JPS58210854A - Regeneration method of catalyst for selective hydrogenation - Google Patents
Regeneration method of catalyst for selective hydrogenationInfo
- Publication number
- JPS58210854A JPS58210854A JP57093001A JP9300182A JPS58210854A JP S58210854 A JPS58210854 A JP S58210854A JP 57093001 A JP57093001 A JP 57093001A JP 9300182 A JP9300182 A JP 9300182A JP S58210854 A JPS58210854 A JP S58210854A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- activity
- selective hydrogenation
- acetylene
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は石油類のクランキング等により得られる炭素数
3〜4のオレフィン炭化水素を主体とする留分(以下C
3〜4留分と称する。)中のアセチレン化合物を加圧液
相条件下に選択的に水素添加する触媒の再生方法に関し
、活性低下したパラジウム−金属塩又は及び金属酸化物
担持固体触媒を空気中又は酸素を含有するl不活性ガ
−ス雰囲気中で高温加熱し、次いで水素還元するか又は
水素還元後、助触媒成分を再担持し再生させることを特
徴とする方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the use of a distillate mainly composed of olefin hydrocarbons having 3 to 4 carbon atoms (hereinafter, C
It is called 3-4 fraction. ), the catalyst is regenerated by selectively hydrogenating the acetylene compound under pressurized liquid phase conditions. active moth
- A method characterized by heating at high temperature in a gas atmosphere, followed by hydrogen reduction, or re-supporting and regenerating the co-catalyst component after hydrogen reduction.
石油類のクラッキング等により得られる03〜4留分は
主としてプロピレン、1.3−ブタジェン、イソブチン
、n−ブテン(ブテン−1、ブテン−2)、プロパン、
ブタン類からなり、これに不純物として小量のアセチレ
ン、メチルアセチレン、エチルアセチレン、ビニルアセ
チレンなどのアセチレン化合物を含んでおり、また、場
合によっては不純物とじ−Cアレン(プロパジエン)、
メチルアレンなどのジエン化合物を含有することもある
。The 03-4 fractions obtained by cracking petroleum products mainly contain propylene, 1,3-butadiene, isobutyne, n-butene (butene-1, butene-2), propane,
It consists of butanes, and contains small amounts of acetylene compounds such as acetylene, methylacetylene, ethyl acetylene, and vinyl acetylene as impurities, and in some cases, impurities such as -C allene (propadiene),
It may also contain diene compounds such as methyl allene.
このC3〜4留分を分離してゴム、プラスチック及びそ
の他の化学工業用原料として利用する場合、不純物とし
て含まれるアセチレン化合物は種々の障害となるため、
予め適当な処理を行って一定の濃度以下になるように除
いておかなければならない。When separating this C3-4 fraction and using it as a raw material for rubber, plastic, and other chemical industries, the acetylene compounds contained as impurities pose various obstacles.
It must be removed by appropriate treatment in advance so that the concentration is below a certain level.
C3〜4留分中のアセチレン化合物を除去する方法とし
て従来より触媒の存在下に気相又は液相条件にて主成分
となるオレフィン、ジオレフィン類の水素添加をできる
だけ抑制してアセチレン化合物を選択的に水素添加する
方法が行われている。Conventionally, as a method for removing acetylene compounds in C3-4 fractions, acetylene compounds are selected by suppressing hydrogenation of the main components olefins and diolefins as much as possible under gas phase or liquid phase conditions in the presence of a catalyst. A method of hydrogenation is currently being used.
しかし、従来公知の方法に於いては主成分となるオレフ
ィン、ジオレフィン類の水素添加をできる限り抑制して
アセチレン系化合物のみを選択的且充分に水素添加する
ことは非常に難しい。特にC4留分の場合などでは、一
般に1.3−ブタジェンと不純物のアセチレン化合物の
反応性に差が少ないこと及び水素添加をすべきアセチレ
ン化合物の濃度がブタジェンの濃度に較べて極めて低い
ことなどのために、ブタジェンの水素添加を出来る限り
抑制して、アセチレン化合物のみを選択的且充分に水素
添加することは非常に困難である。例えば、気相法では
通常150〜200℃位の濃度で反応が行われるが、か
かる高温での反応ではブタジェンの水素添加や重合が甚
しく、相当量のブタジェンの損失は免れず、また高分子
物質の付着等による触媒の劣化も著しい。一方、液相法
では通常100℃以下の比較的低い濃度で反応が行われ
るため気相法と較べて触媒の劣化等の欠点は少ないが反
面アセチレン化合物の水素添加をほに完全に行うために
は可成り多量の水素を用いる必要がありそれによるブタ
ジェンの水素添加の割合も多くなるという難点もまた避
は難い。However, in the conventionally known methods, it is very difficult to selectively and sufficiently hydrogenate only the acetylene compounds while suppressing the hydrogenation of the olefins and diolefins, which are the main components, as much as possible. Particularly in the case of C4 fractions, there is generally little difference in reactivity between 1,3-butadiene and the impurity acetylene compound, and the concentration of the acetylene compound to be hydrogenated is extremely low compared to the concentration of butadiene. Therefore, it is very difficult to selectively and sufficiently hydrogenate only the acetylene compound while suppressing the hydrogenation of butadiene as much as possible. For example, in the gas phase method, the reaction is usually carried out at a concentration of about 150 to 200°C, but in the reaction at such high temperatures, hydrogenation and polymerization of butadiene are severe, and a considerable amount of butadiene is inevitably lost. Deterioration of the catalyst due to adhesion of substances is also significant. On the other hand, in the liquid phase method, the reaction is usually carried out at a relatively low concentration below 100°C, so there are fewer drawbacks such as catalyst deterioration compared to the gas phase method, but on the other hand, it is difficult to completely hydrogenate the acetylene compound. It is also difficult to avoid the disadvantage that it is necessary to use a considerably large amount of hydrogen, which increases the proportion of hydrogenation of butadiene.
液相法であっても、03〜4留分の性状によっては長期
にわたって触媒を使用する場合、ポリマー類、水分等の
触媒被毒成分が徐々に蓄積し、触媒活性が低下し、ブタ
ジェン損失が増える場合がある。iM活性低下を起した
触媒の再生法としては種々の方法が知られている。例え
ば、空気中で焼成を行い、触媒上に蓄積したポリマー類
を燃焼除去後、再還元賦活する、あるいは適切な溶媒を
用いて洗滌するなどは公知の方法である。しかし、空気
を用いる燃焼による再生法を採用できる触媒は耐熱性を
有していなければならず、高活性且つブタジェンロスの
小ない優れた触媒にあっては、耐熱性が小さくこのよう
な再生法をとれない場合が多く、その再生法の開発が望
まれている。Even in the liquid phase method, depending on the properties of the 03-4 fractions, if the catalyst is used for a long period of time, catalyst poisoning components such as polymers and water will gradually accumulate, reducing the catalytic activity and causing butadiene loss. It may increase. Various methods are known for regenerating a catalyst that has experienced a decrease in iM activity. For example, known methods include performing calcination in air, burning off the polymers accumulated on the catalyst, and then re-reducing and activating the catalyst, or washing with an appropriate solvent. However, catalysts that can be regenerated by combustion using air must have heat resistance, and excellent catalysts with high activity and low butadiene loss have low heat resistance and cannot be used in such regeneration methods. In many cases, it cannot be removed, and it is desired to develop a method for recycling it.
本発明者らは、かがる現状に鑑み、c3〜4留分中のア
セチレン化合物を選択的に水添する、パラジウム−金属
塩又は及び金属酸化物固体触媒の効果的な再生方法を開
発すべく種々検討を重ねた結果、活性低下を起した該触
媒を空気中又は酸素含有不活性ガス雰囲気中で高温加熱
後、次いで水素還元するか又は水素還元後、助触媒成分
を再担持する方法がすぐれていることを見い出した。In view of the current situation, the present inventors have developed an effective regeneration method for palladium-metal salt or metal oxide solid catalysts that selectively hydrogenates acetylene compounds in C3-4 fractions. As a result of various studies, we have found a method in which the catalyst with decreased activity is heated at high temperature in air or an oxygen-containing inert gas atmosphere, and then reduced with hydrogen, or after hydrogen reduction, the co-catalyst component is re-supported. I found it to be excellent.
本発明に於いて使用する触媒は主成分がパラジウムであ
り、助触媒としては他の金属塩類又は及び金属酸化物で
、銅、銀、金、錫、亜鉛、カドミウム、又は鉛の無機酸
塩、有機酸塩、酸化物等が使用できる。担体としては、
アルミナ、シリカ、チタニア、シリカアルミナ等各種金
属酸化物を用いることができるが、特にアルミナが好ま
しく、就中γ−A1203、η−A720a、θ−AA
’z03などが好適である。触媒組成として担体に対す
るパラジウムの比は0.05〜5重量%、好ましくは0
.1〜2重鍛%であり、パラジウムに対する助触媒成分
の比は金属の原子比としてO61〜10、好ましくは0
5−8の範囲である。The main component of the catalyst used in the present invention is palladium, and co-catalysts include other metal salts or metal oxides, such as inorganic acid salts of copper, silver, gold, tin, zinc, cadmium, or lead. Organic acid salts, oxides, etc. can be used. As a carrier,
Various metal oxides such as alumina, silica, titania, and silica-alumina can be used, but alumina is particularly preferred, and among them γ-A1203, η-A720a, θ-AA
'z03 etc. are suitable. As for the catalyst composition, the ratio of palladium to support is 0.05 to 5% by weight, preferably 0.
.. The ratio of the co-catalyst component to palladium is O61-10 as the metal atomic ratio, preferably 0.
It is in the range of 5-8.
パラジウム−金属塩又は及び金属酸化物固体触媒を用い
て、C3〜4留分中のアセチレン化合物の選択水添を行
った場合、触媒活性種はパラジウム−金属塩のコンプレ
ックスと考えられ、又、担体はその有効表面積増大に寄
与すると推定される。液相水添の場合でも徐々に触媒活
性が低下する原因はジエン、アセチレンより生成するポ
リマー、オリゴマー類が活性点に付着し、有効表面積を
減少させる為と考えられる。When selective hydrogenation of acetylene compounds in the C3-4 fraction is carried out using a palladium-metal salt or metal oxide solid catalyst, the catalytically active species is considered to be a palladium-metal salt complex, and the support is estimated to contribute to increasing the effective surface area. Even in the case of liquid phase hydrogenation, the reason why the catalyst activity gradually decreases is thought to be that polymers and oligomers produced from diene and acetylene adhere to the active sites and reduce the effective surface area.
本発明によれば、活性低下した触媒を空気中高温加熱し
、次いで水素還元するか又は水素還元後金属塩を再担持
することで容易に触媒を再生できるが、これは興味する
事実である。即ち、一端形成された触媒活性種が寸空気
中の加熱、処理で破壊される為、再生困難と推定される
が、予想に反し、該処理により、新らたな活性種が形成
される為、再生が可能になるものと考えられる。According to the present invention, the catalyst can be easily regenerated by heating the catalyst whose activity has decreased at high temperature in air and then reducing it with hydrogen or re-supporting the metal salt after hydrogen reduction, which is an interesting fact. In other words, it is presumed that it is difficult to regenerate the catalytic active species that were once formed because they are destroyed by heating and treatment in air, but contrary to expectations, new active species are formed by the treatment. , it is thought that regeneration will become possible.
パラジウム−金属塩固体触媒で形成される、活性種の種
類、内容及びその生成機構、また該処理により新らたに
形成された活性種の内容、生成機構等も不明であるが、
その再生効果は極わめて顕著である。又は、再生後触媒
が、フレッシュなパラジウム−金属触媒の性能を上回る
ケースがあることは、前者と後者の活性種が異る点があ
ることを示している。The type, content, and generation mechanism of active species formed by the palladium-metal salt solid catalyst, as well as the content and generation mechanism of active species newly formed by this treatment, are unknown.
Its regeneration effect is extremely remarkable. Alternatively, the fact that there are cases in which the regenerated catalyst outperforms the fresh palladium-metal catalyst indicates that the former and the latter have different active species.
本発明の再生を行う場合、空気中又は酸素含有不活性ガ
ス中の加熱温度は150〜500℃、好ましくは200
〜400℃の範囲である。さらに加熱処理触媒を水素還
元するがその温度は50〜300℃、好ましくはl 0
0−200℃の範囲である。水素還元後、金属塩を再担
持する場合、パラジウムに対する量は原子比でO91〜
10.好ましくは0.5〜8の範囲であり、再担持後の
触媒乾燥温度は50〜200℃、好ましくは100〜1
50℃の範囲である。When performing the regeneration of the present invention, the heating temperature in air or oxygen-containing inert gas is 150 to 500°C, preferably 200°C.
-400°C. Furthermore, the heat-treated catalyst is reduced with hydrogen at a temperature of 50 to 300°C, preferably l0
It is in the range of 0-200°C. When re-supporting the metal salt after hydrogen reduction, the amount relative to palladium is O91 to
10. It is preferably in the range of 0.5 to 8, and the catalyst drying temperature after reloading is 50 to 200°C, preferably 100 to 1
The temperature range is 50°C.
本発明方法によると、活性低下した触媒のアセチレン除
去率ブタジェン損失のいずれをも再生できるというすぐ
れた利点がある。According to the method of the present invention, there is an excellent advantage that any acetylene removal rate butadiene loss of the catalyst whose activity has decreased can be regenerated.
以下、本発明の方法に゛ついて代表的な例を示し更に具
体的に説明する。ただし、これらは単なる例示であり、
本発明はこれらに限定されないことは言うまでもない。Hereinafter, the method of the present invention will be explained in more detail by showing typical examples. However, these are just examples;
It goes without saying that the present invention is not limited to these.
(1)原料炭化水素
ブタン類 67、t%
ジブテン類 22.6
イソブテン 25.9
13−ブタジェン 438
12−ブタジェン 0.1
エチルアセチレン 0.2
ビニルアセチレン 0.7
メチルアセチレン 微量
プロパジエン 微量
(2)水素化条件
温度 20℃;圧力 10 kg/crlG ;H2モ
ル比 5;LH8V 15hr ’(3)触媒(但
し、1500時間使用後である。)9d含有率(対An
20 a) =0.35%(4)触媒再生法
空気中で300°:5時間加熱後、水素中で15鍍6時
間還元した。(1) Raw material hydrocarbon butanes 67, t% Dibutenes 22.6 Isobutene 25.9 13-butadiene 438 12-butadiene 0.1 Ethylacetylene 0.2 Vinyl acetylene 0.7 Methylacetylene Trace amount of propadiene Trace amount (2) Hydrogen Conditions Temperature: 20°C; Pressure: 10 kg/crlG; H2 molar ratio: 5; LH8V 15hr' (3) Catalyst (after 1500 hours of use) 9d content (relative to An)
20 a) = 0.35% (4) Catalyst Regeneration Method After heating in air at 300° for 5 hours, it was reduced in hydrogen for 15 hours for 6 hours.
F Pi> P
次いで、pd (CH3COO)2を−/pd原子比=
2相当量で再担持し、105°で16時間乾燥した。F Pi> P Then pd (CH3COO)2 -/pd atomic ratio =
Reloaded at 2 equivalents and dried at 105° for 16 hours.
活性低下触媒に対し、上記の再生を行って、(1)、(
2)に相当するC4留分及び水素条件でC4アセチレン
類の水添除去反応を行ったときの結果を表に示した。By performing the above regeneration on the catalyst with decreased activity, (1), (
The table shows the results of hydrogenation removal reaction of C4 acetylenes using the C4 fraction and hydrogen conditions corresponding to 2).
実施例2
、pd (CH3COO)2を再担持しない以外は実施
例1と同様の再生を行い、同じく水添反応を行った。Example 2 The same regeneration as in Example 1 was carried out except that pd (CH3COO)2 was not re-supported, and the same hydrogenation reaction was carried out.
結果は表に示した。The results are shown in the table.
比較例1
再生を全く行なわない、活性低下触媒について実施例1
と同じく水添反応を行った。結果は表に示した。Comparative Example 1 Example 1 for a catalyst with reduced activity without any regeneration
A hydrogenation reaction was carried out in the same manner. The results are shown in the table.
反応結果 特許出願人 昭和電工株式会社reaction results Patent applicant: Showa Denko Co., Ltd.
Claims (1)
亜鉛、カドミウム又は鉛の無機酸塩、有機酸塩又は酸化
物の少なKとも一種を枦持せしめたオレフィン中のアセ
チレン化合物の選択的水素添加用触媒の再生方法に於い
て、活性低下した触媒を空気中又は酸素含有不活性ガス
雰囲気中で高温加熱後、水素還元するか又は水素還元後
、助触媒成分を再担持して再生させることを特徴とする
方法。Palladium metal as carrier and copper, gold, silver, tin as promoter,
In a method for regenerating a catalyst for selective hydrogenation of an acetylene compound in an olefin in which at least one K of an inorganic acid salt, an organic acid salt, or an oxide of zinc, cadmium, or lead is supported, a catalyst having decreased activity is used. A method characterized by hydrogen reduction after high-temperature heating in air or an oxygen-containing inert gas atmosphere, or re-supporting and regenerating the co-catalyst component after hydrogen reduction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57093001A JPS58210854A (en) | 1982-06-02 | 1982-06-02 | Regeneration method of catalyst for selective hydrogenation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57093001A JPS58210854A (en) | 1982-06-02 | 1982-06-02 | Regeneration method of catalyst for selective hydrogenation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58210854A true JPS58210854A (en) | 1983-12-08 |
Family
ID=14070125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57093001A Pending JPS58210854A (en) | 1982-06-02 | 1982-06-02 | Regeneration method of catalyst for selective hydrogenation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58210854A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149635A (en) * | 1985-12-24 | 1987-07-03 | Mitsubishi Petrochem Co Ltd | Purification of styrene-containing material by selective hydrogenation |
US4752595A (en) * | 1986-12-04 | 1988-06-21 | Mobil Oil Corporation | Catalyst pretreatment for regenerated noble metal on zeolite catalyst |
EP1151790A1 (en) * | 2000-04-30 | 2001-11-07 | China Petro-Chemical Corporation | Catalyst for selective hydrogenation, process for preparation of the same, its use in selectiv hydrogenation |
KR100490014B1 (en) * | 2001-11-09 | 2005-05-17 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | Process for regenerating a monolith hydrogenation catalytic reactor |
KR100668936B1 (en) | 2004-10-29 | 2007-01-12 | 한국전력공사 | Method of regenerating Honeycomb type SCR catalyst by air lift loop reactor |
JP2008207147A (en) * | 2007-02-28 | 2008-09-11 | Tosoh Corp | Method for regenerating hydrogenation catalyst |
CN109529880A (en) * | 2018-12-19 | 2019-03-29 | 浙江常山科润新材料有限公司 | A kind of regeneration method of catalyst |
-
1982
- 1982-06-02 JP JP57093001A patent/JPS58210854A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149635A (en) * | 1985-12-24 | 1987-07-03 | Mitsubishi Petrochem Co Ltd | Purification of styrene-containing material by selective hydrogenation |
US4752595A (en) * | 1986-12-04 | 1988-06-21 | Mobil Oil Corporation | Catalyst pretreatment for regenerated noble metal on zeolite catalyst |
EP1151790A1 (en) * | 2000-04-30 | 2001-11-07 | China Petro-Chemical Corporation | Catalyst for selective hydrogenation, process for preparation of the same, its use in selectiv hydrogenation |
KR100490014B1 (en) * | 2001-11-09 | 2005-05-17 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | Process for regenerating a monolith hydrogenation catalytic reactor |
KR100668936B1 (en) | 2004-10-29 | 2007-01-12 | 한국전력공사 | Method of regenerating Honeycomb type SCR catalyst by air lift loop reactor |
JP2008207147A (en) * | 2007-02-28 | 2008-09-11 | Tosoh Corp | Method for regenerating hydrogenation catalyst |
CN109529880A (en) * | 2018-12-19 | 2019-03-29 | 浙江常山科润新材料有限公司 | A kind of regeneration method of catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100367685B1 (en) | Catalytic Hydrogenation Method and Catalyst for Use in the Method | |
US7521393B2 (en) | Selective hydrogenation catalyst designed for raw gas feed streams | |
JP3866318B2 (en) | Selective hydrogenation process for alkyne-containing feeds | |
JP4390556B2 (en) | Olefin isomerization process | |
US8247340B2 (en) | Catalyst formulation for hydrogenation | |
US4593148A (en) | Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide | |
US7256153B2 (en) | Carrier catalytic converter for the selective hydrogenation of alkines and dienes | |
RU2312128C2 (en) | Method of removing oxygen from olefin-containing process streams | |
US7247760B2 (en) | Hydrogenation palladium-silver catalyst and methods | |
WO1992000261A1 (en) | Process for adsorbing sulfur species from propylene/propane using regenerable adsorbent | |
MX2011007098A (en) | Catalyst regeneration. | |
JP2005506172A (en) | Activation or regeneration process of basic metal oxide catalysts useful for olefin isomerization | |
WO2010070030A2 (en) | Catalyst and process for selective hydrogenation of alkynes and dienes. | |
TWI243201B (en) | Method for producing lower olefin | |
JPS58210854A (en) | Regeneration method of catalyst for selective hydrogenation | |
EP1651585A1 (en) | Selective hydrocarbon hydrogenation catalyst and process | |
US3456029A (en) | Process for the purification of lower olefin gases | |
WO2010070031A1 (en) | Catalyst and process for hydrogenation of hydrocarbon feedstocks | |
JPS59196742A (en) | Regeneration of selectively hydrocracking catalyst | |
FR2614295A1 (en) | METHOD OF ISOMERIZING BUTENE-1 TO BUTENE-2 IN C4 HYDROCARBON CUTTING CONTAINING BUTADIENE AND SULFIDE COMPOUNDS | |
US4174355A (en) | Process for removing α-acetylenes from diolefins | |
JPS60132652A (en) | Regeneration of selective hydrogenating catalyst | |
US4049743A (en) | Selective oxidation of acetylenes | |
JPS59196829A (en) | Method for selective hydrogenation of acetylenic compound | |
JPS58210852A (en) | Production of catalyst for selective hydrogenation |