JPS5896682A - Selective hydrogenation of acetylene compound - Google Patents
Selective hydrogenation of acetylene compoundInfo
- Publication number
- JPS5896682A JPS5896682A JP19276681A JP19276681A JPS5896682A JP S5896682 A JPS5896682 A JP S5896682A JP 19276681 A JP19276681 A JP 19276681A JP 19276681 A JP19276681 A JP 19276681A JP S5896682 A JPS5896682 A JP S5896682A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction
- fraction
- oxygen
- acetylene compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は石油類のクラッキング等によシ得られる炭素数
3〜4のオレフィン系炭化水素を主体とする留分(以下
03〜4留分と称する。)中のアセチレン化合物を加圧
液相条件下に選択的に水素添加する方法に関し、その際
に触媒としてパラジウム系固体触媒を用い、反応系に少
くともi ppbの酸素を含有させて該反応を行うこと
を特徴とする方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the production of acetylene in a fraction mainly composed of olefinic hydrocarbons having 3 to 4 carbon atoms (hereinafter referred to as 03-4 fraction) obtained by cracking petroleum products, etc. A method of selectively hydrogenating a compound under pressurized liquid phase conditions, characterized in that the reaction is carried out using a palladium-based solid catalyst as a catalyst and containing at least i ppb of oxygen in the reaction system. and how to do so.
−・ ・ 〜
石油類のクラッキング等により得られるC3−4留分は
主としてプロピレフ、1.3−ブタジェン、イソブチン
、n−ブテン(ブテン−1、ブテン−2)、プロパン、
ブタン類からなり、これに不純物として小量のアセチレ
ン、メチルアセチレン、エチルアセチレン、ビニルアセ
チレンなどのアセチレン化合物を含んでおり、また、場
合によっては不純物としてアレン(プロパジエン)、メ
チルアレンなどのジエン化合物を含有することもある。-・ ・ ~ The C3-4 fraction obtained by cracking petroleum products mainly contains propylev, 1,3-butadiene, isobutyne, n-butene (butene-1, butene-2), propane,
It consists of butanes, and contains small amounts of acetylene compounds such as acetylene, methylacetylene, ethylacetylene, and vinylacetylene as impurities, and in some cases diene compounds such as allene (propadiene) and methylarene as impurities. It may also contain.
この03〜4留分を分離してゴム、プラスチック及びそ
の他の化学工業用原料として利用する場合、不純物とし
て含まれるアセチレン化合物は種々の障害となるため、
予め適当な処理を行って一定の濃度以下になるように除
いておかなければならない。When separating these 03-4 fractions and using them as raw materials for rubber, plastic, and other chemical industries, the acetylene compounds contained as impurities pose various obstacles.
It must be removed by appropriate treatment in advance so that the concentration is below a certain level.
C3−4留分中のアセチレン化合物を除去する方法とし
て従来より触媒の存在下に気相又は液相条件にて主成分
となるオレフィン、ジオレフィン類の水素添加をできる
だけ抑制してアセチレン化合物を選択的に水素添加する
方法が行われている。しかし、従来公知の方法に於いて
は主成分となるオレフイン、ジオレフィン類の水素添加
をできる限り抑制してアセチレン化合物のみを選択的且
充分に水素添加することは非常に難しい。特にC4留分
の場合などでは、一般に1,3−ブタジェンと不純物の
アセチレン化合物の反応性に差が少ないこと及び水素添
加をすべきアセチレン化合物の濃度がブタジェンの濃度
に較べて極めて低いことなどのために、ブタジェンの水
素添加を出来る限り抑制して、アセチレン化合物のみを
選択的且充分に水素添加することは非常に困難である。Conventionally, as a method for removing acetylene compounds in the C3-4 fraction, acetylene compounds are selected by suppressing hydrogenation of the main components olefins and diolefins as much as possible under gas phase or liquid phase conditions in the presence of a catalyst. A method of hydrogenation is currently being used. However, in the conventionally known methods, it is very difficult to selectively and sufficiently hydrogenate only the acetylene compound while suppressing the hydrogenation of the main components, olefins and diolefins, as much as possible. Particularly in the case of C4 fractions, there is generally little difference in reactivity between 1,3-butadiene and impurity acetylene compounds, and the concentration of acetylene compounds to be hydrogenated is extremely low compared to the concentration of butadiene. Therefore, it is very difficult to selectively and sufficiently hydrogenate only the acetylene compound while suppressing the hydrogenation of butadiene as much as possible.
例えば、気相法では通常150〜200℃位の温度で反
応が行われるが、かかる高温での反応ではブタジェンの
水素添加や重合が甚しく、相当量のブタジェンの損失は
免れず、また高分子物質の付着等による触媒の劣化も著
しい。一方、液相法では通常100℃以下の比較的低い
温度で反応が行われるため気相法と較べて触媒の劣化等
の欠点は少ないが、反面アセチレン化合物の水素添加を
はソ完全に行うためには可成り多量の水素を用いる必要
があり、それによるブタジェンの水素添加の割合も多く
なるという難点もまた避は難い。For example, in the gas phase method, the reaction is usually carried out at a temperature of about 150 to 200°C, but in the reaction at such a high temperature, hydrogenation and polymerization of butadiene are severe, and a considerable amount of butadiene is inevitably lost. Deterioration of the catalyst due to adhesion of substances is also significant. On the other hand, in the liquid phase method, the reaction is usually carried out at a relatively low temperature of 100°C or less, so there are fewer drawbacks such as catalyst deterioration compared to the gas phase method, but on the other hand, hydrogenation of the acetylene compound is completely carried out, It is also difficult to avoid the disadvantage that it is necessary to use a considerably large amount of hydrogen, and the proportion of hydrogenation of butadiene increases accordingly.
本発明者らは、かかる現状に鑑み、03〜.留分中のア
セチレン化合物を選択的に水素添加する方法に於いて効
果的な方法を開発すべく種々検討を重ねた結果、パラジ
ウム系触媒を用いて反応に供する原料C3−4留分中に
微量の酸素を混入させることが優れた効果を生ずること
を見い出した。パラジウム系触媒を用いて、C3−4留
分中のアセチレン化合物の選択水添を行った場合、酸素
を全く含有させないC3−4留分を用いて該反応を行っ
ても、初期的には触媒の活性、選択性は比較的良いが、
長期間用いた場合、安定性に難点がある。しかし、微量
の酸素を混入させた03〜4留分を用いた場合には触媒
の初期活性及び選択性が向上するとともに、著しく触媒
Ω安定性が向上することが認められた。In view of the current situation, the inventors of the present invention have decided to proceed from 03 to 2003. As a result of various studies to develop an effective method for selectively hydrogenating acetylene compounds in the distillate, we found that a trace amount of the raw material C3-4 fraction to be subjected to the reaction using a palladium catalyst was found. It has been found that the incorporation of oxygen of 50% yields an excellent effect. When selective hydrogenation of an acetylene compound in a C3-4 fraction is carried out using a palladium-based catalyst, even if the reaction is carried out using a C3-4 fraction that does not contain any oxygen, the catalyst is initially Although its activity and selectivity are relatively good,
There is a problem with stability when used for a long period of time. However, when the 03-4 fraction mixed with a trace amount of oxygen was used, it was found that the initial activity and selectivity of the catalyst were improved, and the Ω stability of the catalyst was significantly improved.
反応系中に混入させた酸素の触媒安定性向上効果への作
用機構は不明であるが、その効果は極めて顕著なもので
ある。Although the mechanism by which oxygen mixed into the reaction system improves catalyst stability is unknown, its effect is extremely significant.
本発明において、反応系内に微量の酸素を混入させる方
法としては必ずしも制限はないが、実用的には、純酸素
又は酸素含有ガス、例えば空気又は酸素を含有する不活
性ガスを原料成分、例えば03〜4留分中に一定量混入
するなどがある。安全面等を考慮するととくに空気を好
適に使用できる。In the present invention, the method of mixing a trace amount of oxygen into the reaction system is not necessarily limited, but in practice, pure oxygen or an oxygen-containing gas such as air or an inert gas containing oxygen is mixed into a raw material component, such as A certain amount may be mixed into the 03-4 fraction. Air can be particularly preferably used in consideration of safety and the like.
反応系内に添加される酸素濃度としては、原料03〜.
留分中の濃度を基準として1 ppb −10ppmが
好ましく、とくに10 ppb〜1 ppmの範囲が好
ましい。The oxygen concentration added into the reaction system is as follows: Raw materials 03-.
The concentration in the fraction is preferably 1 ppb to 10 ppm, particularly preferably 10 ppb to 1 ppm.
反応系内又は原料炭化水素留分中に添加された酸素の存
在状態については明確でないが、分子状酸素即ち原料炭
化水素中の溶存酸素、あるいはアルデヒド、過酸化物な
どの含酸素化合物に変化した状態等の形で存在すること
が予想される。また本発明の方法に於ける酸素の作用機
作についても明確でないが、次のような作用を有するた
め、顕著な効果を生ずるものと推定される。Although the state of existence of oxygen added in the reaction system or in the raw material hydrocarbon fraction is not clear, it may be converted into molecular oxygen, that is, dissolved oxygen in the raw material hydrocarbon, or oxygen-containing compounds such as aldehydes and peroxides. It is expected that it will exist in the form of a state, etc. Furthermore, although the mechanism of action of oxygen in the method of the present invention is not clear, it is presumed that oxygen has the following action and therefore produces a remarkable effect.
即ち、分子状酸素が重合禁止剤として働き、触媒表面で
のポリマー副生等を防止する、又はパラジウム系触媒の
被毒物質となる03〜4留分中の成分を安定化する、又
は水素、アセチレン類の触媒表面への吸着力をコントロ
ールして触媒活性及び安定性を高める、等の作用を考え
ることが可能である0
本発明に於いて使用する触媒は主成分としてパラジウム
又はパラジウムに助触媒として他の金属塩類、例えば銅
、銀、金、錫、亜鉛、カドミウム又は鉛の無機酸塩、有
機酸塩等を含有するものが好適である。担体としては各
種金属酸化物等を用いることができるが、特にアルミナ
が好ましく、就中γ−M208、η−M 20g、θ−
U2O8などが好適である。触媒組成として担体に対す
るパラジウムの比は0.05〜5重量%、好ましくはO
,1〜2重量%であり、パラジウムに対する助触媒成分
の比は金属の原子比として0.1〜10、好ましくは0
.5〜8の範囲である。触媒の調製法としては特に制限
はなく、この種触媒について通常用いられる方法を適宜
利用すれば良い。−例を示せば次の・ような方法にて調
製できる。アルミナ担体に塩化パラジウム、硝酸パラジ
ウム、酢酸パラジウム、塩化パラジウムナトリウムなど
の酸又は水に可溶な塩類の溶液を所定量含浸させた後、
このパラジウム塩を、水素、ヒドラジン、ホルムアルデ
ヒド、ギ酸ソーダなどの適当な還元剤を用いて乾式又は
湿式法にて金属状パラジウムに還元する。次いでこの金
属状パラジウムを担持したアルミナを良く水洗して真空
乾燥する。助触媒成分を用いる場合には更にこれを前記
金属の可溶性塩類を所定の濃度に溶解した溶液に浸漬し
てこれらの塩類を担持せしめて、必要に応じて還元処理
を施し真空乾燥して所望の触媒を得る。That is, molecular oxygen acts as a polymerization inhibitor and prevents polymer by-products on the catalyst surface, or stabilizes components in the 03-4 fraction that are poisonous substances for palladium-based catalysts, or hydrogen, It is possible to consider effects such as increasing catalyst activity and stability by controlling the adsorption power of acetylenes on the catalyst surface. The catalyst used in the present invention has palladium as a main component or palladium as a co-catalyst. Preferably, these contain other metal salts, such as inorganic or organic acid salts of copper, silver, gold, tin, zinc, cadmium or lead. Various metal oxides can be used as the carrier, but alumina is particularly preferred, and among them γ-M208, η-M 20g, θ-
U2O8 etc. are suitable. As for the catalyst composition, the ratio of palladium to support is 0.05 to 5% by weight, preferably O
, 1 to 2% by weight, and the ratio of the cocatalyst component to palladium is 0.1 to 10 as the atomic ratio of the metal, preferably 0.
.. It is in the range of 5-8. There are no particular restrictions on the method for preparing the catalyst, and any method commonly used for this type of catalyst may be used as appropriate. - For example, it can be prepared by the following methods. After impregnating the alumina carrier with a predetermined amount of a solution of acid or water-soluble salts such as palladium chloride, palladium nitrate, palladium acetate, and sodium palladium chloride,
This palladium salt is reduced to metallic palladium by a dry or wet method using a suitable reducing agent such as hydrogen, hydrazine, formaldehyde, or sodium formate. Next, the alumina supporting metallic palladium is thoroughly washed with water and dried in vacuum. When using a co-catalyst component, it is further immersed in a solution containing soluble salts of the metals at a predetermined concentration to support these salts, subjected to reduction treatment if necessary, and vacuum-dried to form the desired product. Get the catalyst.
本発明の方法を実施する際の反応条件としては必ずしも
厳密な制限はないが、一般に次のような条件下にて行わ
れる。There are no strict limitations on the reaction conditions when carrying out the method of the present invention, but the reaction is generally carried out under the following conditions.
反応温度が0〜80°C1好ましくは5〜60°Cの範
囲、反応圧力が2〜3oky/crlG−好ましくは、
3〜20jcg/dlGの範囲、ルとアセチレン化合物
のモル比は0.1〜15、好ましくは0.5〜10ノ範
囲、LH8Vが2〜80hr ’、好ましくは4〜40
hr−1の範囲にあって、反応系が実質的に液相を保ち
得る反応温度および反応圧力に設定される。原料炭化水
素の脱水のための前処理はLH8Vが0.1〜80hr
’、好ましくは0.1〜40hr=、その他の条件は反
応条件に準する範囲にて行われる。The reaction temperature is in the range of 0 to 80°C, preferably 5 to 60°C, and the reaction pressure is in the range of 2 to 3oky/crlG - preferably,
In the range of 3 to 20 jcg/dlG, the molar ratio of L and acetylene compound is in the range of 0.1 to 15, preferably in the range of 0.5 to 10, LH8V is in the range of 2 to 80 hr', preferably 4 to 40
The reaction temperature and reaction pressure are set within the range of hr-1 and at which the reaction system can substantially maintain a liquid phase. Pretreatment for dehydration of feedstock hydrocarbons is 0.1 to 80 hr at LH8V.
', preferably 0.1 to 40 hr=Other conditions are carried out within a range similar to the reaction conditions.
本発明で用いるH2は純品であっても良く、又は不活性
ガス例えばメタンで稀釈したものでも良い。The H2 used in the present invention may be pure or diluted with an inert gas such as methane.
本発明で用いるC3−4留分中の04アセチレン化合物
の含有量については特に限定はしないが、共存する各種
アセチレン化合物の合計濃度は0.5〜3wt%の範囲
でも水添除去可能である。The content of the 04 acetylene compound in the C3-4 fraction used in the present invention is not particularly limited, but hydrogenation removal is possible even when the total concentration of various coexisting acetylene compounds is in the range of 0.5 to 3 wt%.
本発明方法を実施する際の反応型式は固定床反応であり
、液相で固定床を行なうには流下式または溢流式のいず
れも採用できる。また、反応器として、等温型または断
熱型いずれのものも使用できる。The reaction type in carrying out the method of the present invention is a fixed bed reaction, and either a flowing type or an overflow type can be adopted to carry out a fixed bed reaction in a liquid phase. Further, as the reactor, either an isothermal type or an adiabatic type can be used.
本発明方法によると、選択水素化が促進され、アセチレ
ン類の除去率は非常に高く、かつ副反応として起る主成
分のモノ又はジオレフィンの水素化が著しく低減される
ので、その損失を最小にし、更に長期に亘って安定した
反応を維持できるというすぐれた利点がある。According to the method of the present invention, selective hydrogenation is promoted, the removal rate of acetylenes is extremely high, and the hydrogenation of the main component mono- or diolefin, which occurs as a side reaction, is significantly reduced, so that its loss can be minimized. Moreover, it has the excellent advantage of being able to maintain a stable reaction over a long period of time.
以下、本発明の方法について代表的な例を示しに
更は具体的に説明する。ただし、これらは単なる例示で
あり、本発明はこれらに限定されないことは言うまでも
ない。Hereinafter, the method of the present invention will be explained in more detail by showing typical examples. However, these are merely examples, and it goes without saying that the present invention is not limited thereto.
実施例1
(1)原料炭化水素組成
ブタン類 7.1 wt%ブテン類
21.6
イノブテン 243
1.3−ブタジェン 45.9
1.2−ブタジェン 0.1
エチルアセチレン 0.2
ビニルアセチレン 0.8
メチルアセチレン 微 量
プロパジエン 〃
(2) C4留分中の酸素濃度
所定量の空気をC4留分に混入させて、酸素濃度を2.
sppmとした。Example 1 (1) Feedstock hydrocarbon composition Butanes 7.1 wt% Butenes
21.6 Ibutene 243 1.3-Butadiene 45.9 1.2-Butadiene 0.1 Ethylacetylene 0.2 Vinyl acetylene 0.8 Methylacetylene Trace amount of propadiene (2) Oxygen concentration in C4 fraction of a given amount Air is mixed into the C4 fraction to increase the oxygen concentration to 2.
It was set as sppm.
(3)水素化条件
触媒 : Pd−Pb(OH3COO)2−I’d;!
20sPb/Pd原子比−2
Pd含有率(対A720g) ”” O−35wt%温
度 :21°C
圧力 : ] Okg/crIG
H2モル比:5
LH8V: 37.5 hr=
この酸素を含有するC4留分及び水素化条件で04アセ
チレン類の水添除去反応を行ったときの結果を表に示す
。(3) Hydrogenation conditions catalyst: Pd-Pb(OH3COO)2-I'd;!
20sPb/Pd atomic ratio -2 Pd content (relative to A720g) "" O-35wt% Temperature: 21°C Pressure: ] Okg/crIG H2 molar ratio: 5 LH8V: 37.5 hr = C4 distillate containing this oxygen The table shows the results of the hydrogenation removal reaction of 04 acetylenes under different hydrogenation conditions.
実施例2
C2留分中の酸素濃度を0.15 ppmとした以外は
実施例1と全く同様にして水添反応を行った。Example 2 A hydrogenation reaction was carried out in the same manner as in Example 1 except that the oxygen concentration in the C2 fraction was set to 0.15 ppm.
結果は表に示した。The results are shown in the table.
比較例I
C4留分中に酸素を全く混入させない以外は、実施例と
同様にして水添反応を行った。結果は表に示した。Comparative Example I A hydrogenation reaction was carried out in the same manner as in Example except that no oxygen was mixed into the C4 fraction. The results are shown in the table.
反応結果 特許出願人 昭和電工株式会社 代理人 菊地精−reaction results Patent applicant: Showa Denko Co., Ltd. Agent Sei Kikuchi
Claims (1)
中のアセチレン系化合物をパラジウム系固体触媒の存在
下に加圧液相条件にて選択的に水素添加する方法に於い
て、反応系に少くともi T)pbの酸素を含有させて
該反応を行うことを特徴とする方法。In a method of selectively hydrogenating acetylene compounds in a fraction mainly composed of olefinic hydrocarbons having 3 to 4 carbon atoms under pressurized liquid phase conditions in the presence of a palladium solid catalyst, the reaction system A method characterized in that the reaction is carried out in the presence of at least i T) pb of oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19276681A JPS5896682A (en) | 1981-12-02 | 1981-12-02 | Selective hydrogenation of acetylene compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19276681A JPS5896682A (en) | 1981-12-02 | 1981-12-02 | Selective hydrogenation of acetylene compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5896682A true JPS5896682A (en) | 1983-06-08 |
Family
ID=16296679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19276681A Pending JPS5896682A (en) | 1981-12-02 | 1981-12-02 | Selective hydrogenation of acetylene compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5896682A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01110594A (en) * | 1987-10-23 | 1989-04-27 | Nippon Oil Co Ltd | Selective hydrogenation of hydrocarbons |
-
1981
- 1981-12-02 JP JP19276681A patent/JPS5896682A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01110594A (en) * | 1987-10-23 | 1989-04-27 | Nippon Oil Co Ltd | Selective hydrogenation of hydrocarbons |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8247340B2 (en) | Catalyst formulation for hydrogenation | |
US7692051B2 (en) | Process for liquid phase hydrogenation | |
KR850001062B1 (en) | Process for selectively hydrogenation di-olefin | |
US6127310A (en) | Palladium containing hydrogenation catalysts | |
US7247760B2 (en) | Hydrogenation palladium-silver catalyst and methods | |
US20060025302A1 (en) | Selective hydrogenation catalyst designed for raw gas feed streams | |
US20070265483A1 (en) | Process for selectively hydrogenating butadiene in an c4 olefin stream containing a catalyst poison with the simultaneous isomerization of 1-butene to 2-butene | |
JP5346030B2 (en) | Catalyst for selective hydrogenation of acetylene compounds in 1,3-butadiene, method for producing the same and method for using the same | |
JPS5896682A (en) | Selective hydrogenation of acetylene compound | |
JPS58210854A (en) | Regeneration method of catalyst for selective hydrogenation | |
JPS639496B2 (en) | ||
JPS59196829A (en) | Method for selective hydrogenation of acetylenic compound | |
JPS6254540B2 (en) | ||
JPS59227829A (en) | Selective hydrogenation process | |
JPS58210852A (en) | Production of catalyst for selective hydrogenation | |
JPS6248637A (en) | Purification of hydrocarbon | |
JPH0153718B2 (en) | ||
JPH0150278B2 (en) | ||
JPS5824527A (en) | Selective hydrogenation process | |
JPS59196828A (en) | Method for selective hydrogenation of acetylenic compound |