measuring the state of background transparency and determining that the absorption cell length is insufficient if the amount of transmission exceeds 38111 in Bt. At step 23, the absorbent cell is stretched by a certain amount and returned to the smear tube 22 again. If it is determined in step 22 that it is 81 or more, and then in step 24 the amount of background transmission is less than the reference value 82, it is determined that the absorption cell length is too large, and in step 25 the absorption cell length is set to a constant value, Shrink,
Return to step 24 again. Here, 82<8+. If it is determined in step 24 that it is 82 or more, the process goes to step 2.
Move on to 6. In step 126, the measurement of the transmitted light of, for example, 400 nm is omitted, and then in step 27, from the data - (background transmission amount, transmission amount of 400 nm, and computer memory), the above formula (2 ) is performed to obtain nickel A > 14 degrees.

次いでステップ28にC1求められたデータが記録ある
いは表示される。ステップ29にては、ニッケルイオン
濃度が基準値N以上であるか否かを判定し、N以上であ
れば処理はステップ30にて、ニッケル回収装置におG
ノるm度を例えば、水の添加により基準値以下に調整し
η、ニッケルが回収できるようにし、ステップ22に戻
り、再び同じ処理を繰り返づ。
Next, in step 28, the data obtained by C1 is recorded or displayed. In step 29, it is determined whether the nickel ion concentration is equal to or greater than the reference value N. If it is equal to or greater than N, the process proceeds to step 30, where the nickel recovery equipment is
For example, the degree of nickel is adjusted to below the reference value by adding water, so that nickel can be recovered, and the process returns to step 22 to repeat the same process again.

以上のごとく構成された第2発明のニッケルイオン濃度
連続測定装置は、第1発明の効果に加えて測定のために
ニラクル処理ラインを止める必要もなく連続的、自動的
にそのニッケルイオン濃度を測定でき速やかにニッケル
イオン濃度の変化に応じ【イの対応策を構することがで
き、しかも、比較的中線な機構Cあり、保守も容易であ
り、自家製作も可能である。
The nickel ion concentration continuous measuring device of the second invention configured as described above has the effects of the first invention and also measures the nickel ion concentration continuously and automatically without the need to stop the Niracle processing line for measurement. It is possible to quickly take measures against changes in the nickel ion concentration (A), and it also has a relatively neutral mechanism (C), which is easy to maintain and can be made in-house.

次に実施例について説明りる。Next, an example will be explained.

実施例1 光源としてタングステンフィラメントの白熱ランプ(特
殊集光型白熱電球)、l0V−24Wを用い、長さ2’
 50 mmのガラス製吸収セル中に、水道水に硫酸ニ
ッケルをニッケルイオンに換幹して0〜1000m (
] /立の範囲で段階的に流入させ(、透過光検出器に
より、700nmの波長光で硫酸ニラクル水溶液の吸収
ピークの透過量を、又500nmの波長光で吸収底の透
過量を測定し、各々の測定結果を前記式(2)にiづき
演算処理し、イの部枠処理後の出力信号の記録を第5図
に示しlこ 。
Example 1 A tungsten filament incandescent lamp (special concentrating type incandescent lamp), 10V-24W, was used as a light source, and the length was 2'.
In a 50 mm glass absorption cell, nickel sulfate was converted into nickel ions in tap water and the water was absorbed from 0 to 1000 m (
] / vertical (with a transmitted light detector, measure the amount of transmission at the absorption peak of the aqueous solution of niracle sulfate using light with a wavelength of 700 nm, and the amount of transmission at the absorption bottom with light at a wavelength of 500 nm, Each measurement result is subjected to arithmetic processing according to equation (2) above, and the record of the output signal after the frame processing in section (a) is shown in FIG.

この結果、各11度での出力は階段状に変化しており、
ニッケルイオンの1lillfflに出力信号が一次的
に対応し、しかもその応答が瞬間的であることが階段が
ほとんど垂直に立ち上がっていることかられかり、常に
ニラクル44214度を時間的補正をVずに正確に表わ
づことがわかった。
As a result, the output at each 11 degrees changes stepwise,
The output signal corresponds primarily to 1lillffl of the nickel ion, and the response is instantaneous, as the staircase rises almost vertically. It was found that this is expressed in

実施例2 実施例1と同様な装置を用い、ニッケル二次電解水洗水
を実操業に(、吸収セル内を5立/1nの流準ぐ水洗水
を流通させて測定した結果を第6図に示し1.:、。
Example 2 Using a device similar to Example 1, nickel secondary electrolysis washing water was used in actual operation (Figure 6 shows the measurement results of flowing washing water at a rate of 5 m/1n through the absorption cell). Shown in 1.:.

この結果、ニッケル温度の変化に応じ−C自助的に連続
的にその瞬間の濃度を表わしたことがわかつl〔。
As a result, it was found that -C self-supported and continuously expressed the instantaneous concentration in response to changes in nickel temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はニッケルイオンの吸収ピークを示リグラフ、第
2図は第2発明連続測定装置の一実施例を示づブロック
図、第3図はぞの光源、透過光検出部、吸収セル部分を
示1概略図、第4図は測定装置のマイクロコンピュータ
制御をしめtフローチャート、第5図は時間毎に階段状
にニッケルイオン濃度!度を変化さI!Iこ場合の透過
光検出部の出力変化を示1グラフ、第6図は本測定装置
によるニッケル二次電解水洗水の実測例を示すグラ゛)
を表わす。 1・・・光源 2・・・透過光検出部 3・・・吸収Uル 10・・・)し源用安定化電源 11・・・増幅・演粋回路 12・・・記録・制御信号発生回路 代理人 弁即」] 足立 勉 第1図 1、nm 第2図 第3図
Fig. 1 is a graph showing the absorption peak of nickel ions, Fig. 2 is a block diagram showing an embodiment of the continuous measuring device of the second invention, and Fig. 3 shows the light source, transmitted light detection section, and absorption cell section. Fig. 1 is a schematic diagram, Fig. 4 is a flowchart showing the microcomputer control of the measuring device, and Fig. 5 shows the nickel ion concentration in a stepwise manner at each time. I change my degree! Graph 1 shows the change in the output of the transmitted light detector in this case, and Figure 6 shows an example of actual measurement of nickel secondary electrolysis water using this measuring device.
represents. 1...Light source 2...Transmitted light detection unit 3...Absorption U10...) Stabilized power source for source 11...Amplification and extraction circuit 12...Recording and control signal generation circuit Agent Ben Soku”] Tsutomu Adachi Figure 1 Figure 1, nm Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 流動状態の検水中を透過した光の内、波長250乃
至900 n1llの範囲内のニッケルイオン吸収ピー
ク波長光により、ニッケルイオンとニッケルイオン以外
の物質とを含む水の光透過量を求め同時に−に記吸収ピ
ーク波長近傍の吸収底部分の波長光により、ニッケルイ
オン以外の物質を含む水の光透過量を求め、両者の透過
量からニッケルイオン澗度を求めることを特徴とするニ
ッケルイオン111度連続測定方法。 2 ニッケルイオン吸収ピーク波長光が400叶又は7
20nm部分のピーク波長光である特許請求の範囲第1
項記載のニッケルイオン1度連続測定方法。 3 吸収ピーク波長近傍の吸収底部分の波長光が500
nm部分の吸収底の波長光である特許請求の範囲第11
r4あるいは第2項記載のニッケルイオン1度連続測定
方法。 4 吸収セルの一端に設りられた光源より該セル中の検
水に光を型銅し、該セルの他端に設りられた透過光検出
部により、その透過光の強度が測定され、その強度に基
づき演算回路にJ、り検水中の物質温度を測定する装置
において、吸収セルがイの一端から検水が流入しU (
l!!端より流出づるよう構成され、透過光検出部が波
長250乃至90Qnmの範囲のニッケルイオン吸収ピ
ーク波長光の測定部位と該吸収ピーク波長近傍の吸収底
部分の波長光の測定部位とから構成され、演紳回路が両
測定部位により同時に測定された透過光強度に基づいて
ニッケルイオンの濃度を演算するように構成されている
ことを特徴とするニッケル11度連続測定装置。 5 ニッケルイオン吸収ピーク波長光の測定部位が40
0nm又は720nm部分のピーク波長光を・測定づる
特許請求の範囲第4項記載のニッケル濃度連セ測定装置
。 6 吸収ピーク波長近傍の吸収底部分の波長光の測定部
位が500 nl+1部分の吸収底の波長光を測定りる
特許請求の範囲第4項あるいは第i項記載のニッケルI
I痩連続測定装置。
[Scope of Claims] 1. Light of water containing nickel ions and substances other than nickel ions is generated by light having a wavelength of nickel ion absorption peak within the wavelength range of 250 to 900 nm out of the light transmitted through the sample water in a fluid state. At the same time, the amount of light transmitted through water containing substances other than nickel ions is determined using the wavelength light at the absorption bottom near the absorption peak wavelength described in -, and the degree of nickel ion is determined from the amount of transmission of both. A 111 degree continuous measurement method for nickel ions. 2 Nickel ion absorption peak wavelength light is 400 or 7
Claim 1, which is light with a peak wavelength of 20 nm
The nickel ion continuous measurement method described in Section 1. 3 The wavelength light at the absorption bottom near the absorption peak wavelength is 500
Claim 11, which is light with a wavelength at the absorption bottom in the nm portion
r4 or the method for one-time continuous measurement of nickel ions described in item 2. 4. A light source installed at one end of the absorption cell emits light onto the sample water in the cell, and a transmitted light detection section installed at the other end of the cell measures the intensity of the transmitted light, In a device that measures the temperature of a substance in test water based on its strength, it is sent to an arithmetic circuit (J).
l! ! The transmitted light detection section is configured to flow out from the end, and the transmitted light detection section is composed of a measurement site for light with a nickel ion absorption peak wavelength in the wavelength range of 250 to 90 Qnm, and a measurement site for light at the absorption bottom wavelength near the absorption peak wavelength, A nickel 11 degree continuous measuring device, characterized in that the operator circuit is configured to calculate the concentration of nickel ions based on the intensity of transmitted light measured simultaneously by both measuring parts. 5 Measurement site of nickel ion absorption peak wavelength light is 40
The nickel concentration continuous measuring device according to claim 4, which measures light having a peak wavelength of 0 nm or 720 nm. 6 Nickel I according to claim 4 or claim i, wherein the measurement site for the wavelength light at the absorption bottom near the absorption peak wavelength measures the wavelength light at the absorption bottom in the 500 nl+1 portion.
I Continuous slimming measurement device.
JP9664582A 1982-06-05 1982-06-05 Method and device for continuously measuring nickel ion concentration Pending JPS58213233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9664582A JPS58213233A (en) 1982-06-05 1982-06-05 Method and device for continuously measuring nickel ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9664582A JPS58213233A (en) 1982-06-05 1982-06-05 Method and device for continuously measuring nickel ion concentration

Publications (1)

Publication Number Publication Date
JPS58213233A true JPS58213233A (en) 1983-12-12

Family

ID=14170559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9664582A Pending JPS58213233A (en) 1982-06-05 1982-06-05 Method and device for continuously measuring nickel ion concentration

Country Status (1)

Country Link
JP (1) JPS58213233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035490A3 (en) * 1994-06-20 1996-02-15 Chemiefaser Lenzing Ag Process, devices and use of said devices for measuring extinction of turbid suspensions
CN103604767A (en) * 2013-11-26 2014-02-26 中国南方航空工业(集团)有限公司 Method for measuring cobalt content of cutting oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860694A (en) * 1971-11-27 1973-08-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860694A (en) * 1971-11-27 1973-08-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035490A3 (en) * 1994-06-20 1996-02-15 Chemiefaser Lenzing Ag Process, devices and use of said devices for measuring extinction of turbid suspensions
CN103604767A (en) * 2013-11-26 2014-02-26 中国南方航空工业(集团)有限公司 Method for measuring cobalt content of cutting oil

Similar Documents

Publication Publication Date Title
Dean A simple colorimetric finish for the Johnson-Nishita micro-distillation of sulphur
CN102262061A (en) Method and device for detecting concentration of chlorine dioxide gas on line
US10788416B2 (en) Multiple wavelength light source for colorimetric measurement
JPH06265471A (en) Mixed acid content measuring method and device thereof
US2328461A (en) Continuous recorder for color changes
US3969626A (en) Method and apparatus for detecting total reduced sulfur
JPS58180941A (en) Electrochemical measurement of photoreaction
JPS58213233A (en) Method and device for continuously measuring nickel ion concentration
Wilson et al. Measurement of a Reaction Rate at Equilibrium by Means of a Radioactive Indicator. The Reaction between Arsenic Acid and Iodine
JPH03175341A (en) Method and apparatus for determining chemical agent for semiconductor process
Szigeti Estimation of oxyhaemoglobin and of methaemoglobin by a photoelectric method
JP2528111B2 (en) Ozone concentration measuring method and device
US3535044A (en) Total organic carbon colorimeter
Callear et al. Dependence on the r-centroid of the band-intensities of the γ system of nitric oxide
US3674370A (en) Chemical oxygen demand water analyzer
US2850640A (en) Chlorine analyzer
CN219675815U (en) Cold atomic absorption tank device for liquid mercury meter
CN212964613U (en) Device for online COD detection by ultraviolet photometry
Norton The Quantum Yield in the Photodecomposition of Liquid Ethyl Iodide at 3130, 2654 and 2537 Å.
JPS5927250A (en) Measurement of residual chlorine
JPH0493638A (en) Continuous measurement device of low density absorbance
JPH0878380A (en) Concentration control method and substrate treating apparatus utilizing this method
GB696675A (en) Improvements in and relating to methods of, and apparatus for, determining the concentration of particulate matter contained in liquid suspensions or colloidal solutionsor of solutes in true solutions
Von Halban et al. On the measurement of light absorption
JPH02198341A (en) Method for measuring total nitrogen using uv method