JPS58210027A - Recovering method for amino acid - Google Patents

Recovering method for amino acid

Info

Publication number
JPS58210027A
JPS58210027A JP9431482A JP9431482A JPS58210027A JP S58210027 A JPS58210027 A JP S58210027A JP 9431482 A JP9431482 A JP 9431482A JP 9431482 A JP9431482 A JP 9431482A JP S58210027 A JPS58210027 A JP S58210027A
Authority
JP
Japan
Prior art keywords
amino acid
aqueous solution
exchange resin
cation exchange
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9431482A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mitsusaka
三坂 義治
Isamu Kasuya
糀谷 偉
Akihiko Tsukada
塚田 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9431482A priority Critical patent/JPS58210027A/en
Publication of JPS58210027A publication Critical patent/JPS58210027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a free amino acid from a mineral acid salt thereof with a high efficiency, by treating the mineral acid salt of the amino acid with an alkali (earth) metallic salt type strongly acidic cation exchange resin, and regenerating the above-mentioned resin with an aqueous solution of the above-mentioned metallic hydroxide. CONSTITUTION:An aqueous solution of a mineral acid salt of an amino acid is passed through a packed column of an alkali metallic salt type or alkaline earth metallic salt type strongly acidic cation exchange resin and adsorbed in the above-mentioned resin. An aqueous solution consisting of an alkali metallic or alkaline earth metallic hydroxide is passed through the column to regenerate the above-mentioned resin and recover the amino acid as an aqueous solution. Thus, the free amino acid, particularly gamma-aminobutyric acid, is obtained efficiently from the mineral acid salt of the amino acid, particularly the amino acid hydrochloride. The above-mentioned alkali metal is preferably sodium.

Description

【発明の詳細な説明】 本発明はアミノ酸の回収方法に関するものであり、詳し
くは、アミノ酸鉱酸塩の水溶液よ如遊離のアミノ酸を回
収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering amino acids, and more particularly, to a method for recovering free amino acids from an aqueous solution of an amino acid mineral salt.

アミノ酸は通常、水溶性であるため、例えば、アミノ酸
鉱酸塩より遊離のアミノ酸を効率的に回収することは難
しい。例えば、γ−アミノ酪酸を製造する場合、コーピ
ロリドンを鉱酸触媒の存在下で加水分解反応させる方法
が知られているが、この方法では、得られるr−アミノ
酪酸が鉱酸塩の水溶液として回収される。
Since amino acids are usually water-soluble, it is difficult to efficiently recover free amino acids from amino acid mineral salts, for example. For example, when producing γ-aminobutyric acid, a method is known in which copyrrolidone is subjected to a hydrolysis reaction in the presence of a mineral acid catalyst. It will be collected.

したがって、この場合も、γ−アミノ酪酸鉱酸塩より遊
離のr−アミノ酪酸を分離する必要があるが、従来、満
足できる処理方法は見当らなかった。例えば、γ−アミ
ノ酪酸塩酸塩の水溶液を弱酸性陰イオン交換樹脂の充填
塔に通液することによシ、塩酸塩中の塩素イオンを前記
陰イオン交換樹脂に吸着させ、遊離のγ−アミノ酪酸を
回収する方法が知られているが、この方法では通液当初
は遊離のγ−アミノ酪酸が単独で回収できるものの、γ
−アミノ酪酸が単独で回収される時間が極めて短かく、
すぐにγ−アミノ酪酸とその塩酸塩との混合物が排出さ
れる結果となり、効率的にγ−アミノ酪酸を単離するこ
とはできない。
Therefore, in this case as well, it is necessary to separate free r-aminobutyric acid from the γ-aminobutyric acid mineral salt, but no satisfactory treatment method has been found so far. For example, by passing an aqueous solution of γ-aminobutyric acid hydrochloride through a column packed with a weakly acidic anion exchange resin, the chlorine ions in the hydrochloride are adsorbed onto the anion exchange resin, and free γ-amino A method for recovering butyric acid is known, but with this method, free γ-aminobutyric acid can be recovered alone when the solution is passed through, but γ-aminobutyric acid can be recovered alone.
-The time for recovering aminobutyric acid alone is extremely short;
As a result, a mixture of γ-aminobutyric acid and its hydrochloride is immediately discharged, and γ-aminobutyric acid cannot be efficiently isolated.

本発明者等は上記実情に鑑み、アミノ酸鉱酸塩より遊離
のアミノ酸を効率的に回収する方法につき釉々検討した
結果、ある特定のイオン交換樹脂を用いてアミノ酸鉱酸
塩の水溶液を処理し、次いで、特定の方法でイオン交換
樹脂を再生することにより、極めて効率的にアミノ酸が
即離できることを見い出し本発明を完成した。
In view of the above-mentioned circumstances, the present inventors have thoroughly investigated a method for efficiently recovering free amino acids from amino acid mineral salts, and as a result, they have developed a method for treating an aqueous solution of amino acid mineral salts using a specific ion exchange resin. Next, they discovered that by regenerating the ion exchange resin using a specific method, amino acids could be immediately released very efficiently, and the present invention was completed.

すなわち、本発明の要旨は、アミノ酸鉱酸塩よりアミノ
酸を回収する方法において、アミノ酸鉱酸塩の水溶液を
アルカリ金属塩型又はアルカリ土類金属塩型の強酸性陽
イオン交換樹脂の充填塔に通液しアミノ酸を前記陽イオ
ン交換樹脂に吸着させ、次いで、アルカリ金属又はアル
カリ土類金属の水酸化物より々る水溶液を通液し前記陽
イオン交換樹脂を再生するとともに、アミノ酸を水溶液
として回収することを特徴とするアミノ酸の回収方法に
存する。
That is, the gist of the present invention is to provide a method for recovering amino acids from amino acid mineral salts, in which an aqueous solution of amino acid mineral salts is passed through a column packed with an alkali metal salt type or alkaline earth metal salt type strongly acidic cation exchange resin. The amino acids are adsorbed onto the cation exchange resin, and then an aqueous solution of an alkali metal or alkaline earth metal hydroxide is passed through to regenerate the cation exchange resin, and the amino acids are recovered as an aqueous solution. A method for recovering amino acids is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で対象とするアミノ酸は水溶性のものであればよ
く、通常、脂肪族又は芳香族のモノアミノモノカルボン
酸、モノアミノジカルボン酸、ジアミノモノカルボン酸
又は金儲アミノ酸、オキシアミノ酸を用いることができ
、また、α−アミノ酸、β−アミノ酸又はγ−アミノ酸
のいずれも用いることができる。アミノ酸の具体例とし
ては、例えば、α−1β−あるいはr −アミン醋酸、
グリシン、アラニン、ロイシン、イソロイシン、フェニ
ルアラニン、チロシン、メチオニン、シスチン、システ
ィン、アスパラし ギン酸、グルタミン酸、リジン、龜ドロキシリジン、ア
ルギニン、バリン、プロリン、セリン、トレオニン、オ
キシプロリンなどが挙げられる。
The amino acids targeted by the present invention may be water-soluble, and usually aliphatic or aromatic monoaminomonocarboxylic acids, monoaminodicarboxylic acids, diaminomonocarboxylic acids, money-making amino acids, and oxyamino acids are used. Moreover, any of α-amino acids, β-amino acids, and γ-amino acids can be used. Specific examples of amino acids include α-1β- or r-amine acetic acid,
Examples include glycine, alanine, leucine, isoleucine, phenylalanine, tyrosine, methionine, cystine, cysteine, aspartic acid, glutamic acid, lysine, droxylidine, arginine, valine, proline, serine, threonine, oxyproline, and the like.

本発明では上述のようなアミノ酸の鉱酸塩を処理するも
のであるが、鉱酸塩の種類としては、通常、塩酸塩、硫
酸塩又は硝酸塩である。アミノ酸鉱酸塩は水溶液として
用いられ、通常、その濃度は約0.1〜30重を係であ
る。
In the present invention, mineral acid salts of amino acids as described above are treated, and the types of mineral acid salts are usually hydrochlorides, sulfates, or nitrates. Amino acid mineral salts are used as aqueous solutions, and the concentration is usually between about 0.1 and 30 parts by volume.

アミノ酸鉱酸塩の水溶液の一例としては、例えば、対象
とするアミノ酸がγ−アミノ酪酸の場合には、ニーピロ
リドンを鉱酸の存在下、水媒体中で加水分解反応させて
得られるγ−アミノ酪酸の鉱酸塩を含有する混合物が挙
げられる。
An example of an aqueous solution of an amino acid mineral salt is, for example, when the target amino acid is γ-aminobutyric acid, a γ-amino acid salt obtained by hydrolyzing nypyrrolidone in an aqueous medium in the presence of a mineral acid is used. Mention may be made of mixtures containing mineral acid salts of butyric acid.

この加水分解反応は通常、go〜/10”(:、の温度
で、y〜IO時間程度で実施される。また、鉱酸の存在
ばは例えば、コーピ01Jトンに対して/〜/、3゛モ
ル倍であり、水媒体の使用量は例工は、ニーピロリドン
に対して3〜.20重量倍である。
This hydrolysis reaction is usually carried out at a temperature of go~/10''(:, for about y~IO hours. If a mineral acid is present, for example, The amount of the aqueous medium used is 3 to 20 times the amount by weight of neepyrrolidone.

本発明においては、先ず、アミノ酸鉱酸塩の水溶液をア
ルカリ金属塩型又はアルカリ土類金属塩型の強酸性陽イ
オン交換樹脂の充填塔に通液するが、強酸性陽イオン交
換樹脂としては、通常、スチレンとジビニルベンゼンと
の共重合体よりなる粒状ポリマ7−を母体とするスルホ
ン酸型のものが用いられる。また、アルカリ金属塩又は
アルカリ土類金属としては、例えば、ナトリウム塩、カ
リウム塩、バリウム塩などが挙げられる。しかし、対象
とするアミノ酸鉱酸塩が硫酸塩の場合には、バリウム塩
型の陽イオン交換樹脂を用いると、水不溶性の硫酸バリ
ウムが生成するため、充填塔内が閉塞する恐れがあるの
で好ましくなし。
In the present invention, first, an aqueous solution of an amino acid mineral salt is passed through a packed tower of an alkali metal salt type or alkaline earth metal salt type strongly acidic cation exchange resin. Usually, a sulfonic acid type polymer whose base material is a particulate polymer 7 made of a copolymer of styrene and divinylbenzene is used. Further, examples of the alkali metal salt or alkaline earth metal include sodium salt, potassium salt, barium salt, and the like. However, if the target amino acid mineral salt is a sulfate, using a barium salt type cation exchange resin is not recommended because water-insoluble barium sulfate is generated, which may clog the inside of the packed column. none.

陽イオン交換樹脂の充填塔への通液は下向流又は上向流
のいずれでもよく、処理条件としては通常、処理温度は
s −s o ’cであり、また、通液速度は0. !
; −,2ψr 程度である。
The cation exchange resin may be passed through the packed column either downwardly or upwardly, and the processing conditions are usually such that the processing temperature is s-so'c, and the liquid passing rate is 0. !
; -, about 2ψr.

この通液処理により陽イオン交換樹脂にアミノ酸鉱酸塩
のアミノ酸成分が吸着され、一方、この吸着によって遊
離したアルカリ金属又はアルカリ土類金属がアミノ酸鉱
酸塩の鉱酸成分と塩を形成し、この塩は充填塔の排出口
より水溶液として回収される。この吸着処理は通常、ア
ミノ酸鉱酸塩が含有されることとなるので、これを分析
することにより判定することができる。
Through this liquid passage treatment, the amino acid component of the amino acid mineral salt is adsorbed onto the cation exchange resin, and on the other hand, the alkali metal or alkaline earth metal liberated by this adsorption forms a salt with the mineral acid component of the amino acid mineral salt, This salt is recovered as an aqueous solution from the outlet of the packed tower. Since this adsorption treatment usually results in the inclusion of amino acid mineral salts, the determination can be made by analyzing this.

吸着処理を終えた陽イオン交換樹脂の充填塔には、次い
で、アルカリ金属又はアルカリ土類金属の水酸化物より
なる水溶液を通液し、陽イオン交換樹脂をアルカリ金属
型又はアルカリ土類金属型に再生するとともに、充填塔
の排出口より遊離のアミノ酸を水溶液として回収する。
After the adsorption treatment, an aqueous solution of an alkali metal or alkaline earth metal hydroxide is passed through the packed column of the cation exchange resin to convert the cation exchange resin into an alkali metal or alkaline earth metal type. At the same time, free amino acids are recovered as an aqueous solution from the outlet of the packed tower.

アルカリ金属又はアルカリ土類金属の水酸化物の種類は
通常、吸着処理に用いた陽イオン交換樹脂の金属塩と同
様な金属の水酸化物が使用される。この金属水酸化物の
水溶液濃度としては、通常、/〜10重量係である。通
液は通常、5〜50℃の温度で、0.5〜コψr の速
度で実施される。充填塔に供給するアルカリ金属又はア
ルカリ土類金属水酸化物の量は陽イオン交換樹脂に吸着
したアミノ酸とほぼ当量でよい。
As for the type of alkali metal or alkaline earth metal hydroxide, the same metal hydroxide as the metal salt of the cation exchange resin used in the adsorption treatment is usually used. The concentration of the metal hydroxide in the aqueous solution is usually 10 to 10% by weight. The liquid passage is usually carried out at a temperature of 5 to 50° C. and at a rate of 0.5 to φr. The amount of alkali metal or alkaline earth metal hydroxide supplied to the packed column may be approximately equivalent to the amount of amino acid adsorbed on the cation exchange resin.

この通液処理により陽イオン交換樹脂に吸着しているア
ミノ酸成分とアルカリ金属又はアルカリ土類金属がイオ
ン交換されるので、陽イオン交換樹脂が再生され、また
、充填塔の排出口より遊離のアミノ酸を水溶液として回
収することができる。このアミノ酸の回収処理は通常、
陽イオン交換樹脂の充填塔より排出される水溶液中にア
ルカリ金属又はアルカリ土類金属の水酸化物が含有され
る時点まで実施される。すなわち、この処理では陽イオ
ン交換樹脂に吸着したアミノ酸が脱離し、遊離のアミノ
酸が単独で回収されるが、処理後期になるとアミノ酸を
単独で回収できず、前記水酸化物との混合物として回収
されることとなるので、アミノ酸の回収処理を中止する
必要がある。ここで回収されたアミノ酸の単独水溶液か
らアミノ酸を単離するには、例えば、濃縮晶析などの公
知の方法によって簡単に回収することができる。
Through this liquid flow treatment, the amino acid components adsorbed on the cation exchange resin are ion-exchanged with alkali metals or alkaline earth metals, so the cation exchange resin is regenerated, and free amino acids are released from the outlet of the packed tower. can be recovered as an aqueous solution. This amino acid recovery process is usually
The process is continued until the aqueous solution discharged from the cation exchange resin packed column contains an alkali metal or alkaline earth metal hydroxide. That is, in this treatment, the amino acids adsorbed on the cation exchange resin are desorbed and the free amino acids are recovered alone, but in the later stages of the treatment, the amino acids cannot be recovered alone and are recovered as a mixture with the hydroxide. Therefore, it is necessary to stop the amino acid recovery process. Amino acids can be easily isolated from the single aqueous solution of amino acids recovered here by a known method such as concentration crystallization.

また、アミノ酸単独成分を回収した後、更に、陽イオン
交換樹脂の充填塔に前記水酸化物の水溶液を通液し、充
填塔中に残存するアミノ酸成分を実質的に全部、排出す
るのが望ましい。ここで回収される水溶液は前記水酸化
物とアミノ酸との混合物であるので、通常、この水溶液
は次工程の処理に用いる前記水酸化物の水溶液として利
用することができる。
Furthermore, after recovering the single amino acid component, it is desirable to further pass the aqueous solution of the hydroxide through a cation exchange resin packed column to discharge substantially all of the amino acid component remaining in the packed column. . Since the aqueous solution recovered here is a mixture of the hydroxide and amino acid, this aqueous solution can usually be used as the aqueous solution of the hydroxide used in the next step.

生されているので、再び上述のアミノ酸鉄jH塩の吸着
処理に繰り返し利用することができる。
Since it is produced in a raw form, it can be repeatedly used for the adsorption treatment of the above-mentioned amino acid iron jH salt.

また、本発明では各処理工程の間に陽イオン交換樹脂の
充填塔に水を通液することにより、充填塔内を洗浄する
ことがより一層好捷しい。
Furthermore, in the present invention, it is even more convenient to wash the inside of the cation exchange resin packed column by passing water through the cation exchange resin packed column between each treatment step.

本発明によれば、吸着処理の際にアミノ酸鉱酸塩中のア
ミノ酸成分を効率的に陽イオン交換樹脂に吸着すること
ができ、しかも、吸着されたアミノ酸成分の脱離の際に
は、吸着されたアミノ酸の約1fOMfji%以上が他
の架剤と混合することなく、単独で回収することができ
る。
According to the present invention, the amino acid component in the amino acid mineral salt can be efficiently adsorbed onto the cation exchange resin during the adsorption treatment, and when the adsorbed amino acid component is desorbed, the adsorption About 1fOMfji% or more of the amino acids collected can be recovered alone without mixing with other cross-reagents.

したがって、本発明は種々のアミノ酸鉱酸塩より遊離の
アミノ酸を回収する方法として工業的に極めて有利な方
法である。
Therefore, the present invention is an industrially extremely advantageous method for recovering free amino acids from various amino acid mineral salts.

次に、本発明を実施例により更に詳細に説明するが、本
発明はその要旨を越えない限り、以下の実施例に限定さ
れるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例/ 〈γ−アミノ酪酸塩酸塩の製造〉 攪拌機及び温度調節機を有する/1反応器にコーピロリ
ドンざ5g、水3ダOg及び濃塩酸/ 10f/を仕込
み、攪拌下、加熱し還流条件下で6時間、反応を行なっ
た。
Example / <Production of γ-aminobutyric acid hydrochloride> In a reactor equipped with a stirrer and a temperature controller, 5 g of copyrolidone, 30 g of water, and 10 g of concentrated hydrochloric acid were charged, and heated under stirring to reflux conditions. The reaction was carried out for 6 hours at a lower temperature.

反応後の混合物を分析したところ、γ−アミノ酪酸塩酸
塩なλ6重量%及び過剰分の塩酸0.3重積−係を含有
する水溶液であった。
Analysis of the mixture after the reaction revealed that it was an aqueous solution containing 6% by weight of γ-aminobutyric acid hydrochloride and 0.3 weight percent of hydrochloric acid.

〈γ−アミノ酪酸の回収〉 ナトリウム塩型強酸性陽イオン交換樹脂(三菱化成工業
、商標ダイヤイオンEIK−/B)Sθθmlを充填塔
(径qo%、高さl000へ)に充填し、次いで、この
充填塔に上記の製造側れる水溶液中にγ−アミノ酪酸塩
酸塩に含有されるまで3’1分間、通液処理を行なった
。なお、この通液処理により陽イオン交換樹脂の全交換
容量の70%にアミノ酸成分が吸着された。
<Recovery of γ-aminobutyric acid> Sθθml of a sodium salt-type strongly acidic cation exchange resin (Mitsubishi Chemical Industries, Ltd., trademark Diaion EIK-/B) was packed into a packed column (diameter qo%, height 1000), and then A solution was passed through this packed tower for 3'1 minute until the γ-aminobutyric acid hydrochloride was contained in the aqueous solution produced above. In addition, by this liquid passage treatment, the amino acid component was adsorbed to 70% of the total exchange capacity of the cation exchange resin.

引き続き、前記充填塔を水? !; Omlで洗浄した
後、再生液としてg重[J′%苛性ソーダ水溶液を二S
′Cの温度で0.!; m、/’hrの速度で通液し、
充填塔より排出される水溶液中に苛性ソーダが含有され
るまで通液処理を行ない、γ−アミノ酪酸の回収を行な
った。
Continue to fill the packed tower with water? ! ; After washing with Oml, add g heavy [J'% caustic soda aqueous solution to 2 S
0 at a temperature of 'C. ! ; Liquid is passed at a speed of m, /'hr,
γ-aminobutyric acid was recovered by passing through the solution until caustic soda was contained in the aqueous solution discharged from the packed tower.

このような方法において、回収されたr−ア液として回
収されていた。
In such a method, it was recovered as a recovered r-a liquid.

実施例コ 実施例1の方法において、γ−アミノ酪酸の回収工程で
バリウム塩型強酸性陽イオン交換樹脂を用い、また、再
生液として3重t%水酸化バリウム水溶液を用いて同様
な方法で吸着・再生を行なったところ、γ−アミノ酪酸
の吸着量及び脱離の際のγ−アミノ酪酸の単独溶液の回
収量は1・7表に示す通りであった。
Example In the method of Example 1, a barium salt type strongly acidic cation exchange resin was used in the recovery step of γ-aminobutyric acid, and a 3% barium hydroxide aqueous solution was used as the regenerating solution in the same manner. When adsorption and regeneration were performed, the amount of γ-aminobutyric acid adsorbed and the amount of a single solution of γ-aminobutyric acid recovered during desorption were as shown in Tables 1 and 7.

実施例3〜S 実施例/の方法において、アミノ酸としてr−アミノ酪
酸の代りに、牙7表に示す水溶性アミノ酸部「1安堵の
75重量%水溶液を用いて同様な方法で吸着・再生を行
なったところ、アミノ酸の吸着量及び脱離の際のアミノ
酸の単独溶液の回収量は牙/表に示す通りであった。
Examples 3 to S In the method of Example/, instead of r-aminobutyric acid as the amino acid, adsorption and regeneration were carried out in the same manner using a 75% by weight aqueous solution of the water-soluble amino acid moiety "1" shown in Table 7. As a result, the amount of amino acid adsorbed and the amount of amino acid alone solution recovered during desorption were as shown in the table.

牙  /  表 注/)アミノ酸の吸着量 アミノ酸鉱酸塩の水溶液を陽イオン交換樹脂充填塔に通
液した際に、アミノ酸を吸着した交換基の全交換容量に
対する割合を示す。
Fang / Table note /) Amount of amino acid adsorbed When an aqueous solution of an amino acid mineral salt is passed through a cation exchange resin packed tower, the ratio of exchange groups adsorbing amino acids to the total exchange capacity is shown.

注コ)アミノ酸の回収′− アミノ酸の脱離処理における吸着したアミノ酸全量に対
するアミノ酸単独溶液として回収したアミノ酸の割合を
示す。
Note: Amino acid recovery' - Shows the ratio of amino acids recovered as a single amino acid solution to the total amount of amino acids adsorbed in the amino acid desorption process.

出 願 人  三菱化成工業株式会社 代 理 人  弁理士 要否用  − (ほか7名)Sender: Mitsubishi Chemical Industries, Ltd. Representative Patent attorney required - (7 others)

Claims (1)

【特許請求の範囲】 (11アミノ酸鉱酸塩よりアミノ酸を回収する方法にお
いて、アミノ酸鉱酸塩の水溶液をアルカリ金属塩型又は
アルカリ土類金属塩型の強酸性陽イオン交換樹脂の充填
塔に通液しアミノ酸な前記陽イオン交換樹脂に吸着させ
、次いで、アルカリ金属又はアルカリ土類金属の水酸化
物よυなる水溶液を通液し前記陽イオン交換樹脂を再生
するとともに、アミノ酸を水溶液として回収することを
特徴とするアミノ酸の回収方法。 (2)  アルカリ金属がナトリウムであることを特徴
とする特許請求の範囲子(1)項記載のアミノ酸の回収
方法。 (3)アミノ酸鉱酸塩がアミノ酸塩酸塩であることを特
徴とする特許請求の範囲子(1)項記載のアミノ酸の回
収方法。 (4)  アミノ酸がγ−アミノ酪酸であることを特徴
とする特許請求の範囲子(11項記載のアミノ酸の回収
方法。
[Claims] (11. In a method for recovering amino acids from amino acid mineral salts, an aqueous solution of amino acid mineral salts is passed through a packed tower of an alkali metal salt type or alkaline earth metal salt type strongly acidic cation exchange resin. The amino acid is adsorbed onto the cation exchange resin, and then an aqueous solution of an alkali metal or alkaline earth metal hydroxide is passed through it to regenerate the cation exchange resin and recover the amino acid as an aqueous solution. (2) The method for recovering amino acids according to claim (1), characterized in that the alkali metal is sodium. (3) The amino acid mineral salt is amino acid hydrochloric acid. A method for recovering an amino acid according to claim (1), characterized in that the amino acid is a salt. (4) A method for recovering an amino acid according to claim (1), characterized in that the amino acid is γ-aminobutyric acid. Method for recovering amino acids.
JP9431482A 1982-06-02 1982-06-02 Recovering method for amino acid Pending JPS58210027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9431482A JPS58210027A (en) 1982-06-02 1982-06-02 Recovering method for amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9431482A JPS58210027A (en) 1982-06-02 1982-06-02 Recovering method for amino acid

Publications (1)

Publication Number Publication Date
JPS58210027A true JPS58210027A (en) 1983-12-07

Family

ID=14106809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9431482A Pending JPS58210027A (en) 1982-06-02 1982-06-02 Recovering method for amino acid

Country Status (1)

Country Link
JP (1) JPS58210027A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255453A (en) * 1986-04-28 1987-11-07 Ajinomoto Co Inc Method for separating and purifying valine
JPS62292750A (en) * 1986-06-11 1987-12-19 Ajinomoto Co Inc Separation and purification or arginine
US5030750A (en) * 1988-02-03 1991-07-09 Research Association For Utilization Of Light Oil Process for preparing DL-serine and process for separation and purification of the same
WO1998003468A1 (en) * 1996-07-18 1998-01-29 Amylum N.V. A process for the production of crystalline aspartic acid
US7473801B2 (en) 2004-04-07 2009-01-06 Asahi Kasei Chemicals Corporation Method for purification of amino acid
WO2014020866A1 (en) * 2012-08-03 2014-02-06 味の素株式会社 Method for producing basic amino acid or basic amino acid salt

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255453A (en) * 1986-04-28 1987-11-07 Ajinomoto Co Inc Method for separating and purifying valine
JPS62292750A (en) * 1986-06-11 1987-12-19 Ajinomoto Co Inc Separation and purification or arginine
US5030750A (en) * 1988-02-03 1991-07-09 Research Association For Utilization Of Light Oil Process for preparing DL-serine and process for separation and purification of the same
WO1998003468A1 (en) * 1996-07-18 1998-01-29 Amylum N.V. A process for the production of crystalline aspartic acid
US7473801B2 (en) 2004-04-07 2009-01-06 Asahi Kasei Chemicals Corporation Method for purification of amino acid
WO2014020866A1 (en) * 2012-08-03 2014-02-06 味の素株式会社 Method for producing basic amino acid or basic amino acid salt
US9216946B2 (en) 2012-08-03 2015-12-22 Ajinomoto Co., Inc. Method of producing basic amino acid or basic amino acid salt
JP5835489B2 (en) * 2012-08-03 2015-12-24 味の素株式会社 Method for producing basic amino acid or basic amino acid salt

Similar Documents

Publication Publication Date Title
JPS59173093A (en) Production of corn syrup
US3111485A (en) Regenerating mixed bed ion exchangers in fluid deionizing process
JPS58210027A (en) Recovering method for amino acid
US4039442A (en) Ion-exchange process for desalting water and subsequent regeneration of the ion exchangers
JP3373512B2 (en) Production of alkali metal carbonate
US2462597A (en) Amino acid separation
EP0428984B1 (en) Separation method of amino acids
JPS58210052A (en) Recovery of amino acid
JP4662421B2 (en) Organic acid separation and production method
US3813434A (en) Preparation of pure glycine
JPS6111156A (en) Reduction of necessary amount of washing water of weak basictype anion exchanger
JP2536586B2 (en) Amino acid separation and purification method
JPH0549928A (en) Regeneration of active carbon
JPS58208142A (en) Method for recovering uranium from sea water
JP3642590B2 (en) Method for purifying acrylonitrile
JPS61189266A (en) Concentration of tryptophan
JPH02255647A (en) Method for obtaining aqeous free neutral alpha-aminocarboxylic acid solution
SU1726379A1 (en) Process for recovering lithium from natural water by ion exchange
JPS6191014A (en) Method of purifying aqueous solution of potassium chloride for electrolysis
JPH06345683A (en) Purification of pyruvic acid
JPS58741B2 (en) How to collect money
JPH044092A (en) Method for purifying aqueous alkali chloride solution
JP3930070B2 (en) Purification method of acrylamide aqueous solution
CA2159183C (en) Resin regeneration process
JPH08337417A (en) Method for purifying aqueous solution of sodium sulfate decahydrate