JPS58213227A - Method for diagnosing abnormality of hdraulic equipment - Google Patents

Method for diagnosing abnormality of hdraulic equipment

Info

Publication number
JPS58213227A
JPS58213227A JP9621982A JP9621982A JPS58213227A JP S58213227 A JPS58213227 A JP S58213227A JP 9621982 A JP9621982 A JP 9621982A JP 9621982 A JP9621982 A JP 9621982A JP S58213227 A JPS58213227 A JP S58213227A
Authority
JP
Japan
Prior art keywords
wear
hydraulic
pressure
oil
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9621982A
Other languages
Japanese (ja)
Other versions
JPH0221737B2 (en
Inventor
Naohiko Iwata
直彦 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9621982A priority Critical patent/JPS58213227A/en
Publication of JPS58213227A publication Critical patent/JPS58213227A/en
Publication of JPH0221737B2 publication Critical patent/JPH0221737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To detect automatically states of internal wastage, deterioration and wear of a hydraulic instrument by detecting a pressure, a flow amount and a wear particle concn. of a hydraulic fluid and a displacement of a functioning part material and by comparing a mutual relation of these detected values with a criterion value and a permissible deviation. CONSTITUTION:An oil pressure of a hydraulic cylinder 8d is measured by a pressure gauge P, the flow amount of a drain circuit U is measured by a flow meter 9, the wear particle concn. in the functioning oil is measured by a wear particle concn. meter 10. In the meter 10, the functioning oil returns to a tank 3 from a bypass type line 19 through a pipe line 17 in the detector, and the magnetic wear particles in oil particles are captured by gradient magnetic field of a permanent magnet 18 in an order of the particle size. The wear particle concn. is displayed on a display device 11 by an electrostatic capacity unit 20 and a detector 21 of large and small particles. These detected values and the deviation of a steam valve V are compared with the criterion value and the predetermined value of the permissible deviation, and the states of the internal wastage, deterioration and wear of the hydraulic instrument are detected automatically.

Description

【発明の詳細な説明】 本発明は、蒸気タービンの油圧式制御機器の異常の有無
を診断する方法に関し、特に油圧式制御機器の損耗、劣
化の有無を診断するのに好適なように改良した異常診断
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for diagnosing the presence or absence of an abnormality in hydraulic control equipment for a steam turbine, and is particularly improved to be suitable for diagnosing the presence or absence of wear and tear or deterioration of hydraulic control equipment. The present invention relates to an abnormality diagnosis method.

蒸気タービン用蒸気弁の油圧式制御装置は、蒸気弁を開
閉作動せしめる油圧駆動機器と、上記の油圧駆動機器を
制御するシーケンス弁、サーボ弁等によって構成されて
いる。
A hydraulic control device for a steam valve for a steam turbine is comprised of a hydraulically driven device that opens and closes the steam valve, and a sequence valve, servo valve, etc. that controls the hydraulically driven device.

従来一般に、上記の油圧式制御装置を構成する各機器の
作動状態を検出してこれを総合判断してfA耗状態を自
動的に推定したp1自動的に故障予知を行なう方法が無
かった。
Conventionally, in general, there has been no method for automatically predicting a failure by detecting the operating state of each device constituting the above hydraulic control device, making a comprehensive judgment, and automatically estimating the fA wear state.

従って、例えば油圧駆動機器内部のシールの損耗や摺動
部材の摩耗などによって駆動特性が変化してもその異常
な変化を早期に検出することができず、該油圧駆動機器
の作動が不能になるまで異常を発見できない場合が多か
った。また、作動不能が発生してもその原因個所の探索
が容易でなく、油圧式制御装置を分解点検しなければな
らないため蒸気タービンを長時間休止せしめるなど多大
の損失を生じる場合が多い。
Therefore, even if the drive characteristics change due to, for example, wear and tear of seals or sliding members inside the hydraulic drive equipment, abnormal changes cannot be detected early, and the hydraulic drive equipment becomes unable to operate. In many cases, abnormalities could not be detected until Further, even if a malfunction occurs, it is not easy to find the cause of the malfunction, and the hydraulic control device must be disassembled and inspected, which often results in large losses such as the steam turbine being shut down for a long period of time.

本発明は上述の事情に鑑みて為され、油圧機器の内部的
な損耗、劣化、摩耗の状態を自動的に検出して異常の有
無を診断し、故障発生を予知し得る方法を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method that can automatically detect the state of internal wear, deterioration, and abrasion of hydraulic equipment, diagnose the presence or absence of abnormality, and predict the occurrence of failure. With the goal.

上記の目的を達成するため、本発明は、油圧式制御装置
の作動油の圧力、流量、摩耗粒子濃度、および作動部材
の変位を検出し、これら検出値相互の関係を予め設定し
た基準値及び許容偏差と比較して異常の有無を診断する
ことを特徴とする。
In order to achieve the above object, the present invention detects the pressure, flow rate, wear particle concentration, and displacement of the operating member of the hydraulic fluid of a hydraulic control device, and sets the relationship between these detected values to a preset reference value. It is characterized by diagnosing the presence or absence of an abnormality by comparing it with the allowable deviation.

次に、本発明の一実施例について、第1図乃至第1図を
参照しつつ説明する。
Next, one embodiment of the present invention will be described with reference to FIGS.

第1図は、本発明に係る油圧機器の診断方法を適用する
ために構成した蒸気タービンの油圧式制御装置の一例で
ある。先ず一般的構造を説明する。
FIG. 1 is an example of a hydraulic control device for a steam turbine configured to apply the method for diagnosing hydraulic equipment according to the present invention. First, the general structure will be explained.

Jは油圧駆動装置で、油圧シリンダ8を主体とし、ピス
トン8aと、該ピストンの付勢バネ8bと、ピストン杆
8Cとを備えておシ、上記のピストン杆8Cは蒸気弁V
に接続しである。■はピストン杆8Cに取りつけた変位
計、8dは油圧シリンダのノに部室である。
J is a hydraulic drive device, which mainly includes a hydraulic cylinder 8 and includes a piston 8a, a biasing spring 8b for the piston, and a piston rod 8C, and the piston rod 8C is a steam valve V.
It is connected to. ■ is a displacement gauge attached to the piston rod 8C, and 8d is a chamber in the hydraulic cylinder.

上記の油圧シリンダ8のシリンダ底部にダンプ機構9を
設け、ダンプ弁9aによって前記シリンダ底部室8dの
油密を保っている。9bはダンプ弁9aを閉弁方向に付
勢しているノくネである。
A dump mechanism 9 is provided at the bottom of the hydraulic cylinder 8, and the cylinder bottom chamber 8d is kept oil-tight by a dump valve 9a. Reference numeral 9b is a bolt that urges the dump valve 9a in the valve closing direction.

上記の油圧駆動装[Jのピストン杆8Cが押し上げられ
ると蒸気弁Vが開かれ1ピストン杆8Cが下降すると蒸
気弁Vが閉じられる構造である。
The structure is such that when the piston rod 8C of the above-mentioned hydraulic drive system [J is pushed up, the steam valve V is opened, and when the first piston rod 8C is lowered, the steam valve V is closed.

Kは上記の油圧駆動装[!IJの作動を制御する)(ル
ブ機構で、シャットオフ弁5と、サーボ弁6と電磁急閉
弁7とによって構成されている。
K is the above hydraulic drive system [! (controls the operation of the IJ) (is a lubricating mechanism, and is composed of a shutoff valve 5, a servo valve 6, and an electromagnetic quick-closing valve 7).

Lは前記の油圧駆動装置Jを作動させるための油圧源で
、1は電動機、2は油ポンプ、3は作動油タンクである
L is a hydraulic power source for operating the above-mentioned hydraulic drive device J, 1 is an electric motor, 2 is an oil pump, and 3 is a hydraulic oil tank.

油ポンプ2の吐出油はシャットオフ弁5およびサーボ弁
6を介して油圧シリンダ8のシリンダ底部室8dに供給
され、ピストン8aを上下動せしめて蒸気弁vt開閉作
動せしめる。これと同時に油ポンプ2の吐出油は危急遮
断弁4および電磁急閉弁7を介してダンプ機構9に供給
さ性、ダンプ弁9aを押し上げてシリンダ底部室8dの
油密を保たしめている。
The oil discharged from the oil pump 2 is supplied to the cylinder bottom chamber 8d of the hydraulic cylinder 8 via the shutoff valve 5 and the servo valve 6, and moves the piston 8a up and down to open and close the steam valve VT. At the same time, the oil discharged from the oil pump 2 is supplied to the dump mechanism 9 via the emergency shutoff valve 4 and the electromagnetic quick-closing valve 7, pushing up the dump valve 9a and keeping the cylinder bottom chamber 8d oil-tight.

蒸気タービンの運転中、何らかの突発的事故によってタ
ービンを急停止させねばならないときは電磁急閉弁7を
作動させてダンプ機構9に対する圧力油供給tm断する
と共にダンプ機構9内の作動油をドレン回路Uに落とす
。これによシダンブ弁9aが開き、シリンダ底部gBd
内の油圧が低下してピストン8aが下降し、蒸気弁■が
閉じられる。
During operation of the steam turbine, when the turbine must be suddenly stopped due to some sudden accident, the electromagnetic quick-closing valve 7 is operated to cut off the pressure oil supply tm to the dump mechanism 9, and the hydraulic oil in the dump mechanism 9 is drained from the drain circuit. Drop it to U. This opens the damp valve 9a, and the cylinder bottom gBd
The oil pressure inside the steam valve decreases, the piston 8a descends, and the steam valve ■ closes.

正常作動時はダンプ弁9aは閉じられ、ピストン8aの
上下作動はサーボ弁6によって゛制御さhる。
During normal operation, the dump valve 9a is closed, and the vertical movement of the piston 8a is controlled by the servo valve 6.

以上のように構成された蒸気タービンの蒸気弁■の油圧
式制御装置に本発明方法を適用するため、油圧シリンダ
底部室8dの油圧を検出する圧力計■および、ドレン回
路Uの流量を検出する′流量計◎、並びに作動油中の摩
耗粒子濃度検出器10を般ける。本実施例においてはド
レン回路Uから分岐したバイパス管路19に摩耗粒子濃
度検出器’  10の流通せしめる工うに配管しである
In order to apply the method of the present invention to the hydraulic control device for the steam valve (■) of a steam turbine configured as described above, a pressure gauge (■) that detects the oil pressure in the bottom chamber 8d of the hydraulic cylinder and a flow rate in the drain circuit U are detected. 'A flow meter ◎ and a wear particle concentration detector 10 in the hydraulic oil are installed. In this embodiment, a bypass pipe 19 branched from the drain circuit U is connected to a bypass pipe 19 to allow the abrasion particle concentration detector' 10 to flow therethrough.

第2図に上記の摩耗粒子濃度検出器10の構造を示す。FIG. 2 shows the structure of the wear particle concentration detector 10 described above.

試料油はドレンのバイノ(ス管路19から検出器内の管
路17を流通してタンク3に戻る。
The sample oil flows from the drain pipe 19 through the pipe 17 inside the detector and returns to the tank 3.

上記の管路17に隣接して、磁場匂配を有する永久磁石
18を設置しである。この永久磁石18の匂配磁場によ
って油流中の磁性体摩耗粉は粒度の順に配列して吸着さ
れ捕捉される。即ち、流入部に大径の粒子が吸着され、
順次に小径の粒子が吸着される。これらの吸着粒子の量
を計測するため静電容量器20、大粒子検出用受信器2
1、および小粒子検出用受信器22を設け、摩耗粒子濃
度を表示器11によって表示せしめる。
A permanent magnet 18 having a magnetic field is installed adjacent to the pipe line 17 described above. Due to the magnetic field of the permanent magnet 18, magnetic wear particles in the oil flow are attracted and captured in the order of particle size. That is, large-diameter particles are adsorbed at the inflow part,
Particles with smaller diameters are successively adsorbed. In order to measure the amount of these adsorbed particles, a capacitor 20 and a large particle detection receiver 2 are installed.
1 and a small particle detection receiver 22 are provided, and the wear particle concentration is displayed on the display 11.

次式のごとく異常摩耗係数Isを定義する。The abnormal wear coefficient Is is defined as shown in the following equation.

Is = (Db−)’ Ds ) (DL −Da 
) =D1.−D%ただし、DLは大粒子の摩耗粒子濃
度、Ds+は小粒子の摩耗粒子濃度である。
Is = (Db-)'Ds) (DL-Da
)=D1. -D% However, DL is the concentration of large wear particles, and Ds+ is the concentration of small wear particles.

上式の内、(D’L 十Ds )は全摩耗粒子濃度を表
わし、(Dt、Ds)は大、小粒子の濃度差を表わす。
In the above equation, (D'L + Ds) represents the total wear particle concentration, and (Dt, Ds) represents the difference in concentration between large and small particles.

正常な摩耗の場合はDL≧I)+であり、異常摩耗の場
合Dt、>>Dsになることが経験則として知られてい
る。従って前記の18が大きいことは摩耗状態が異常で
あることを意味する。
It is known as a rule of thumb that in the case of normal wear, DL≧I)+, and in the case of abnormal wear, Dt, >>Ds. Therefore, if 18 is large, it means that the wear condition is abnormal.

一般に、機械類の摩耗の進行は第3図のような傾向を示
し、初期運転時には初期摩耗現象によって摩耗粒子濃度
が若干上昇し、正常運転中は摩耗の進行が少ないので摩
耗粒子濃度が低い値を保つ。
In general, the progress of wear on machinery shows a tendency as shown in Figure 3. During initial operation, the wear particle concentration rises slightly due to the initial wear phenomenon, and during normal operation, wear progresses little, so the wear particle concentration reaches a low value. keep it.

自然損耗が進行してガタが増えたシ、異物の噛み込みや
油の劣化などによって鳴りが発生したりするなど、何ら
かの異常な状態になると摩耗粒子濃度が増加する。
The concentration of wear particles increases when some kind of abnormal condition occurs, such as increased play due to natural wear and tear, or noise caused by foreign matter getting stuck or oil deterioration.

従って、第3図に示す正常運転の状態において前記の異
常摩耗係数Isを実測して基準値を定めておくと、異常
摩耗を発生したときIs値が上昇することによって異常
を検知し得る。
Therefore, if a reference value is determined by actually measuring the abnormal wear coefficient Is in the normal operating state shown in FIG. 3, when abnormal wear occurs, the abnormality can be detected by the increase in the Is value.

一般に、蒸気タービン運転中に蒸気弁Vの動作機能確認
のため、個々の蒸気弁についてテスト信号をサーボ弁6
に与え、蒸気弁Vを徐閉、徐開作動せしめて定期的に開
閉作動テストが行なわれる。
Generally, during steam turbine operation, a test signal is sent to the servo valve 6 for each steam valve to confirm the operation function of the steam valve V.
Opening/closing operation tests are periodically conducted by gradually closing and gradually opening the steam valve V.

通常、弁変位(変位計■による検出値)とシリンダ駆動
油圧(油圧計Oによる検出値)とは、閉弁時にはm4図
に実線で示すような比例関係があり、開弁時には第5図
に実線で示すような比例関係がある。従って、変位の実
測位と油圧の実測値との関係が上記両図に破線で示した
ように比例関係が狂って油圧篩差ΔPを生じた場合、何
らかの異常を生じたものと推測されるが、これだけのデ
ータからでは原因個所を突きとめることができない。
Normally, there is a proportional relationship between valve displacement (value detected by displacement gauge ■) and cylinder drive oil pressure (value detected by oil pressure gauge O) as shown in the solid line in diagram m4 when the valve is closed, and as shown in Figure 5 when the valve is open. There is a proportional relationship as shown by the solid line. Therefore, if the relationship between the actual measured position of displacement and the actual measured value of oil pressure is out of proportion and a hydraulic pressure difference ΔP occurs as shown by the broken line in both figures above, it is assumed that some abnormality has occurred. However, it is not possible to determine the cause from this amount of data.

上述のごとく変位と油圧との関係に異常を生じる場合、
その現象を大別すると (1)  圧力は規定値に達するが変位量が規定値に達
しない場合と、 (11)圧力も変位量も規定値に達しない場合と、二通
りの場合がある。
If an abnormality occurs in the relationship between displacement and oil pressure as described above,
Broadly speaking, there are two types of phenomena: (1) the pressure reaches the specified value but the displacement does not reach the specified value, and (11) the case where neither the pressure nor the displacement reaches the specified value.

上記(1)の場合は所定の油圧力が発生しているのに弁
が動きにくい状態であるから、例えば異物の噛み込みや
焼付きなどの機械的拘束力が発生しているものと推定さ
れる。
In the case of (1) above, the valve is difficult to move even though a predetermined hydraulic pressure is being generated, so it is presumed that a mechanical restraint force such as foreign matter is caught or seized. Ru.

前記(II)の場合は所定の油圧力が発生していないた
め弁の動きが不足している状態であるから、内部リーク
の増加など油圧的な不具合が発生しているものと推定さ
れる。
In case (II), the valve movement is insufficient because the predetermined hydraulic pressure is not generated, so it is presumed that a hydraulic malfunction such as an increase in internal leakage has occurred.

上記の推定を更に進展させて、その不具合の原因が機械
的損傷によるものであって緊急に分解点検を必要とする
か、或いは、運転を継続しながら例えば調圧弁の調整状
態の点検などの日常整備的な手段によって回復せしめ得
るものであるかを判別するには、油中の摩耗粒子濃度が
重要なファクターとなる。
Taking the above assumption further, it is possible to determine whether the cause of the malfunction is due to mechanical damage and requires urgent overhaul, or whether it is necessary to carry out routine inspections such as checking the adjustment status of the pressure regulating valve while continuing operation. The concentration of wear particles in the oil is an important factor in determining whether the problem can be repaired by maintenance measures.

第6図は摩耗粒子濃度の変化の一例を示す図表で、水平
方向の実線はさきに説明した異常摩耗係数Isの基準値
、その上下の鎖線は許容偏差ΔIamを示している。前
述の摩耗粒子濃度検知器10(第2図)によって検出し
た異常摩耗係数工1が破線で示したように上昇して、異
常摩耗係数の偏差ΔIsが許容偏差ΔIs+sの範囲を
越えた場合は機械的な損傷が発生しているものと判断さ
れるのでタービンを緊急停止して点検整備しなければな
らない。
FIG. 6 is a chart showing an example of changes in wear particle concentration, where the horizontal solid line shows the reference value of the abnormal wear coefficient Is described above, and the dashed lines above and below it show the allowable deviation ΔIam. If the abnormal wear coefficient 1 detected by the aforementioned wear particle concentration detector 10 (Fig. 2) increases as shown by the broken line and the deviation ΔIs of the abnormal wear coefficient exceeds the range of the allowable deviation ΔIs+s, the machine It is determined that some serious damage has occurred, so the turbine must be brought to an emergency stop for inspection and maintenance.

上述のような検討結果に基づいて本発明方法の異常診断
を行なう一例を次に説明する。第4図及び第5図に示す
基準油圧曲線に対する油圧偏差ΔPの許容偏差ΔP1を
予め設定し、第7図に示すブロック図のごとく異常診断
を行なう。このブロック図は第6図に例示したような異
常現象が発生した場合の診断例である。
An example of abnormality diagnosis using the method of the present invention will be described below based on the above-mentioned study results. An allowable deviation ΔP1 of the hydraulic pressure deviation ΔP with respect to the reference hydraulic pressure curve shown in FIGS. 4 and 5 is set in advance, and an abnormality diagnosis is performed as shown in the block diagram shown in FIG. 7. This block diagram is an example of diagnosis when an abnormal phenomenon as illustrated in FIG. 6 occurs.

ブロック21のごとく、当該油圧機器の正常な場合の圧
力■と変位■との関係を実測して基準特性を設定して計
算機(図示せず)に記憶させるとともに前記の油圧の許
容偏差ΔPlを記憶させておく、ブロック22で実測圧
力■と実測変位■とを人力し、式(a)の如くΔPがΔ
Pgよりも大きいか否かを判定させる。本例の場合はΔ
P〉ΔPgと判定される。一方、ブロック23で異常摩
耗係数ΔIsを許容偏差ΔIssと比較させ、式(b)
が成立するか否かを判定させる。本例の場合はトhンΔ
Ismと判定される。上記の両式(a)、 (b)が成
立したことに基づいてブロック24で診断を行ない、両
式(a) 、 (b)が成立したことによシ異常摩耗が
発生したものと診断する(ブロック25)。
As shown in block 21, the relationship between pressure ■ and displacement ■ under normal conditions of the hydraulic equipment is actually measured, reference characteristics are set, and stored in a computer (not shown), and the hydraulic pressure tolerance ΔPl is also stored. Then, in block 22, manually input the measured pressure ■ and the measured displacement ■, and as shown in equation (a), ΔP becomes Δ
It is determined whether or not it is larger than Pg. In this example, Δ
It is determined that P>ΔPg. On the other hand, in block 23, the abnormal wear coefficient ΔIs is compared with the allowable deviation ΔIss, and formula (b)
It is determined whether or not it holds true. In this example, the ton Δ
It is determined to be Ism. Based on the fact that both formulas (a) and (b) above are satisfied, a diagnosis is made in block 24, and it is diagnosed that abnormal wear has occurred because both formulas (a) and (b) are satisfied. (Block 25).

本例のごとく、油圧駆動装置の作動状態における駆動油
圧と変位との関係及び摩耗粒子濃度に関する基準値及び
許容偏差に基づいて診断を行なうと、シリンダ8の内部
に機械的損傷が発生して油圧機器の動的特性に僅かな異
常を生じたとき、自動的に早期に発見し得るという効果
がある。
As in this example, if a diagnosis is made based on the relationship between the drive oil pressure and displacement in the operating state of the hydraulic drive device, and the reference value and tolerance regarding wear particle concentration, mechanical damage will occur inside the cylinder 8 and the hydraulic pressure This has the effect of automatically detecting a slight abnormality in the dynamic characteristics of the device at an early stage.

第8図は前記と異なる形で異常の兆候が表われた場合の
特性変化を示す。この異状例においては第6図の例と同
様に異常摩耗係数Isが増加すると共に、ドレン回路U
(第1図)に設けた流量計◎による内部リーク値が許容
偏差ΔQ、を越えて増加している。
FIG. 8 shows changes in characteristics when signs of abnormality appear in a form different from that described above. In this abnormal example, the abnormal wear coefficient Is increases as in the example shown in FIG. 6, and the drain circuit U
The internal leak value measured by the flowmeter ◎ installed in (Figure 1) has increased beyond the allowable deviation ΔQ.

このような場合の診断例のブロック図を第9図に示す。A block diagram of an example of diagnosis in such a case is shown in FIG.

ブロック31でΔIssとΔIsとを比較して(b)式
ΔIs)ΔIsi+の成立を判断するとともに、油圧シ
リンダ8(第1図)が静止している状態におけるリーク
流量増加の実測値ΔQとリーク流量増加のl[容偏差Δ
Q、とをブロック32で比較して、(C)式ΔQ〉ΔQ
−の成立を判断する。そして上記の(b) 、 (C)
両式の成立により異常摩耗が発生したものと診断する(
ブロック33)。
In block 31, ΔIss and ΔIs are compared to determine whether equation (b) ΔIs)ΔIsi+ holds true, and the actual measured value ΔQ of the increase in leakage flow rate and the leakage flow rate when the hydraulic cylinder 8 (Fig. 1) is stationary. Increase l [volume deviation Δ
Q, is compared in block 32, and formula (C) ΔQ>ΔQ
Determine whether - holds true. and (b) and (C) above.
If both formulas hold true, it is diagnosed that abnormal wear has occurred (
Block 33).

本例のように油圧駆動装置が静止しているときの内部リ
ーク流量尽び摩耗粒子濃度の基準値及び許容偏差に基づ
いて診断すると、シリンダ8の内部に機械的損傷が発生
して油圧機器の静的特性に僅かな異常を生じたとき早期
に自動的に発見し得。
If the diagnosis is made based on the reference value and tolerance of the internal leakage flow rate and wear particle concentration when the hydraulic drive unit is stationary as in this example, mechanical damage will occur inside the cylinder 8 and the hydraulic equipment will be damaged. Automatically detects slight abnormalities in static characteristics at an early stage.

るという効果がある。It has the effect of

第10図は、前記と更に異なる形で異常の兆候が現われ
た場合の特性変化を示す。この異常例においては、油圧
駆動装置の静止時における圧力が低下して基準値に比し
てΔPの偏差を生じるとともに、異常摩耗係数Isが増
加して許容偏差ΔI smを越えている。
FIG. 10 shows a change in characteristics when a sign of abnormality appears in a manner different from that described above. In this abnormal example, the pressure when the hydraulic drive device is stationary decreases, causing a deviation of ΔP compared to the reference value, and the abnormal wear coefficient Is increases to exceed the allowable deviation ΔI sm.

このような場合の診断例のブロック図を第11、  図
に示す。
A block diagram of an example of diagnosis in such a case is shown in Fig. 11.

ブロック41でΔI■をΔIssと比較して(b)式Δ
Is>ΔIssの成立を判断し、ブロック42で圧力偏
差ΔPを許容偏差ΔPmと比較して(d)式ΔP〉ΔP
mの成立を判断し、上記(b)、 (d)両式の成立に
よって異常摩耗の発生と診断する(ブロック43)。
In block 41, ΔI■ is compared with ΔIss and (b) formula Δ
It is determined whether Is>ΔIss holds true, and in block 42, the pressure deviation ΔP is compared with the allowable deviation ΔPm, and formula (d) ΔP>ΔP is obtained.
It is determined whether m holds true, and if both equations (b) and (d) above hold, it is diagnosed that abnormal wear has occurred (block 43).

本例のように油圧駆動装置の静止時における同装置の圧
力および摩耗粒子濃度に基づいて診断を行なうと、油圧
シリンダメ機械的損傷によって静止時圧力に影響を及ぼ
した場合に、自動的かつ早期に発見することができる。
Diagnosis based on the pressure and wear particle concentration of the hydraulic drive unit when it is stationary, as in this example, allows automatic and early diagnosis when mechanical damage to the hydraulic cylinder affects the stationary pressure. can be discovered.

以上説明したように、本発明は、油圧式制御装置の作動
油の圧力、流量、摩耗粒子濃度、および作動部材の変位
を検出し、これら検出値相互の関係を予め設定した基準
値及び許容偏差と比較して異常の有無を診断することに
より、油圧機器の内部的な損耗、劣化、摩耗などによる
機械的損傷の状態を自動的に検出して異常の有無を診断
し、油圧機器が機能を停止する以前に故障発生を予知す
ることができる。
As explained above, the present invention detects the pressure, flow rate, wear particle concentration, and displacement of operating members of hydraulic fluid in a hydraulic control device, and determines the relationship between these detected values with preset reference values and allowable deviations. By diagnosing the presence or absence of abnormalities by comparing the It is possible to predict the occurrence of a failure before it stops.

【図面の簡単な説明】[Brief explanation of the drawing]

m1図は本発明に係る油圧機器の異常診断方法を適用す
るために構成した蒸気タービンの蒸気弁制御装置の油圧
系統図、第九図は上記装置に用いた摩耗粒子濃度検出器
の構造の説明図、第3図は摩耗粒子濃度の経時的変化を
表わした図表、第4図及び第5図は油圧と変位との関係
を表わした図表、第6図は故障の兆候の一例を表わした
図表、第7図は本発明方法によって上記の兆候を診断す
る一例を示すブロック図、第8図は上記と異なる故障の
兆候の一例を表わした図表、第9図は本発明方法による
上記兆候の診断例のブロック図、第のブロック図である
。 1・・・電動機、2・・・ポンプ、3・・・タンク、4
・・・危急遮断装置、5・・・シャットオフ弁、6・・
・サーボ弁、7・・・電磁急閉弁、8・・・油圧シリン
ダ、8a・・・ピストン、8b・・・バネ、8C・・・
ピストン杆、8d・・・シリンダ底部室、9・・・ダン
プ機構、9a・・・ダンプ弁、9b・・・バネ、10・
・・摩耗粒子濃度検出器、11・・・摩耗粒子濃度表示
器、18・・・永久磁石、19・・・バイパス管路、2
0・・・静電容量器、21・・・大粒子検出用受信器、
21・・・小粒子検出用受信器、■・・・蒸気弁、J・
・・油圧駆動装[、K・・・パルプ機構、L・・・油圧
源、U・・・ドレン回路、■・・・変位計、■・・・圧
力計、◎・・・流量計。 代理人 弁理士 秋本正実 ′VJ 1 図 第 2 図 第 3 図 峙南 − 第 4 図 ′¥i t 図 ¥J 7 口 第 3 図 数        時用− ′VJ q 口 門 fJlθ 図 遁 11  口
Figure m1 is a hydraulic system diagram of a steam valve control device for a steam turbine configured to apply the abnormality diagnosis method for hydraulic equipment according to the present invention, and Figure 9 is an explanation of the structure of a wear particle concentration detector used in the above device. Figure 3 is a chart showing changes in wear particle concentration over time, Figures 4 and 5 are charts showing the relationship between oil pressure and displacement, and Figure 6 is a chart showing an example of signs of failure. , FIG. 7 is a block diagram showing an example of diagnosing the above-mentioned symptoms by the method of the present invention, FIG. 8 is a diagram showing an example of failure symptoms different from the above, and FIG. 9 is a diagram illustrating the diagnosis of the above-mentioned symptoms by the method of the present invention. FIG. 3 is a block diagram of an example; FIG. 1...Electric motor, 2...Pump, 3...Tank, 4
...Emergency shutoff device, 5...Shutoff valve, 6...
・Servo valve, 7... Solenoid quick-close valve, 8... Hydraulic cylinder, 8a... Piston, 8b... Spring, 8C...
Piston rod, 8d... Cylinder bottom chamber, 9... Dump mechanism, 9a... Dump valve, 9b... Spring, 10.
... Wear particle concentration detector, 11... Wear particle concentration indicator, 18... Permanent magnet, 19... Bypass pipe line, 2
0... Capacitor, 21... Receiver for large particle detection,
21... Small particle detection receiver, ■... Steam valve, J.
... Hydraulic drive system [, K... Pulp mechanism, L... Hydraulic source, U... Drain circuit, ■... Displacement gauge, ■... Pressure gauge, ◎... Flow meter. Agent Patent Attorney Masami Akimoto 'VJ 1 Fig. 2 Fig. 3 Fig. South - Fig. 4'

Claims (1)

【特許請求の範囲】 1、油圧式制御装置の作動油の圧力、流量、摩耗粒子濃
度、および作動部材の変位を検出し、これら検出値相互
の関係を予め設定した基準値及び許容偏差と比較して異
常の有無を診断することを特徴とする油圧機器の異常診
断方法。 2、前記の予め設定した基準値及び許容偏差は、油圧駆
動装置の作動中における作動油圧と変位との関係及び摩
耗粒子濃度に関する基準値及び許容偏差を含むものであ
ることを特徴とする特許請求の範囲第1項に記載の油圧
機器の異常診断方法。 3、前記の予め設定した基準値及び許容偏差は、油圧駆
動装置の静止中における油圧駆動装置の内部リーク流量
及び摩耗粒子濃度の基準値及び許容偏差を含むものであ
ることを特徴とする特許請求の範囲第1項又は同第2項
に記載の油圧機器の異常診断方法。 4、前記の予め設定した基準値及び許容偏差は、油圧駆
動装置の静止中における圧力及び摩耗粒子濃度の基準値
及び許容誤差を含むものであることを特徴とする特許請
求の範囲第1項又は同第2項に記載の油圧機器の異常診
断方法。
[Claims] 1. Detecting the pressure, flow rate, wear particle concentration, and displacement of the operating member of the hydraulic fluid of the hydraulic control device, and comparing the relationship between these detected values with preset reference values and tolerance deviations. A method for diagnosing an abnormality in hydraulic equipment, characterized by diagnosing the presence or absence of an abnormality. 2. The scope of the claim characterized in that the preset reference value and allowable deviation include a reference value and allowable deviation regarding the relationship between the hydraulic pressure and displacement and the concentration of wear particles during the operation of the hydraulic drive device. The abnormality diagnosis method for hydraulic equipment according to item 1. 3. Claims characterized in that the preset reference value and tolerance include the reference value and tolerance of internal leakage flow rate and wear particle concentration of the hydraulic drive device while the hydraulic drive device is stationary. A method for diagnosing an abnormality in hydraulic equipment according to item 1 or 2. 4. The preset reference value and tolerance include the reference value and tolerance of the pressure and wear particle concentration while the hydraulic drive device is at rest. The method for diagnosing an abnormality in hydraulic equipment according to item 2.
JP9621982A 1982-06-07 1982-06-07 Method for diagnosing abnormality of hdraulic equipment Granted JPS58213227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9621982A JPS58213227A (en) 1982-06-07 1982-06-07 Method for diagnosing abnormality of hdraulic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9621982A JPS58213227A (en) 1982-06-07 1982-06-07 Method for diagnosing abnormality of hdraulic equipment

Publications (2)

Publication Number Publication Date
JPS58213227A true JPS58213227A (en) 1983-12-12
JPH0221737B2 JPH0221737B2 (en) 1990-05-16

Family

ID=14159120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9621982A Granted JPS58213227A (en) 1982-06-07 1982-06-07 Method for diagnosing abnormality of hdraulic equipment

Country Status (1)

Country Link
JP (1) JPS58213227A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240948A (en) * 1996-03-11 1997-09-16 Hitachi Building Syst Co Ltd Failure foretelling diagnosis device of hydraulic elevator
JPH10133736A (en) * 1996-10-30 1998-05-22 Hitachi Kizai Kk Monitor system for passive type shock absorber for building
JP2000241306A (en) * 1999-02-24 2000-09-08 Shin Caterpillar Mitsubishi Ltd Pump fault-diagnosing device
WO2012105917A1 (en) * 2011-02-01 2012-08-09 Galipoglu Hidromas Hidrolik Otomotiv Sanayi Ve Ticaret Anonim Sirketi Electronic pressure measuring and recording device
CN106092800A (en) * 2016-08-08 2016-11-09 成都秦川科技发展有限公司 Gas meter, flow meter valve gap, valve seat wear-resisting detection device
JP2017119964A (en) * 2015-12-28 2017-07-06 コベルコ建機株式会社 Construction machine
JP2019103975A (en) * 2017-12-13 2019-06-27 古河産機システムズ株式会社 Crusher, method for estimation of crusher deterioration, and program
CN112748750A (en) * 2020-12-23 2021-05-04 深圳市亚泰光电技术有限公司 Oil online measurement and control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51859A (en) * 1974-06-20 1976-01-07 Oki Electric Ind Co Ltd NODOZENIKITSUKAKAIRO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51859A (en) * 1974-06-20 1976-01-07 Oki Electric Ind Co Ltd NODOZENIKITSUKAKAIRO

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240948A (en) * 1996-03-11 1997-09-16 Hitachi Building Syst Co Ltd Failure foretelling diagnosis device of hydraulic elevator
JPH10133736A (en) * 1996-10-30 1998-05-22 Hitachi Kizai Kk Monitor system for passive type shock absorber for building
JP2000241306A (en) * 1999-02-24 2000-09-08 Shin Caterpillar Mitsubishi Ltd Pump fault-diagnosing device
WO2012105917A1 (en) * 2011-02-01 2012-08-09 Galipoglu Hidromas Hidrolik Otomotiv Sanayi Ve Ticaret Anonim Sirketi Electronic pressure measuring and recording device
JP2017119964A (en) * 2015-12-28 2017-07-06 コベルコ建機株式会社 Construction machine
CN106092800A (en) * 2016-08-08 2016-11-09 成都秦川科技发展有限公司 Gas meter, flow meter valve gap, valve seat wear-resisting detection device
CN106092800B (en) * 2016-08-08 2018-08-28 成都秦川物联网科技股份有限公司 The wear-resisting detection device of gas meter, flow meter valve deck, valve seat
JP2019103975A (en) * 2017-12-13 2019-06-27 古河産機システムズ株式会社 Crusher, method for estimation of crusher deterioration, and program
CN112748750A (en) * 2020-12-23 2021-05-04 深圳市亚泰光电技术有限公司 Oil online measurement and control system
WO2022134867A1 (en) * 2020-12-23 2022-06-30 深圳市亚泰光电技术有限公司 Online measurement and control system for oil

Also Published As

Publication number Publication date
JPH0221737B2 (en) 1990-05-16

Similar Documents

Publication Publication Date Title
RU2106561C1 (en) Method and device for check of medium-actuated fittings
US7869971B2 (en) Safety valve testing
US4566310A (en) Method of inspecting the operation of a valve and mechanical test bench for performing the method
US7946159B2 (en) Method and device for automatically measuring oil consumption of an internal combustion engine and for changing the oil of said engine
US4181017A (en) Fault detecting apparatus for fluid pressure systems
KR20170040478A (en) Apparatus for life evaluation test of pump mechanical seal and its method
EP1859184B1 (en) Safety valve testing
JP2008532031A5 (en)
CN108561376B (en) A kind of multifunction hydraulic cleaning filter method
JPS58213227A (en) Method for diagnosing abnormality of hdraulic equipment
CN108267304A (en) Coalcutter brake dynamometer
CN103493033B (en) High-integrity protective system and test thereof and method of operating
KR200445590Y1 (en) Abnormal condition monitoring apparatus for filling station
KR20200137252A (en) Big data-based artificial intelligent valve automatic control method using smart sensor module
JPH0771206A (en) Diagnostic system and method of evaluating performance of valve in steam turbine-system
WO2002084257A2 (en) Contamination control for engines
KR20120088346A (en) Apparatus of performance testing console for the Pilot Operated Check Valve
JP2713967B2 (en) Diagnostic equipment for pneumatic equipment
US6549856B2 (en) Fluid contaminant sensor
CN219046097U (en) Oil liquid test monitoring platform
CN219830299U (en) Fuel valve testing device
RU2788794C2 (en) Method for automated control of tightness of pumping unit of hydraulic machines of volumetric action
RU2052675C1 (en) Method of estimation of technical state of hydraulic drive
US11852248B2 (en) Packing system and diagnostic method for a packing system of a valve assembly
JPH0337925A (en) Inspection apparatus for hydraulic operation system of disconnector