JPS58209418A - Method of high temperature hydrostatic extrusion for metal - Google Patents

Method of high temperature hydrostatic extrusion for metal

Info

Publication number
JPS58209418A
JPS58209418A JP9175082A JP9175082A JPS58209418A JP S58209418 A JPS58209418 A JP S58209418A JP 9175082 A JP9175082 A JP 9175082A JP 9175082 A JP9175082 A JP 9175082A JP S58209418 A JPS58209418 A JP S58209418A
Authority
JP
Japan
Prior art keywords
extruded material
extrusion
billet
die
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9175082A
Other languages
Japanese (ja)
Other versions
JPS6317003B2 (en
Inventor
Masao Nishihara
西原 正夫
Tomiharu Matsushita
富春 松下
Masataka Noguchi
昌孝 野口
Kazuo Arimura
有村 和男
Tetsuo Kimura
哲夫 木村
Akira Iwai
彰 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9175082A priority Critical patent/JPS58209418A/en
Publication of JPS58209418A publication Critical patent/JPS58209418A/en
Publication of JPS6317003B2 publication Critical patent/JPS6317003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/007Hydrostatic extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To prevent surface oxidation and the growth of crystal grain, by supplying a combustion improver used for burning a soot of hydraulic medium sticking to the outside of a die, and providing a cooling zone successively, directly after extruding a material by means of a high pressure hydrostatic extrusion. CONSTITUTION:A hot billet 2 is charged into a container 1, and a hydraulic medium 3 is filled in the outer circumference of the billet 2 by utilizing the container 1, then the billet 2 is formed into a desired extruded material 5 by means of a high pressure hydrostatic extrusion with the aid of a die 4 through an extruding stem. At the same time, by utilizing a block 6, etc. surrounding the extruded material 5 loosely, a combustion-supporter circulating area A is formed between the block 6 and the material 5. A sticking carbon is burned by feeding a combustion improver to the area A from a feeding port 7. Next, the material is cooled by feeding cooling water from a feeding port 9 to a water cooling area B formed in the same manner as that of the area A.

Description

【発明の詳細な説明】 本発明は、有機系の圧力媒体を用いてビレットを高温で
ダイスより静水圧押出しする高温静水圧押出しにおいて
、圧力媒体による押出材表面状部の不良化、更には冷却
遅延による結晶粒粗大化や表面酸化等の問題を解決して
、優良な押出製品が得られるようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to high-temperature isostatic extrusion in which a billet is hydrostatically extruded from a die at high temperature using an organic pressure medium. This invention relates to a product that solves problems such as coarsening of crystal grains and surface oxidation due to delay, and makes it possible to obtain high-quality extruded products.

鉄鋼材料あるいは非鉄金属材料によるビレットを高温に
加熱してコンテナ内に入れ、ビレット周囲に圧力媒体を
充満させて、ステムやマンドレル等を介してダイスより
押出して所要の押出材を得る高温静水圧押出し手段は、
大きい押出比で高速加工が可能である等の利点によって
各種分野において多用されていることは周知であるが、
かかる高温静水圧押出し方法には、共通して次のような
間鯖点が存在する。即ち有機系の圧力媒体1!1渭剤が
押出材の表面に数μ惰程度付着し、高温押出しではそれ
が黒色乃至次化して、押出材表面を゛汚損して表面状部
の不良化を生じることであり、更に高温で押出されたも
のは冷却されるまでに時周を要するので、この間に押出
材の結晶粒が粗大化される傾向を生じ易い点であり、例
えば非鉄金属H料の一つである黄銅では、かかる粗大結
へ粒が生じれば、押出し後の抽伸時に肌荒れを生じて品
質の低下を招来するのであり、更にまた高温で押出され
たものを大気中に放置すると、押出材表面の付着圧力媒
体や潤滑材は黒色となり、次いで燃焼してこれが表面酸
化に発展する点であり、この現象は特に純銅やニッケル
ー銅合金、病素鋼において顕著である。
High-temperature isostatic extrusion involves heating a billet made of steel or nonferrous metal to a high temperature, placing it in a container, filling the area around the billet with pressure medium, and extruding it from a die through a stem or mandrel to obtain the desired extruded material. The means are
It is well known that it is widely used in various fields due to its advantages such as high extrusion ratio and high speed processing.
Such high-temperature isostatic extrusion methods commonly have the following points. In other words, the organic pressure medium 1:1 agent adheres to the surface of the extruded material to the extent of several micrometers, and during high-temperature extrusion, it turns black or grains, staining the surface of the extruded material and causing defects in the surface area. Furthermore, since materials extruded at high temperatures require time to cool down, the crystal grains of the extruded material tend to become coarser during this time.For example, in non-ferrous metal H materials, In brass, which is one type of brass, if such coarse grains are formed, the surface will become rough during drawing after extrusion, resulting in a decrease in quality.Furthermore, if the product is extruded at high temperatures and left in the atmosphere, The pressure medium and lubricant adhering to the surface of the extruded material turn black, which then burns and develops into surface oxidation, and this phenomenon is particularly noticeable in pure copper, nickel-copper alloys, and diseased steel.

本発明はこのような問題を解決するためになされたもの
であって、かかる高温静水圧押出しによる押出し1.直
後に、ダイス出側に付着圧媒を燃焼させるための助燃材
を供給し、続いて冷却穢を設けることによって、表面酸
化を防止するとともに結晶粒成長を阻止するようにしだ
ものであり、従ってその特徴とする処は、有機系の圧力
媒体を用いてビレットを高温でダイスより静水圧押出す
る方法であって、ダイス出側にて押出材の外表面に助燃
剤を供給して押出材の外表面に付着する圧力媒体を燃焼
させ、続いて押出材を水冷する点にあり、史にその特徴
とする処は、前記ビレットを銅もしくは銅合金とし、さ
らに前記助燃剤を空気とし、その供給IQをQ = K
 −d”・R−v j/min (但しdは押出材外径
鯖、Rは押出比、Vは押出速度ジS、wIは定数1.4
±0.1、Kは定数0.00067≦に≦0.0018
)とした点にある。
The present invention has been made to solve these problems, and includes extrusion using high-temperature isostatic pressure extrusion. Immediately after, a combustion aid is supplied to the exit side of the die to combust the attached pressure medium, and then a cooling layer is provided to prevent surface oxidation and grain growth. The feature is that the billet is hydrostatically extruded from a die at high temperature using an organic pressure medium, and a combustion improver is supplied to the outer surface of the extruded material on the exit side of the die. The pressure medium adhering to the outer surface is combusted, and the extruded material is then cooled with water.The characteristic of this method is that the billet is made of copper or a copper alloy, and the combustion aid is air, and its supply IQ = K
-d"・R-v j/min (where d is the outer diameter of the extruded material, R is the extrusion ratio, V is the extrusion speed S, and wI is the constant 1.4
±0.1, K is constant 0.00067≦≦0.0018
).

以下図示の実施例に基いて本発明を詳述すると、加熱L
7たビレットをコンテナ内に装入し、ビレット周囲に有
機系の圧力媒体を充満させて、同ビレットを押出した場
合の押出材表面の付着炭化物(圧力媒体)の厚みについ
て見ると1例えば押出比100、ビレット加熱温度80
0℃、圧力媒体耐熱プリースで銅合金管を押出した場合
、その炭化物の厚みけEPMAによって測定した結果、
カーボン付着凰は最大1.4μmであった。従ってかか
る付着炭化物を燃焼除去させるためには、押出材が高温
である闇に助燃剤を供給し、押出材自身の熱を介して燃
焼させてやればよいことになる。
The present invention will be described in detail below based on the illustrated embodiments.Heating L
When looking at the thickness of the adhering carbide (pressure medium) on the surface of the extruded material when the billet is charged into a container, filled with an organic pressure medium around the billet, and extruded, the extrusion ratio is 1. 100, billet heating temperature 80
When a copper alloy tube is extruded using a pressure medium heat-resistant pleat at 0°C, the thickness of the carbide is measured by EPMA.
The maximum carbon adhesion was 1.4 μm. Therefore, in order to burn off such adhering carbides, it is sufficient to supply a combustion improver to the room where the extruded material is at a high temperature, and to combust it through the heat of the extruded material itself.

例えば!$1図に示した実験実施例に示すように。for example! As shown in the experimental example shown in Figure $1.

コンテナ(1)内に装入された加熱ビレット(2)を圧
力媒体(3)をコンテナfilを利用してビレット外周
に充満させ、このビレット(2)を押出ステム(図示省
略)を介しダイス(4)によって高温静水圧押出しによ
り所要の押出材(5)を得ると共に、そのダイス(4)
の出側に、同押出材i5)をルーズに包囲しているブロ
ック+61 *を利用し、同ブロック(6)と押出材i
6)との間に助燃剤の流通工11ア(A)を空間状に構
成し、このエリア(A)内に供給口())をへて例えば
空気その他の助燃剤が押出された押出材:11)の外周
に流動するように設けるのである。このさい供給口(7
)から工+7ア(A)内に直接供給してもよいし、1.
た図示のように多孔板による隔壁(8)を介して供給し
てもよい。
A heated billet (2) charged in a container (1) is filled with a pressure medium (3) around the outside of the billet using a container fil, and this billet (2) is passed through a die (not shown) through an extrusion stem (not shown). 4), the desired extruded material (5) is obtained by high temperature isostatic extrusion, and the die (4) is
On the exit side of the extruded material i5), use the block +61* that loosely surrounds the same block (6) and the extruded material i5).
6) A combustion improver distribution channel 11A (A) is formed in a space between the extruded material and the extruded material into which, for example, air or other combustion improver is extruded through the supply port ()) into this area (A). :11) so that it can flow. At this time, the supply port (7
) may be directly supplied into the factory (A), or 1.
It may also be supplied through a partition wall (8) made of a perforated plate as shown in the figure.

しかしこのように助燃剤を供給して付着炭化物を燃焼さ
せるに当っては、その燃焼が不充分で付着炭化物が残存
することがないようにし、また燃焼が充分過ぎて酸化し
過ぎないようにすることが必要である。未発明でけ助燃
剤の供給時間、供給−を種々に変更実施して、表面の美
麗な押出材が得られる必要乃至最低条件を検討したもの
であり、このさい黄銅材#−i酸化しても外観上は大差
かなし)の−C1表面酸化が進行し易いキュボロニッケ
ル材を供峠材として用い、押出条件として、キュボロニ
ッケル材によるビレブト6日關−×200 m l 、
加熱温6900℃、押出ステムの押出法Pi 50 t
x4/s a c、押出比51 、12(1%助燃剤と
して空気を用いる条件下に、各稙実験を反復した結果、
以下の事が明らかとなったものである。
However, when supplying a combustion improver to burn the adhering carbide, care must be taken to ensure that the combustion is not insufficient and the adhering carbide does not remain, and that the combustion is not sufficient and oxidizes too much. It is necessary. This study examined the necessary or minimum conditions for obtaining an extruded material with a beautiful surface by variously changing the supply time and supply of the uninvented combustion improver. -C1 surface oxidation (with no significant difference in appearance) was used as the supply material, and the extrusion conditions were as follows:
Heating temperature 6900℃, extrusion stem extrusion method Pi 50 t
x4/s a c, extrusion ratio 51, 12 (as a result of repeating each base experiment under the condition of using air as a 1% combustion improver,
The following things became clear.

即ち空気供給蓋は、燃焼域を単位時間当わに押出材表面
が通過する量に比例するので、その空気供給M°quQ
=x−df″・Re v  7/minなる関係式が求
められる。イロし上式においてKおよびmは定数であり
、dは押出材外径(m)、Rは押出比、Vは押出速度(
ステムのwIy′S)であり、前記定数の内定数mはダ
イス角、押出速度、圧力媒体の粘度によって決定される
定数であり、実験によってff1=1.4±0.1であ
ることが判明した。
In other words, the air supply lid is proportional to the amount that the extruded material surface passes through the combustion zone per unit time, so the air supply M°quQ
=x-df''・Re v 7/min is found. In the above equation, K and m are constants, d is the outer diameter of the extruded material (m), R is the extrusion ratio, and V is the extrusion speed. (
wIy'S) of the stem, and the internal constant m of the above constant is a constant determined by the die angle, extrusion speed, and viscosity of the pressure medium, and was found by experiment to be ff1 = 1.4 ± 0.1. did.

こうして反o7LtTなわれた実験結果によれば、キュ
ポラニッケル材による押出材表面品質と押出条件との関
係は第2図のグラフ図に示す通りで、同図において縦軸
は空気供給量Q、横軸は押出材dの外径であるが、同図
で川かなように1表面酸化しないための境界は%(Q 
= 150 l/rnin 、 d −=6.2顧)、
(Q ” 118 //min 、 d = 9.5 
m ’)を通る各線で示され、この時の定数に、定数m
の値i、i KO60018%ff11.44であり、
同様に表面に未燃焼炭化物が残存しないためには、定数
にの値は0.0006’/、定数mの値Vi1.14で
ある。このさい本来は定数mはm = 1になるはずで
あるが、押出比の大小によって押出材表面に付着する炭
化物厚みはそれぞれ変化するので、実際はm = Oで
あって、一般にVまm)hである。
According to the experimental results obtained in this way, the relationship between the surface quality of the extruded material made of cupola nickel material and the extrusion conditions is as shown in the graph of Figure 2, where the vertical axis is the air supply amount Q, and the horizontal axis is The axis is the outer diameter of the extruded material d, but in the same figure, the boundary to prevent surface oxidation is % (Q
= 150 l/rnin, d - = 6.2 x),
(Q ” 118 //min, d = 9.5
m'), and the constant at this time is represented by the constant m
The value of i, i KO60018%ff11.44,
Similarly, in order for no unburned carbide to remain on the surface, the value of the constant is 0.0006'/, and the value of the constant m is Vi1.14. In this case, the constant m should originally be m = 1, but since the thickness of carbide attached to the surface of the extruded material changes depending on the extrusion ratio, in reality m = O, and in general, Vm) h It is.

以上の実験による結果を空気供給領域通過時間と空気供
給量との関係で整理すると、第3図に示したグラフ図が
得られる。即ち同図は押出材外表面品質に及はす空気供
給条件の影響を示したグラフ図で、縦軸は燃焼時間、横
軸は空気供給量であり、表面の美麗なものが得られる通
過時間はその空気供給域によって区々であるが、例えば
空気供給mが140 l/minの場合は0.13秒で
あり、70 jl/minの場合には0.35秒以下が
よいことが判る。このさい空気供給量が少なくなれば通
過時間を長くすればよいことになるが、その時には押出
材の温度低下が少なく、粗大粒が成長して困る不利もあ
る。
When the results of the above experiments are organized in terms of the relationship between the air supply area passage time and the air supply amount, the graph shown in FIG. 3 is obtained. In other words, the figure is a graph showing the influence of air supply conditions on the external surface quality of extruded materials.The vertical axis is the combustion time, and the horizontal axis is the air supply amount, which indicates the passing time to obtain a beautiful surface. Although it varies depending on the air supply area, for example, when the air supply m is 140 l/min, it is 0.13 seconds, and when the air supply m is 70 jl/min, it is 0.35 seconds or less. At this time, if the amount of air supplied is small, the passage time can be increased, but in this case there is a disadvantage that the temperature of the extruded material decreases less and coarse grains grow.

前記した供試材のキュボロニッケル材でけ押出後。After extrusion using cuboronickel material of the above-mentioned test material.

大気放冷にしても極端な粗大結晶の発生がないため、結
晶粒の成長が早く、かつこれがため抽伸時における肌荒
れが問題となっているアルミ黄銅材を供試材として用い
、更にその空気供給領域の長さについて、反復実験を行
なって検討した結果、結晶粒の粗大化を防止できる空気
供給領域の長さについて、以下のような結論が得られた
のである。
Even when left to cool in the air, extremely coarse crystals do not occur, so crystal grains grow quickly, and this causes problems with rough skin during drawing. As a result of conducting repeated experiments and examining the length of the region, the following conclusion was reached regarding the length of the air supply region that can prevent coarsening of crystal grains.

即ち押出条件として、アルミ黄銅材によるビレットを用
い(68、wx−×200 、l) 、その加熱温度a
o。
That is, as the extrusion conditions, a billet made of aluminum brass material (68, wx-x200, l) was used, and the heating temperature a was
o.

℃、押出速I!t1.’7 W/S 、押出比40.押
出材寸法22.0、−DDX 1.5 mt、助燃剤と
して空気2017m i :+であり、その押出装置は
第4図に例示する通りで、同図においてfl+liコン
テナ、(2)はビレット、13H−を圧力媒体、(4)
はダイスであり、これら構命は先に第1図で述べたもの
と同様であるが、とのさいダイス(4)の出側に設ける
第1図と同様な空気供給による流通エリア(A)の長さ
を0.7 mとし、また第1図において示されたエリア
(AIに続いて押出材illを冷却するだめの、押出材
i5)の外表を囲んで供給[−](9)より冷却水の供
給される水冷エリア(B)を、第4図に示した装置では
エリア(B)の長さを1.2 mと1゜たものである。
°C, extrusion speed I! t1. '7 W/S, extrusion ratio 40. The extruded material size is 22.0, -DDX 1.5 mt, and air is 2017m i :+ as a combustion improver.The extrusion device is as illustrated in Fig. 4, in which fl+li container, (2) is a billet, 13H- as pressure medium, (4)
is a die, and these structures are the same as those described above in Fig. 1, but a distribution area (A) with air supply similar to that in Fig. 1 is provided on the exit side of the tono die (4). The length of is 0.7 m, and the supply is made from [-] (9) surrounding the outer surface of the area shown in FIG. In the apparatus shown in FIG. 4, the water cooling area (B) to which cooling water is supplied has a length of 1.2 m and 1°.

またこの第4図に示した装置による実験に当っては、水
量の効果を見るために水量を0〜36 l/minと、
水槽にした場合とを併せて実施対比したものである。実
験結果について先ず冷却水量と結晶粒径の関係は第5図
に示す通りであって、同図は押出材(第4図によって得
られた押出素管)結晶粒度に及はす冷却水量の影響を示
したグラフ図で、縦軸は結晶粒度、横軸は冷却水量を示
しているか。
In addition, in the experiment using the apparatus shown in Fig. 4, in order to see the effect of water volume, the water volume was varied from 0 to 36 l/min.
This is a comparison of the implementation and the case of using an aquarium. Regarding the experimental results, firstly, the relationship between the amount of cooling water and the grain size is as shown in Figure 5, which shows the effect of the amount of cooling water on the grain size of the extruded material (extruded raw tube obtained in Figure 4). In the graph that shows the graph, does the vertical axis show the grain size and the horizontal axis show the amount of cooling water?

図で明かなように冷却水ii Ol/minの場合、そ
の結晶粒は平均0.07 mであるが、冷却水量を増す
f(従い細粒化し、20 //’min以上の場合には
0.04t)關以下の結晶粒径となることが判る。
As is clear from the figure, when the cooling water is ii Ol/min, the average grain size is 0.07 m. It can be seen that the crystal grain size is less than .04t).

即ちアルミ黄銅材によるビレットを押出して素管とし、
これを押出板抽伸加工する場合、その結晶粒径が小さい
方が表面肌が美麗となることは。
That is, a billet made of aluminum brass material is extruded to make a raw pipe,
When extrusion plate drawing is performed on this material, the smaller the crystal grain size, the more beautiful the surface texture will be.

第6図に例示した冷間加工率と結晶粒径の関係グラフ図
でも川かなことを考えると、0.04tm以下の粒径で
あれば、抽伸1バスあるいは2パスでもその表面肌が充
分住良なものが得られるのであり。
Considering that the graph of the relationship between cold working rate and grain size shown in Figure 6 shows that the grain size is 0.04 tm or less, the surface texture can be sufficiently settled even in one or two passes of drawing. You can get something good.

従ってダイス出側[0,7mの空気流通エリア(A)ヲ
設けた場合、押出速度は1.7m/Sであるから、この
空気供給域の通過時間ij 0.41秒であり、先に示
した第3図の結果から、して、押出材の表面における付
着炭化物(有機系の圧力媒体)を完全に燃焼させるに充
分な時間であることが判る。
Therefore, when an air circulation area (A) of 0.7 m is provided on the exit side of the die, the extrusion speed is 1.7 m/s, so the passage time ij of this air supply area is 0.41 seconds, and as shown above, the extrusion speed is 1.7 m/s. From the results shown in FIG. 3, it can be seen that the time is sufficient to completely burn out the adhering carbide (organic pressure medium) on the surface of the extruded material.

本発明は以上の各実験結果によって総合的に得られたも
のであり、ダイス出側において、押出直後の押出材表面
に助燃剤(空気その他)を供給してその付tm化物であ
る圧力媒体を完全に燃焼させ、更にこのj!!!i焼除
去に続いて水冷を行なうことKより、先ずその付着炭化
物の燃焼除去によって押出祠表p1の汚損をなくし美麗
化を図ると共に、ノ^all 引続く水冷によって、冷却時間の遅延による結晶粒の粗
大化を防止しかつ表面酸化をも併せて阻止できることに
なるのであり、従来の問題点を一掃できることになるの
である。このさい銅系金属においては500℃以上にな
るとその結晶粒生長が進行するので、可及的短時間に急
冷することが好ましいのであるが、ダイス出側において
IMちに急水冷すれば、付着炭化物が残存するのであり
、本発明のように燃焼域を先行させて後、これを水冷す
ることにより、付着炭化物を燃焼除去[7て清浄化した
ものを冷却することにより、結晶粒の粗大化を阻止しつ
つ美麗な表面肌を持つ押出材が容易に得られることにな
るもので、押出後の抽伸加工時に生じ易い肌荒れもこれ
によって未然に防止できるのであり効果大である。)ま
た高温で押出された押出材が大気中に放置されて、表面
酸化を招来する点も、本発明の押出直後における付着炭
化物の燃焼除去とこれに続く水冷によって確実に防止さ
れ、これらは鉄系金属材に対して特に効果的であり、高
温静水圧押出しによって生じる押出材表面特開昭58−
209418(4) の変質を的確に防止しその品質を向−ヒさせるものと1
7で模れたものである。
The present invention has been comprehensively obtained from the above experimental results, and is based on the method of supplying a combustion improver (air or other) to the surface of the extruded material immediately after extrusion on the exit side of the die to release the pressure medium that is the admixture thereof. Let it burn completely, and furthermore, this j! ! ! Water cooling is performed following burning removal. First, by burning off the adhering carbides, the extrusion surface p1 is cleansed and made beautiful. This means that it is possible to prevent the grain from becoming coarse and also to prevent surface oxidation, thereby eliminating the problems of the prior art. At this time, crystal grain growth of copper-based metals progresses when the temperature exceeds 500°C, so it is preferable to rapidly cool the metal in the shortest possible time. As in the present invention, the adhering carbide can be burned off by cooling it with water after the combustion zone has been conducted in advance. This makes it possible to easily obtain an extruded material with a beautiful surface texture while preventing the extrusion from occurring, and this is highly effective as it also prevents the roughness that tends to occur during drawing processing after extrusion. ) Also, the problem of surface oxidation caused by extruded material extruded at high temperature being left in the atmosphere is reliably prevented by the combustion removal of adhering carbide immediately after extrusion and subsequent water cooling of the present invention. It is particularly effective for metal materials, and the surface of extruded materials produced by high-temperature isostatic extrusion is
209418 (4) Accurately prevent deterioration of and improve its quality.
This is what was modeled in 7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法実施例の説明図、第2図tま押出材
表向品質と押出条件の関係を示すグラフ図、第3図は同
表面品質と空気供給条件の関係グラフ図、第4図は本発
明方法実施例の説明図、第5図は同結晶粒度と冷却水蓄
の関係グラフ図、第6図は冷間加工率と結晶粒度の関係
グラフ図である。 (1)・・コンテナ、(2)・・・ビレット、(3)・
・・圧力媒体、(4)・・・ダイス、(A)・・・助燃
剤流通エリア、(B)・・・水冷エリア。
Fig. 1 is an explanatory diagram of an embodiment of the method of the present invention, Fig. 2 is a graph showing the relationship between the surface quality of the extruded material and extrusion conditions, Fig. 3 is a graph showing the relationship between the same surface quality and air supply conditions, and Fig. FIG. 4 is an explanatory diagram of an embodiment of the method of the present invention, FIG. 5 is a graph showing the relationship between crystal grain size and cooling water storage, and FIG. 6 is a graph showing the relationship between cold working rate and crystal grain size. (1) Container, (2) Billet, (3)
...Pressure medium, (4)...Dice, (A)...Combustion improver distribution area, (B)...Water cooling area.

Claims (1)

【特許請求の範囲】 1 有機系の圧力媒体を用いてビレットを高温でダイス
より静水圧押出しする方法であって、ダイス出側にて押
出材の外表面に助燃剤を供給して押出材の外表面に付着
する圧力媒体を燃焼させ、続いて押出材を水冷すること
を特徴とする金属の高温静水圧押出し方法。 2 有機系の圧力媒体を用いてビレットを高温でダイス
より静水圧押出しする方法であって、ダイス出側にて押
出材の外表面に助燃剤を供給して押出材の外表面に付着
する圧力媒体を燃焼させ、続いて押出材を水冷するとと
もに、前記ビレットを銅もしくは銅合金とし、さらに前
記助燃剤を空気とし、その供給ikQをQ=に、d″′
・R・v l/win (但しdは押出材外径鵡、Rは
押出比、■は押出速度田4z’S 、 mは定数1.4
±0.1.Jま定数0.0006’7≦に≦0.001
8 )としたことを秘倣とする金属の高温静水圧押出し
方法。
[Scope of Claims] 1. A method of isostatically extruding a billet from a die at high temperature using an organic pressure medium, in which a combustion improver is supplied to the outer surface of the extruded material on the exit side of the die to improve the quality of the extruded material. A method for high-temperature isostatic extrusion of metals, characterized in that the pressure medium adhering to the outer surface is combusted, followed by water cooling of the extruded material. 2 A method of isostatically extruding a billet from a die at high temperature using an organic pressure medium, in which a combustion improver is supplied to the outer surface of the extruded material on the exit side of the die, and the pressure is applied to the outer surface of the extruded material. The medium is combusted, and then the extruded material is water-cooled, the billet is made of copper or a copper alloy, the combustion improver is air, and the supply ikQ is Q=, d″′
・R・v l/win (where d is the outer diameter of the extruded material, R is the extrusion ratio, ■ is the extrusion speed, and m is the constant 1.4
±0.1. J constant 0.0006'7≦≦0.001
8) A high-temperature isostatic extrusion method for metals based on the method described above.
JP9175082A 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal Granted JPS58209418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9175082A JPS58209418A (en) 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9175082A JPS58209418A (en) 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal

Publications (2)

Publication Number Publication Date
JPS58209418A true JPS58209418A (en) 1983-12-06
JPS6317003B2 JPS6317003B2 (en) 1988-04-12

Family

ID=14035205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9175082A Granted JPS58209418A (en) 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal

Country Status (1)

Country Link
JP (1) JPS58209418A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112850A (en) * 1973-02-28 1974-10-28
JPS5737506U (en) * 1980-08-05 1982-02-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT999514B (en) * 1971-06-30 1976-03-10 Dennison Mfg Co NEEDLE FOR THE DISTRIBUTION OF FIXING PARTS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112850A (en) * 1973-02-28 1974-10-28
JPS5737506U (en) * 1980-08-05 1982-02-27

Also Published As

Publication number Publication date
JPS6317003B2 (en) 1988-04-12

Similar Documents

Publication Publication Date Title
Yun et al. Twin roll casting of aluminium alloys
US4621676A (en) Casting of metallic materials
US3613767A (en) Continuous casting and rolling of 6201 aluminum alloy
KR910009976B1 (en) Method for manufacturing tubes
JP2003517101A (en) High strength sputtering target and method for manufacturing the same
BRPI0915111B1 (en) process for making extruded or drawn aluminum alloy tubing, and extruded aluminum alloy heat exchanger tubes
US1924294A (en) Apparatus and method of extruding pipe
CN107164674A (en) A kind of magnalium zinc gadolinium cerium alloy and its preparation method and application
BRPI0915118B1 (en) adjustable wall cabinet support group
CN107164675A (en) A kind of magnalium zinc cerium alloy and its preparation method and application
JPS58209418A (en) Method of high temperature hydrostatic extrusion for metal
CN107150188A (en) A kind of magnesium aluminium-zinc-cerium yittrium alloy and its preparation method and application
US2782473A (en) Continuous casting method and apparatus
CA2227828C (en) Semi-solid metal forming process
EP0814926B1 (en) Floor lead-through element for an inversion casting vessel
US2240019A (en) Method of making and cooling tubes
JPS6233008B2 (en)
DE2406252C3 (en) Method and device for continuous casting and further processing of the cast strand
US3440853A (en) Metal extrusion method
DE1925862A1 (en) Process for the production of strands in the continuous casting process and device for carrying out the process
JP2789273B2 (en) Method for continuous casting and extrusion of aluminum or aluminum alloy
JPS6362287B2 (en)
Güner et al. Effect of extrusion parameters on microstructural and mechanical properties of EN AW 6063
US2750311A (en) Process for drawing and heat treating magnesium wire
JPS6159804B2 (en)