JPS58210850A - Catalyst for hydrogenating dealkylation, its production and using method thereof - Google Patents

Catalyst for hydrogenating dealkylation, its production and using method thereof

Info

Publication number
JPS58210850A
JPS58210850A JP57093145A JP9314582A JPS58210850A JP S58210850 A JPS58210850 A JP S58210850A JP 57093145 A JP57093145 A JP 57093145A JP 9314582 A JP9314582 A JP 9314582A JP S58210850 A JPS58210850 A JP S58210850A
Authority
JP
Japan
Prior art keywords
catalyst
iridium
alumina
alkaline earth
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57093145A
Other languages
Japanese (ja)
Other versions
JPH0347143B2 (en
Inventor
Toshihiko Kubo
俊彦 久保
Fumio Kumada
文雄 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd, Mitsui Petrochemical Industries Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP57093145A priority Critical patent/JPS58210850A/en
Publication of JPS58210850A publication Critical patent/JPS58210850A/en
Publication of JPH0347143B2 publication Critical patent/JPH0347143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To develop a catalyst for catalytic hydrogenating dealkylation of alkyl arom. hydrocarbons which has high activity and a long life and is regeneratable, by depositing Ir and alkaline earth metals on an alumina carrier. CONSTITUTION:Noncrystalline gamma the alumina having properties of 50-300m<2>/g surface area and 0.2-0.8ml/g pore volume is used as a carrier, and an aq. soln. of chloride boride, iodide, nitrate, sulfate or other water-soluble salts of alkaline earth metals such as Mg, Ca, Sr, Ba or the like is impregnated in the carrier which is then burned for 5hrs at 500 deg.C. An aq. soln. of chloride, etc. of Ir is impregnated in the surface, whereafter the carrier is dried to disperse and deposit Ir on the alumina carrier. Hydrocarbon oils contg. alkyl arom. compds. are dealkylated in the presence of hydrogen at 5-30kg/cm<2>G pressure, 0.1-3.0vol./ vol. per hour space velocity of liquid, 2-20mol/mol hydrogen/raw material ratio and 400-500 deg.C by using such catalyst.

Description

【発明の詳細な説明】 この発明はアルキル芳香族炭化水素の接触的水素化脱ア
ルキル法において使用される触媒とその製造方法及び使
用方法?こ関する。さらに詳しくはアルキル芳香族炭化
水素油またはアルキル芳香族を含有する炭化水素油を水
素の存在下で脱アルキルする方法において使用される新
規な触媒の製造方法及びその使用方法に関するものであ
る。接触的水素化脱アルキル法は、アメリカ合衆国特許
2951886号に開示されるクロミア−アルミナ触媒
を使用し、反応温度650℃付近で実施する方法が工業
的には代表的な方法であるが、それに替わるものとして
、ネフテキミャ誌1975年、第15巻、第1号、95
ページにRu、Rh、Pd、 Os。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a catalyst used in a catalytic hydrodealkylation process for alkyl aromatic hydrocarbons, and a method for producing and using the same. Regarding this. More specifically, the present invention relates to a method for producing a novel catalyst used in a method for dealkylating an alkyl aromatic hydrocarbon oil or a hydrocarbon oil containing an alkyl aromatic group in the presence of hydrogen, and a method for using the same. The typical catalytic hydrodealkylation method in industry is a method that uses a chromia-alumina catalyst disclosed in U.S. Pat. No. 2,951,886 and is carried out at a reaction temperature of around 650°C. as Neftekimya Magazine 1975, Volume 15, No. 1, 95
Ru, Rh, Pd, Os on the page.

Ir、PL等の第■族の貴金属をアルミナ上に担持した
触媒を使用し、400ないし500”Cという比較的低
温でトルエンの脱メチル反応によるベンゼンの製造を行
、う方法が報告されている。しかし、これら貴金属触媒
は触媒活性、寿命、反応選択肢などの点で多くの改良の
余地があり、2種以上の貴金属の組合せや他の遷移金属
の添加等多くの触媒系が検討されている。
A method has been reported in which benzene is produced by the demethylation reaction of toluene at a relatively low temperature of 400 to 500"C using a catalyst in which a precious metal of group Ⅰ such as Ir or PL is supported on alumina. However, there is much room for improvement in these noble metal catalysts in terms of catalytic activity, lifespan, reaction options, etc., and many catalyst systems are being considered, such as combinations of two or more noble metals and the addition of other transition metals. .

本発明はイリジウムと(マグネシウム、カルシウム、ス
トロンチウム、バリウム)よりなる群から選んだ一種類
以上の元素とをアルミナ上に担持させることにより、ア
ルキル芳香族炭化水素の接触的水素化脱アルキル反応に
おいて、高活性、高選択性、長寿命であり、なおかつ再
生可能な触媒を製造する方法に関するものである。本発
明の方法によらず水素化脱アルキル活性を有するイリジ
ウムだけをアルミナ上に担持した場合、長時間の運転に
よりコークが付着し活性低下した触媒は、500 ’0
以上の温度でコークを燃焼除去すると、アルミナ担体上
で高分散していたイリジウムが凝集現象を起こし、再び
還元しても活性は著しく低下して再使用することはでき
ない。ところが本発明の方法による触媒は、500℃の
酸素雰囲気中で服焼しても活性はまったく変らす、コー
ク付着により失活した触媒は、コーク燃焼によりもとの
活性まで回復する。従って本発明の方法による触媒はコ
ーク生成し易〈従来困難さされたポリアルキル芳香族の
脱アルキル反応に対して特に有効であり、C9、C10
アルキル芳香族を原料とすることが可能となった。
In the catalytic hydrodealkylation reaction of alkyl aromatic hydrocarbons, the present invention supports iridium and one or more elements selected from the group consisting of magnesium, calcium, strontium, and barium on alumina. The present invention relates to a method for producing a highly active, highly selective, long-life, and recyclable catalyst. When only iridium having hydrodealkylation activity is supported on alumina without using the method of the present invention, a catalyst whose activity has decreased due to coke adhesion due to long-term operation will have a 500%
When the coke is burned off at a temperature above that, the iridium that was highly dispersed on the alumina carrier will cause agglomeration, and even if it is reduced again, the activity will be significantly reduced and it cannot be reused. However, the activity of the catalyst according to the method of the present invention does not change at all even if it is baked in an oxygen atmosphere at 500°C.The catalyst, which has been deactivated due to coke adhesion, recovers to its original activity through coke combustion. Therefore, the catalyst according to the method of the present invention is easy to form coke.
It has become possible to use alkyl aromatics as raw materials.

イリジウム担持アルミナ触媒の反応上の特徴は主に脱メ
チル反応だけを行う点にあり、ガス生成物はメタンが大
部分であり、プロピルベンゼンなどを原料とすると遂次
的にエチルベンゼン、トルエン、ベンセンが生成してく
る。すなわち適当な反応条件を選ぶことにより、C9、
CIOアルキル芳香族から合成繊維原料として有用なキ
シレン類を選択的に製造することが可能となる。またイ
リジウム担持アルミナ触媒は芳香族環を水添及び分解す
る活性が低いため、生成物収率は高く、水素消費量は少
くなるので経済的にも、有利である。
The iridium-supported alumina catalyst is characterized in that it mainly performs only the demethylation reaction, and the gas product is mostly methane, and when propylbenzene is used as a raw material, ethylbenzene, toluene, and benzene are successively produced. It will generate. That is, by selecting appropriate reaction conditions, C9,
It becomes possible to selectively produce xylenes useful as raw materials for synthetic fibers from CIO alkyl aromatics. Furthermore, since the iridium-supported alumina catalyst has low activity for hydrogenating and decomposing aromatic rings, the product yield is high and the amount of hydrogen consumed is low, so it is economically advantageous.

以上のような特徴を持つイリジウム相持アルミナ触媒に
、マグネシウム、カルシウム、ストロンチウム、バリウ
ム等のアルカリ土類を担持することにより、イリジウム
担持アルミナ触媒本来の特徴を保持したまま、触媒再生
可能となった。さらにアルミナ担体上にこれらアルカリ
土類金属を共存させることは、アルミナの酸点を中和し
、コークの生成を抑制する作用がありそれだけ触媒寿命
を長くすること、になる。
By supporting alkaline earth elements such as magnesium, calcium, strontium, and barium on the iridium-supported alumina catalyst, which has the characteristics described above, it has become possible to regenerate the catalyst while retaining the original characteristics of the iridium-supported alumina catalyst. Furthermore, the coexistence of these alkaline earth metals on the alumina carrier has the effect of neutralizing the acid sites of alumina and suppressing the formation of coke, thereby extending the catalyst life accordingly.

触媒の調製方法は、実施例に詳細に述べるように、最初
にアルミナ上にアルカリ土類金属を担持■焼し、次いで
イリジウムを担持する。アルミナ担体は非結晶性I型ア
ルミナで、表面積50ないし300m27g好ましくは
150ないし250 +n2/g、細孔容積0.2ない
し0.8ml/g好ましくは0.4ないし0.6ml/
gなる物性を持つものが適当である。アルカリ土類金属
は水溶性であり、アルミナ担体上で容易に分解して酸化
物を形成するものが望ましく、例えばマグ不ソウム塩で
は塩化マグネシウム、臭化マグネシウム、ヨウ化マグネ
シウム、塩化マグネシウムアンモニウム、塩化マクネシ
ウムナトリウム、塩化マグネシウムカリウム、酢酸マグ
ネシウム、シュウ酸マクネシウム、硫酸マグネシウム、
硝酸マグネシウム等、カルシウム塩では塩化カルシウム
、臭化カルシウム、ヨウ化カルシウム、硫酸カルシウム
、硝酸カルシウム、クロム酸カルシウム等、ストロンチ
ウム塩では塩化ス)・ロンチウム、臭化ストロンチウム
、ヨウ化スl−11ンチウム、硝酸ストロンチウム、酢
酸ストロンチウム、シュウ酸ストロンチウム等、バリウ
ム塩では塩化バリウム、臭化バリウム、ヨウ化バリウム
、硝酸バリウム、酢酸バリウム等がそれぞれ挙げられる
。イリジウム塩も同じく水溶性で、担体上にできるだけ
高分散するものが望ましく、例えは塩化イリジウム、臭
化イリジウム、塩化イリジウム酸、イリジウム酸ナト“
リウム、硫酸イリジウム、ヘキ→ノーアンミンイリジウ
ム等が挙げられる。以上のような化合物は代表的な例で
あるが、本発明の趣旨にそうものであれば他の任意の化
合物を使用することが可能である。
As described in detail in the Examples, the catalyst is prepared by first supporting and baking an alkaline earth metal on alumina, and then supporting iridium. The alumina support is amorphous type I alumina, with a surface area of 50 to 300 m27g, preferably 150 to 250 +n2/g, and a pore volume of 0.2 to 0.8ml/g, preferably 0.4 to 0.6ml/g.
A material having physical properties of g is suitable. It is desirable that the alkaline earth metal is water-soluble and easily decomposed on an alumina carrier to form an oxide. For example, for mag unsalted metals, magnesium chloride, magnesium bromide, magnesium iodide, magnesium ammonium chloride, and magnesium chloride are used as alkaline earth metals. Magnesium sodium, potassium magnesium chloride, magnesium acetate, magnesium oxalate, magnesium sulfate,
Magnesium nitrate, etc. Calcium salts include calcium chloride, calcium bromide, calcium iodide, calcium sulfate, calcium nitrate, calcium chromate, etc. Strontium salts include sulfur chloride), strontium, strontium bromide, sulfur nitride, Examples of barium salts include strontium nitrate, strontium acetate, strontium oxalate, etc., and barium chloride, barium bromide, barium iodide, barium nitrate, barium acetate, etc., respectively. Iridium salts are also preferably water-soluble and highly dispersed on the carrier, such as iridium chloride, iridium bromide, iridium chloride, and sodium iridium.
Examples include iridium, iridium sulfate, hex→non-ammine iridium, and the like. Although the above compounds are representative examples, any other compound can be used as long as it fits within the spirit of the present invention.

以下実施例により触媒の製造方法及び使゛用方法を詳細
に説明する。
The method for producing and using the catalyst will be explained in detail with reference to Examples below.

実施例 表面積180 m27g 、細孔容積0.45 m l
 /gのI型アルミナi、 o o gを蒸留水500
 Ill I中に浸漬し、その中に伸硝酸バリウム8.
3gを1001111の蒸留水に溶解した水溶液を滴下
した。ひき続き約20時間静かに攪拌し担体上に十分バ
・リウムを吸着させた後、触媒を濾別し、110℃で4
時間乾燥させ、次に500°Cで5時間燻焼した。
Example surface area 180 m27g, pore volume 0.45 ml
/g of type I alumina i, o o g of distilled water 500
8. Soaked in Ill I and expanded barium nitrate therein.
An aqueous solution of 3 g of 1001111 dissolved in distilled water was added dropwise. After stirring gently for about 20 hours to sufficiently adsorb barium on the carrier, the catalyst was filtered off and heated at 110°C for 4 hours.
It was dried for 1 hour and then smoked at 500°C for 5 hours.

この触媒を再び蒸留水500m1中に浸漬し、その中に
塩化イリジウム0.87 gヲ100m1(7)蒸留水
に溶解した水溶液を滴下し、約20時間静かに攪拌した
後濾別し、110”Cで4時間乾燥した。この触媒を触
媒Aとする。触媒AはイリジウムをQ、5wt%、バリ
ウムを5 wt%含有する。
This catalyst was again immersed in 500 ml of distilled water, and an aqueous solution of 0.87 g of iridium chloride dissolved in 100 ml (7) of distilled water was added dropwise thereto, stirred gently for about 20 hours, and then filtered. The catalyst was dried for 4 hours at C. This catalyst is referred to as catalyst A. Catalyst A contains Q, 5 wt% of iridium, and 5 wt% of barium.

マクネシウム、カル7ウム、ストロンチウムなどを担持
した触媒は、それぞれ酢酸マクネシウム、硝酸力ルンウ
ム、酢酸ストロンチウムの水溶液を使用して上記と同様
な方法で調製後、イリジウトを担持した。これらの触媒
をそれぞれ触媒B1す、Dとする。触媒13、C,Dは
それぞれイリジウムをQ、5wt%、アルカリ土類金属
、を5wt%含有する。比較のためアルカリ土類金属を
担持しないでイリジウムだけを0.5wt%アルミナ上
に担持した触媒も調製した。この触媒を触媒Eとする触
媒A、B、C1D、Eを流通式固定床反応管に充填し、
500°Cで3時間還元した後、トルエンを原料油とし
て圧力10 K g/ ClTl 2、液空間速度毎時
1.0容量/容量、水素比5モル1モル、反応温度45
0℃の条件で反応を行った。反応開始後100時間目に
、500′Oで2%酸素含有窒素ガスにより5時間コー
クを燃焼し、触媒再生を実施した。反応開始後6時間目
、100時間目及び触媒再生後6時間目のトルエンの転
化率、ベンセンの選択率を第1表に示す。第1表から比
較のための触媒Eに比べて、触媒A、B、C,Dは明ら
かに再生可能であり、活性低下も少なかった。
Catalysts supporting magnesium, calcium, strontium, etc. were prepared in the same manner as above using aqueous solutions of magnesium acetate, calcium nitrate, and strontium acetate, respectively, and then supported on iridium. These catalysts are designated as catalysts B1 and D, respectively. Catalysts 13, C, and D each contain 5 wt% of iridium Q and 5 wt% of an alkaline earth metal. For comparison, a catalyst in which only iridium was supported on 0.5 wt % alumina without supporting any alkaline earth metal was also prepared. Catalysts A, B, C1D, and E, with this catalyst as catalyst E, were packed in a flow-type fixed bed reaction tube,
After reduction at 500 °C for 3 hours, toluene was used as the feedstock at a pressure of 10 K g/ClTl2, a liquid space velocity of 1.0 volume/volume per hour, a hydrogen ratio of 5 moles 1 mole, and a reaction temperature of 45
The reaction was carried out at 0°C. 100 hours after the start of the reaction, the coke was burned for 5 hours at 500'O with nitrogen gas containing 2% oxygen to regenerate the catalyst. Table 1 shows the toluene conversion rate and benzene selectivity at 6 hours, 100 hours after the start of the reaction, and 6 hours after catalyst regeneration. From Table 1, compared to catalyst E for comparison, catalysts A, B, C, and D were clearly recyclable and had less activity loss.

卿水素吸着法による触媒A1BXCXD、Eの新触媒及
び再生後のイリジウム金属粒子の平均粒径を第2表に示
す。ここでいう水素吸着法とは、J ournal o
f Co11oid and InterfaceSc
ience誌、Vol、34、N093.419ページ
以下に記載されている方法によった。その概略は、定容
ガス吸着量測定装置を用い、450″Oて2時間還元し
た触媒を試料管に採取し、常温で約■時間200 +n
nm1−(の水素圧下で表面酸素を還元し、さらに45
0°Cで約2時間真空脱気した後、常温(25’Q±2
°C)で水素吸着量を測定する。
Table 2 shows the average particle diameters of the iridium metal particles of the new catalysts A1BXCXD and E obtained by the hydrogen adsorption method and the iridium metal particles after regeneration. The hydrogen adsorption method referred to here is the
f Co11oid and InterfaceSc
The method described in ``Ience'' magazine, Vol. 34, No. 093, page 419 et seq. The outline of the process is to use a constant volume gas adsorption measurement device, collect the catalyst that has been reduced at 450"O for 2 hours into a sample tube, and store it at room temperature for about 200+n hours.
The surface oxygen is reduced under hydrogen pressure of nm1-(, and further 45
After vacuum degassing for about 2 hours at 0°C, return to room temperature (25'Q±2
Measure the amount of hydrogen adsorption (°C).

測定した水素吸着量から式(])、式(2)により金属
粒径を求める。式(1)、式(2)において、■は測定
水素吸着量(1111/g)、Sはイリジウム金属表面
積(cm2/g)、Nはアホカドロ数(6,02×10
23)、σは水素1分子あたりの被覆面積(12X1.
0−16CI]]2)、Wはイリジウム担持率(重量/
重量)、1)はイリジウム金属粒径(^)、dはイリジ
ウム金属粒径(22,4g / c m3)である。
The metal particle size is determined from the measured amount of hydrogen adsorption using formula (]) and formula (2). In formulas (1) and (2), ■ is the measured hydrogen adsorption amount (1111/g), S is the iridium metal surface area (cm2/g), and N is the Ahokadro number (6,02 x 10
23), σ is the covered area per hydrogen molecule (12X1.
0-16CI]]2), W is the iridium loading rate (weight/
weight), 1) is the iridium metal particle size (^), and d is the iridium metal particle size (22,4 g/cm3).

V          N・ σ S−暮ゴ了フ × 、ヤ     式(1)DニーXI
O3式(2) −d 第2表 金属粒径の測定結果(λ) 触媒E(!:比較して触媒A、B、C1Dは再生後の粒
径の変化か小さく、イリジウム金属粒子の凝集の少ない
ことがわかる。
V N・σ S-Kure Goryofu ×, Ya Formula (1) D knee
O3 formula (2) -d Table 2 Measurement results of metal particle size (λ) Catalyst E (!: Compared to catalysts A, B, and C1D, the change in particle size after regeneration is small, indicating that the aggregation of iridium metal particles It turns out that there are few.

(他1名)(1 other person)

Claims (1)

【特許請求の範囲】 ■ イリジウムとアルカリ土類金属をアルミナ相体上?
ζ相持してなる水素化脱アルキル触媒。 2 アルカリ土類金属がマグネシウム、カルシウム、ス
トロンチウム、バリウムよりなる群から選ばれた、一種
または二種以上の金属である特許請求の範囲第1項に記
載の触媒。 3 アルミナ担体上のイリジウムの分散状態が水素吸着
法で分析して平均粒径I5ないし35Aの高分散状態で
ある特許請求の範囲第1項ないし第2項に記載の触媒。 4 最初にアルミナ担体上にアルカリ土類金属を担持し
、隼焼し、次いでイリジウムを担持することを特徴とす
る特許請求の範囲第1項ないし第3項に記載の水素化脱
アルキル触媒の製造方法。 5 アルミナ担体として非結晶性I型アルミナで表面積
50ないし300m2/g、細孔容積02ないしo、 
8 m l/gである物性をもつものを使用する特許請
求の範囲第4項に記載の水素化脱アルキル触媒の製造方
法。 6 アルカリ土類金属ならびにイリジウムとしで、水溶
性の塩を使用する特許請求の範囲第4項ないし第5項記
載の水素化脱アルキル触媒の製造方法。 7 特許請求の範囲第1項ないし第3項に記載の水素化
脱アルキル触媒を使用し、圧力5ないし30Kg/cm
2(J、液空間速度毎時0.1ないし3.0容量/容量
、水素/原料比2ないし20モル1モル、昌度400な
いし500 ”0の条件で、アルキル芳香族炭化水素の
水素化脱アルキル方法。
[Claims] ■ Iridium and alkaline earth metal on an alumina phase?
A hydrodealkylation catalyst consisting of ζ. 2. The catalyst according to claim 1, wherein the alkaline earth metal is one or more metals selected from the group consisting of magnesium, calcium, strontium, and barium. 3. The catalyst according to claim 1 or 2, wherein the iridium on the alumina support is highly dispersed with an average particle size of I5 to 35A as analyzed by hydrogen adsorption method. 4. Production of a hydrodealkylation catalyst according to claims 1 to 3, characterized in that an alkaline earth metal is first supported on an alumina carrier, calcined, and then iridium is supported. Method. 5 Amorphous type I alumina as an alumina support, surface area 50 to 300 m2/g, pore volume 02 to o,
The method for producing a hydrodealkylation catalyst according to claim 4, which uses a catalyst having a physical property of 8 ml/g. 6. The method for producing a hydrodealkylation catalyst according to claims 4 to 5, which uses water-soluble salts of alkaline earth metals and iridium. 7 Using the hydrodealkylation catalyst according to claims 1 to 3, at a pressure of 5 to 30 Kg/cm
Hydrodesorption of alkyl aromatic hydrocarbons under the conditions of 2 (J), liquid hourly space velocity of 0.1 to 3.0 vol/vol, hydrogen/feedstock ratio of 2 to 20 mol 1 mol, and a magnification of 400 to 500 ''0. Alkyl method.
JP57093145A 1982-06-02 1982-06-02 Catalyst for hydrogenating dealkylation, its production and using method thereof Granted JPS58210850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57093145A JPS58210850A (en) 1982-06-02 1982-06-02 Catalyst for hydrogenating dealkylation, its production and using method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093145A JPS58210850A (en) 1982-06-02 1982-06-02 Catalyst for hydrogenating dealkylation, its production and using method thereof

Publications (2)

Publication Number Publication Date
JPS58210850A true JPS58210850A (en) 1983-12-08
JPH0347143B2 JPH0347143B2 (en) 1991-07-18

Family

ID=14074359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093145A Granted JPS58210850A (en) 1982-06-02 1982-06-02 Catalyst for hydrogenating dealkylation, its production and using method thereof

Country Status (1)

Country Link
JP (1) JPS58210850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127436A (en) * 2017-02-10 2018-08-16 国立大学法人東北大学 Method for producing aromatic hydrocarbons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093926A (en) * 1973-12-13 1975-07-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093926A (en) * 1973-12-13 1975-07-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127436A (en) * 2017-02-10 2018-08-16 国立大学法人東北大学 Method for producing aromatic hydrocarbons

Also Published As

Publication number Publication date
JPH0347143B2 (en) 1991-07-18

Similar Documents

Publication Publication Date Title
CA2479957C (en) Dehydrogenation catalyst composition
US3692701A (en) Group viii metals on tin-containing supports dehydrogenation catalysts
EP0448858A1 (en) Hydrocarbon dehydrogenation catalyst
JPH0623269A (en) Catalyst containing group viii and iiia metal supported on carrier thereof
US3619412A (en) Mordenite-containing hydrocracking catalyst
JP2000300987A (en) Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
US4018670A (en) Hydrocarbon conversion process
JP2008050338A (en) Method for producing dimethylnaphthalene using metal catalyst
US20150158024A1 (en) Dehydrogenation catalyst for hydrocarbons and method of preparation thereof
JP4706945B2 (en) Catalyst comprising a Group 8, 9 or 10 element with excellent accessibility and its use in a paraffin dehydrogenation process
JPS61141931A (en) Catalyst and selective hydrogenation method of acetylene
JP2594464B2 (en) Dehydrogenation catalyst
JP3908313B2 (en) Dehydrogenation catalyst
US5233118A (en) Steam dehydrogenation process
TW201006549A (en) Use of sulphur-containing supports for catalytic reforming
JPS6116506B2 (en)
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
JPS58210850A (en) Catalyst for hydrogenating dealkylation, its production and using method thereof
JP3908314B2 (en) Dehydrogenation catalyst
US4238368A (en) Water dealkylation catalyst of aromatic hydrocarbons
JP2016183126A (en) Method for producing conjugated diene
JP3742816B2 (en) Carbon monoxide hydrogenation using metal sulfide catalyst
KR100683335B1 (en) Process for preparing 2,6-dimethylnaphthalene
JP2000037627A (en) Dehydrogenation catalyst
JP3830203B2 (en) Method for regenerating platinum-tin catalyst