JPS6317003B2 - - Google Patents

Info

Publication number
JPS6317003B2
JPS6317003B2 JP57091750A JP9175082A JPS6317003B2 JP S6317003 B2 JPS6317003 B2 JP S6317003B2 JP 57091750 A JP57091750 A JP 57091750A JP 9175082 A JP9175082 A JP 9175082A JP S6317003 B2 JPS6317003 B2 JP S6317003B2
Authority
JP
Japan
Prior art keywords
extruded material
extrusion
billet
die
pressure medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57091750A
Other languages
Japanese (ja)
Other versions
JPS58209418A (en
Inventor
Masao Nishihara
Tomiharu Matsushita
Masataka Noguchi
Kazuo Arimura
Tetsuo Kimura
Akira Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9175082A priority Critical patent/JPS58209418A/en
Publication of JPS58209418A publication Critical patent/JPS58209418A/en
Publication of JPS6317003B2 publication Critical patent/JPS6317003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/007Hydrostatic extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】 本発明は、有機系の圧力媒体を用いてビレツト
を高温でダイスより静水圧押出しする高温静水圧
押出しにおいて、圧力媒体による押出材表面状態
の不良化、更には冷却遅延による結晶粒粗大化や
表面酸化等の問題を解決して、優良な押出製品が
得られるようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to high-temperature isostatic extrusion in which a billet is hydrostatically extruded from a die at high temperature using an organic pressure medium. This product solves problems such as coarsening of crystal grains and surface oxidation caused by the oxidation of grains, and makes it possible to obtain high-quality extruded products.

鉄鋼材料あるいは非鉄金属材料によるビレツト
を高温に加熱してコンテナ内に入れ、ビレツト周
囲に圧力媒体を充満させて、ステムやマンドレル
等を介してダイスより押出して所要の押出材を得
る高温静水圧押出し手段は、大きい押出比で高速
加工が可能である等の利点によつて各種分野にお
いて多用されていることは周知であるが、かかる
高温静水圧押出し方法には、共通して次のような
問題点が存在する。即ち有機系の圧力媒体、潤滑
剤が押出材の表面に数μm程度付着し、高温押出
しではそれが黒色乃至炭化して、押出材表面を汚
損して表面状態の不良化を生じることであり、更
に高温で押出されたものは冷却されるまでに時間
を要するので、この間に押出材の結晶粒が粗大化
される傾向を生じ易い点であり、例えば非鉄金属
材料の一つである黄銅では、かかる粗大結晶粒が
生じれば、押出し後の抽伸時に肌荒れを生じて品
質の低下を招来するのであり、更にまた高温で押
出されたものを大気中に放置すると、押出材表面
の付着圧力媒体や潤滑材は黒色となり、次いで燃
焼してこれが表面酸化に発展する点であり、この
現象は特に純銅やニツケル―銅合金、炭素鋼にお
いて顕著である。
High-temperature isostatic extrusion involves heating a billet made of steel or nonferrous metal to a high temperature, placing it in a container, filling the area around the billet with pressure medium, and extruding it from a die through a stem or mandrel to obtain the desired extruded material. It is well known that this method is widely used in various fields due to its advantages such as high-speed processing with a large extrusion ratio, but such high-temperature isostatic extrusion methods commonly have the following problems. A point exists. In other words, organic pressure medium and lubricant adhere to the surface of the extruded material by several micrometers, and during high-temperature extrusion, this becomes black or carbonized, staining the surface of the extruded material and causing poor surface condition. Furthermore, since items extruded at high temperatures require time to cool down, the crystal grains of the extruded material tend to become coarser during this time. For example, in the case of brass, which is a non-ferrous metal material, If such coarse grains are formed, the surface will become rough during drawing after extrusion, leading to a decrease in quality.Furthermore, if the extruded material is left in the atmosphere at high temperatures, the adhesion pressure medium on the surface of the extruded material and The lubricant turns black and then burns, which develops into surface oxidation, and this phenomenon is particularly noticeable in pure copper, nickel-copper alloys, and carbon steel.

本発明はこのような問題を解決するためになさ
れたものであつて、かかる高温静水圧押出しによ
る押出し直後に、ダイス出側に付着圧媒を燃焼さ
せるための助燃材を供給し、続いて冷却域を設け
ることによつて、表面酸化を防止するとともに結
晶粒成長を阻止するようにしたものであり、従つ
てその特徴とする処は、有機系の圧力媒体を用い
てビレツトを高温でダイスより静水圧押出する方
法であつて、ダイス出側にて押出材の外表面に助
燃剤を供給して押出材の外表面に付着する圧力媒
体を燃焼させ、続いて押出材を水冷する点にあ
り、更にその特徴とする処は、前記ビレツトを銅
もしくは銅合金とし、さらに前記助燃剤を空気と
し、その供給量QをQ=K・dm・R・vl/min
(但しdは押出材外径mm、Rは押出比、vは押出
速度mm/S、mは定数1.4±0.1、Kは定数0.00067
≦K≦0.0018)とした点にある。
The present invention has been made in order to solve such problems. Immediately after extrusion by such high-temperature isostatic pressure extrusion, a combustion aid is supplied to the exit side of the die to burn the adhering pressure medium, and then cooling is performed. This method prevents surface oxidation as well as grain growth by providing a region of the billet, which is characterized by the fact that the billet is diced at high temperature using an organic pressure medium. It is a method of hydrostatic extrusion, which consists in supplying a combustion aid to the outer surface of the extruded material on the exit side of the die to burn the pressure medium adhering to the outer surface of the extruded material, and then cooling the extruded material with water. Further, its characteristics are that the billet is made of copper or a copper alloy, the combustion improver is air, and the supply amount Q is Q=K・d m・R・vl/min.
(However, d is the outer diameter of the extruded material mm, R is the extrusion ratio, v is the extrusion speed mm/S, m is a constant of 1.4±0.1, and K is a constant of 0.00067
≦K≦0.0018).

以下図示の実施例に基いて本発明を詳述する
と、加熱したビレツトをコンテナ内に装入し、ビ
レツト周囲に有機系の圧力媒体を充満させて、同
ビレツトを押出した場合の押出材表面の付着炭化
物(圧力媒体)の厚みについて見ると、例えば押
出比100、ビレツト加熱温度800℃、圧力媒体耐熱
グリースで銅合金管を押出した場合、その炭化物
の厚みはEPMAによつて測定した結果、カーボ
ン付着量は最大1.4μmであつた。従つてかかる付
着炭化物を燃焼除去させるためには、押出材が高
温である間に助燃剤を供給し、押出材自身の熱を
介して燃焼させてやれよばよいことになる。
The present invention will be described in detail below based on the illustrated examples. When a heated billet is charged into a container, the area around the billet is filled with an organic pressure medium, and the billet is extruded, the surface of the extruded material is Looking at the thickness of the adhering carbide (pressure medium), for example, when a copper alloy tube is extruded with an extrusion ratio of 100, a billet heating temperature of 800°C, and pressure medium heat-resistant grease, the thickness of the carbide is measured by EPMA. The maximum amount of adhesion was 1.4 μm. Therefore, in order to burn and remove such adhering carbides, it is sufficient to supply a combustion aid while the extruded material is at a high temperature and combust it through the heat of the extruded material itself.

例えば第1図に示した実験実施例に示すよう
に、コンテナ1内に装入された加熱ビレツト2を
圧力媒体3をコンテナ1を利用してビレツト外周
に充満させ、このビレツト2を押出ステム(図示
省略)を介しダイス4によつて高温静水圧押出し
により所要の押出材5を得ると共に、そのダイス
4の出側に、同押出材5をルーズに包囲している
ブロツク6等を利用し、同ブロツク6と押出材5
との間に助燃剤の流通エリアAを空間状に構成
し、このエリアA内に供給口7をへて例えば空気
その他の助燃剤が押出された押出材5の外周に流
動するように設けるのである。このさい供給口7
からエリアA内に直接供給してもよいし、また図
示のように多孔板による隔壁8を介して供給して
もよい。しかしこのように助燃剤を供給して付着
炭化物を燃焼させるに当つては、その燃焼が不充
分で付着炭化物が残存することがないようにし、
また燃焼が充分過ぎて酸化し過ぎないようにする
ことが必要である。本発明では助燃剤の供給時
間、供給量を種々に変更実施して、表面の美麗な
押出材が得られる必要乃至最低条件を検討したも
のであり、このさい黄銅材は酸化しても外観上は
大差がないので、表面酸化が進行し易いキユプロ
ニツケル材を供試材として用い、押出条件とし
て、キユプロニツケル材によるビレツト68mm〓×
200mm、加熱温度900℃、押出ステムの押出速度
50mm/sec、押出比51,120、助燃剤として空気を
用いる条件下に、各種実験を反復した結果、以下
の事が明らかとなつたものである。
For example, as shown in the experimental example shown in FIG. 1, a heated billet 2 charged into a container 1 is filled with a pressure medium 3 around the outside of the billet using the container 1, and the billet 2 is transferred to an extrusion stem ( The desired extruded material 5 is obtained by high-temperature isostatic extrusion using a die 4 (not shown), and a block 6 or the like loosely surrounding the extruded material 5 is used on the exit side of the die 4. Same block 6 and extruded material 5
A combustion improver circulation area A is formed in a spatial manner between the two, and a combustion improver such as air or other combustion agent is provided in this area A so that it flows to the outer periphery of the extruded material 5 through the supply port 7. be. At this time supply port 7
It may be supplied directly into the area A, or it may be supplied through a partition wall 8 made of a perforated plate as shown in the figure. However, when supplying a combustion improver to burn the adhering carbide, care should be taken to ensure that the combustion is insufficient and the adhering carbide does not remain.
It is also necessary to ensure that combustion is not too sufficient and oxidation does not occur too much. In the present invention, the supply time and supply amount of the combustion improver were variously changed, and the necessary or minimum conditions for obtaining an extruded material with a beautiful surface were studied. Since there is not much difference between
200mm, heating temperature 900℃, extrusion speed of extrusion stem
As a result of repeating various experiments under the conditions of 50 mm/sec, extrusion ratio of 51, 120, and using air as a combustion improver, the following was clarified.

即ち空気供給量は、燃焼域を単位時間当りに押
出材表面が通過する量に比例するので、その空気
供給量QはQ=K・dm・R・vl/minなる関係式
が求められる。但し上式においてKおよびmは定
数あり、dは押出材外径(mm)、Rは押出比、v
は押出速度(ステムのmm/S)であり、前記定数
の内定数mはダイス角、押出速度、圧力媒体の粘
度によつて決定される定数であり、実験によつて
m=1.4±0.1であることが判明した。
That is, since the amount of air supplied is proportional to the amount that the surface of the extruded material passes through the combustion zone per unit time, the relational expression Q=K.d m.R.vl /min can be obtained for the amount of air supplied. However, in the above formula, K and m are constants, d is the outer diameter of the extruded material (mm), R is the extrusion ratio, and v
is the extrusion speed (stem mm/S), and the internal constant m of the above constant is determined by the die angle, extrusion speed, and viscosity of the pressure medium, and it was determined by experiment that m = 1.4 ± 0.1. It turns out that there is something.

こうして反復行なわれた実験結果によれば、キ
ユプロニツケル材による押出材表面品質と押出条
件との関係は第2図のグラフ図に示す通りで、同
図において縦軸は空気供給量Q、横軸は押出材d
の外径であるが、同図で明かなように、表面酸化
しないための境界は、(Q=150l/min、d=6.2
mm)、(Q=118l/min、d=9.5mm)を通る各線で
示され、この時の定数K、定数mの値はK=
0.0018、m=1.44であり、同様に表面に未燃焼炭
化物が残存しないためには、定数Kの値は
0.00067、定数mの値は1.14である。このさい本
来は定数mはm=1になるはずであるが、押出比
の大小によつて押出材表面に付着する炭化物厚み
はそれぞれ変化するので、実際はm≠0であつ
て、一般にはm>1である。
According to the experimental results repeatedly conducted in this way, the relationship between the surface quality of the extruded material made of Cypronickel material and the extrusion conditions is as shown in the graph of Figure 2, where the vertical axis is the air supply amount Q, and the horizontal axis is the Extruded material d
However, as is clear from the figure, the boundary to prevent surface oxidation is (Q = 150 l/min, d = 6.2
mm), (Q=118l/min, d=9.5mm), and the values of constant K and constant m at this time are K=
0.0018, m=1.44, and similarly, in order for no unburned carbide to remain on the surface, the value of the constant K is
0.00067, and the value of the constant m is 1.14. In this case, the constant m should originally be m = 1, but since the thickness of the carbide adhering to the extruded material surface changes depending on the extrusion ratio, in reality m≠0, and generally m> It is 1.

以上の実験による結果を空気供給領域通過時間
と空気供給量との関係で整理すると、第3図に示
したグラフ図が得られる。即ち同図は押出材外表
面品質に及ぼす空気供給条件の影響を示したグラ
フ図で、縦軸は燃焼時間、横軸は空気供給量であ
り、表面の美麗なものが得られる通過時間はその
空気供給量によつて区々であるが、例えば空気供
給量が140l/minの場合は0.13秒であり、70l/
minの場合には0.35秒以下がよいことが判る。こ
のさい空気供給量が少なくなれば通過時間を長く
すればよいことになるが、その時には押出材の温
度低下が少なく、粗大粒が成長して困る不利もあ
る。前記した供試材のキユプロニツケル材では押
出後、大気放冷にしても極端な粗大結晶の発生が
ないため、結晶粒の成長が早く、かつこれがため
抽伸時における肌荒れが問題となつているアルミ
黄銅材を供試材として用い、更にその空気供給領
域の長さについて、反復実験を行なつて検討した
結果、結晶粒の粗大化を防止できる空気供給領域
の長さについて、以下のような結論が得られたの
である。即ち押出条件として、アルミ黄銅材によ
るビレツトを用い(68mm〓×200mm)、その加熱
温度800℃、押出速度1.7m/S、押出比40、押出
材寸法22.0mm〓DD×1.5mmt、助燃剤として空気
20l/minであり、その押出装置は第4図に例示
する通りで、同図において1はコンテナ、2はビ
レツト、3は圧力媒体、4はダイスであり、これ
ら構造は先に第1図で述べたものと同様である
が、このさいダイス4の出側に設ける第1図と同
様な空気供給による流通エリアAの長さを0.7m
とし、また第1図において示されたエリアAに続
いて押出材5を冷却するための、押出材5の外表
を囲んで供給口9より冷却水の供給される水冷エ
リアBを、第4図に示した装置ではエリアBの長
さを1.2mとしたものである。
When the results of the above experiments are organized in terms of the relationship between the air supply area passage time and the air supply amount, the graph shown in FIG. 3 is obtained. In other words, the figure is a graph showing the influence of air supply conditions on the external surface quality of extruded materials. The vertical axis is the combustion time, the horizontal axis is the air supply amount, and the passing time to obtain a beautiful surface is the It depends on the air supply amount, but for example, if the air supply amount is 140l/min, it will take 0.13 seconds, and if the air supply amount is 140l/min, it will take 70l/min.
In the case of min, it can be seen that 0.35 seconds or less is good. At this time, if the amount of air supplied is small, the passage time can be increased, but in this case there is a disadvantage that the temperature of the extruded material decreases less and coarse grains grow. The above-mentioned test material, Cypronickel, does not generate extremely coarse crystals even if it is left to cool in the air after extrusion, so the crystal grains grow quickly, and because of this, aluminum brass has a problem of rough skin during drawing. As a result of conducting repeated experiments and examining the length of the air supply region using the material as a test material, we came to the following conclusion regarding the length of the air supply region that can prevent coarsening of crystal grains. It was obtained. That is, as extrusion conditions, a billet made of aluminum brass material (68 mm × 200 mm) was used, the heating temperature was 800 ° C, the extrusion speed was 1.7 m/S, the extrusion ratio was 40, the extruded material size was 22.0 mm × DD × 1.5 mm, and as a combustion improver. air
20l/min, and its extrusion device is as illustrated in Figure 4, in which 1 is a container, 2 is a billet, 3 is a pressure medium, and 4 is a die.These structures were previously shown in Figure 1. This is the same as described above, but in this case, the length of the distribution area A with air supply similar to that shown in Fig. 1 provided on the exit side of the die 4 is 0.7 m.
Further, following the area A shown in FIG. 1, a water cooling area B, which surrounds the outer surface of the extruded material 5 and is supplied with cooling water from the supply port 9, is shown in FIG. In the device shown in , the length of area B is 1.2 m.

またこの第4図に示した装置による実験に当つ
ては、水冷の効果を見るために水量を0〜36l/
minと、水槽にした場合とを併せて実施対比した
ものである。実験結果について先ず冷却水量と結
晶粒径の関係は第5図に示す通りであつて、同図
は押出材(第4図によつて得られた押出素管)結
晶粒度に及ぼす冷却水量の影響を示したグラフ図
で、縦軸は結晶粒度、横軸は冷却水量を示してい
るが、図で明かなように冷却水量0l/minの場
合、その結晶粒は平均0.07mmであるが、冷却水量
を増すに従い細粒化し、20l/min以上の場合に
は0.040mm以下の結晶粒径となることが判る。
In addition, in the experiment using the apparatus shown in Figure 4, the water volume was varied from 0 to 36 liters to see the effect of water cooling.
This is a comparison between the min and the aquarium. Regarding the experimental results, firstly, the relationship between the amount of cooling water and the grain size is as shown in Figure 5, which shows the effect of the amount of cooling water on the grain size of the extruded material (extruded raw tube obtained in Figure 4). In this graph, the vertical axis shows the crystal grain size and the horizontal axis shows the amount of cooling water.As is clear from the figure, when the amount of cooling water is 0 l/min, the average grain size is 0.07 mm, but the cooling It can be seen that as the amount of water increases, the grain size becomes finer, and when the water flow is 20 l/min or more, the grain size becomes 0.040 mm or less.

即ちアルミ黄銅材によるビレツトを押出して素
管とし、これを押出後抽伸加工する場合、その結
晶粒径が小さい方が表面肌が美麗となることは、
第6図に例示した冷間加工率と結晶粒径の関係グ
ラフ図でも明かなことを考えると、0.04mm以下の
粒径であれば、押伸1パスあるいは2パスでもそ
の表面肌が充分佳良なものが得られるのであり、
従つてダイス出側に0.7mの空気流通エリアAを
設けた場合、押出速度は1.7m/Sであるから、
この空気供給域の通過時間は0.41秒であり、先に
示した第3図の結果からして、押出材の表面にお
ける付着炭化物(有機系の圧力媒体)を完全に燃
焼させるに充分な時間であることが判る。
In other words, when extruding a billet made of aluminum brass material to make a blank tube and drawing it after extrusion, the smaller the crystal grain size, the more beautiful the surface texture will be.
Considering what is clear from the graph of the relationship between cold working rate and crystal grain size illustrated in Figure 6, if the grain size is 0.04 mm or less, the surface texture is sufficiently good even with one or two passes of extrusion. You can get something,
Therefore, if an air circulation area A of 0.7 m is provided on the exit side of the die, the extrusion speed is 1.7 m/S, so
The passage time of this air supply area is 0.41 seconds, which is sufficient time to completely burn out the adhering carbide (organic pressure medium) on the surface of the extruded material, judging from the results shown in Figure 3 above. It turns out that there is something.

本発明は以上の各実験結果によつて総合的に得
られたものであり、ダイス出側において、押出直
後の押出材表面に助燃剤(空気その他)を供給し
てその付着炭化物である圧力媒体を完全に燃焼さ
せ、更にその燃焼除去に続いて水冷を行なうこと
により、先ずその付着炭化物の燃焼除去によつて
押出材表面の汚損をなくし美麗化を図ると共に、
引続く水冷によつて、冷却時間の遅延による結晶
粒の粗大化を防止しかつ表面酸化をも併せて阻止
できることになるのであり、従来の問題点を一掃
できることになるのである。このさい銅系金属に
おいては500℃以上になるとその結晶粒生長が進
行するので、可及的短時間に急冷することが好ま
しいのであるが、ダイス出側において直ちに急水
冷すれば、付着炭化物が残存するのであり、本発
明のように燃焼域を先行させて後、これを水冷す
ることにより、付着炭化物を燃焼除去して清浄化
したものを冷却することにより、結晶粒の粗大化
を阻止しつつ美麗な表面肌を持つ押出材が容易に
得られることになるもので、押出後の抽伸加工時
に生じ易い肌荒れもこれによつて未然に防止でき
るのであり効果大である。また高温で押出された
押出材が大気中に放置されて、表面酸化を招来す
る点も、本発明の押出直後における付着炭化物の
燃焼除去とこれに続く水冷によつて確実に防止さ
れ、これらは鉄系金属材に対して特に効果的であ
り、高温静水圧押出しによつて生じる押出材表面
の変質を的確に防止しその品質を向上させるもの
として優れたものである。
The present invention has been comprehensively obtained from the above experimental results, and is based on the fact that a combustion improver (air or other) is supplied to the surface of the extruded material immediately after extrusion on the exit side of the die, and the pressure medium that is the attached carbide is supplied to the surface of the extruded material immediately after extrusion. By completely combusting the extruded material and then cooling it with water, the adhering carbides are first removed by combustion, thereby eliminating stains on the surface of the extruded material and making it beautiful.
The subsequent water cooling can prevent coarsening of crystal grains due to delayed cooling time and also prevent surface oxidation, thereby eliminating the problems of the conventional method. At this time, crystal grain growth of copper-based metals progresses when the temperature exceeds 500°C, so it is preferable to rapidly cool the metal in the shortest possible time. As in the present invention, after the combustion zone is started and then cooled with water, the adhered carbides are burned off and the purified product is cooled, thereby preventing the coarsening of crystal grains. This makes it easy to obtain an extruded material with a beautiful surface texture, and this is very effective as it prevents the roughness that tends to occur during the drawing process after extrusion. Furthermore, surface oxidation caused by extruded material extruded at high temperature is left in the atmosphere, which can be reliably prevented by burning off adhering carbides immediately after extrusion and subsequently cooling with water. It is particularly effective for ferrous metal materials, and is excellent for accurately preventing deterioration of the surface of extruded materials caused by high-temperature isostatic extrusion and improving the quality thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法実施例の説明図、第2図は
押出材表面品質と押出条件の関係を示すグラフ
図、第3図は同表面品質と空気供給条件の関係グ
ラフ図、第4図は本発明方法実施例の説明図、第
5図は同結晶粒度と冷却水量の関係グラフ図、第
6図は冷間加工率と結晶粒度の関係グラフ図であ
る。 1…コンテナ、2…ビレツト、3…圧力媒体、
4…ダイス、A…助燃剤流通エリア、B…水冷エ
リア。
Fig. 1 is an explanatory diagram of an example of the method of the present invention, Fig. 2 is a graph showing the relationship between the surface quality of the extruded material and extrusion conditions, Fig. 3 is a graph showing the relationship between the same surface quality and air supply conditions, and Fig. 4 5 is a graph showing the relationship between the grain size and the amount of cooling water, and FIG. 6 is a graph showing the relationship between the cold working rate and the grain size. 1... Container, 2... Billet, 3... Pressure medium,
4... Dice, A... Combustion aid distribution area, B... Water cooling area.

Claims (1)

【特許請求の範囲】 1 有機系の圧力媒体を用いてビレツトを高温で
ダイスより静水圧押出しする方法であつて、ダイ
ス出側にて押出材の外表面に助燃剤を供給して押
出材の外表面に付着する圧力媒体を燃焼させ、続
いて押出材を水冷することを特徴とする金属の高
温静水圧押出し方法。 2 有機系の圧力媒体を用いてビレツトを高温で
ダイスより静水圧押出しする方法であつて、ダイ
ス出側にて押出材の外表面に助燃剤を供給して押
出材の外表面に付着する圧力媒体を燃焼させ、続
いて押出材を水冷するに際し、前記ビレツトを銅
もしくは銅合金とし、さらに前記助燃剤を空気と
し、その供給量QをQ=K・dm・R・Vl/min
(但しdは押出材外径mm、Rは押出比、Vは押出
速度mm/s、mは定数1.4±0.1、Kは定数0.00067
≦K≦0.0018)としたことを特徴とする金属の高
温静水圧押出し方法。
[Claims] 1. A method of isostatically extruding a billet from a die at high temperature using an organic pressure medium, in which a combustion improver is supplied to the outer surface of the extruded material on the exit side of the die to improve the quality of the extruded material. A method for high-temperature isostatic extrusion of metals, characterized in that the pressure medium adhering to the outer surface is combusted, followed by water cooling of the extruded material. 2 A method of isostatically extruding a billet from a die at high temperature using an organic pressure medium, in which a combustion improver is supplied to the outer surface of the extruded material on the exit side of the die, and the pressure is applied so that it adheres to the outer surface of the extruded material. When the medium is combusted and the extruded material is subsequently cooled with water, the billet is copper or copper alloy, the combustion improver is air, and the supply amount Q is Q=K・d m・R・Vl/min.
(However, d is the outer diameter of the extruded material mm, R is the extrusion ratio, V is the extrusion speed mm/s, m is the constant 1.4±0.1, and K is the constant 0.00067
≦K≦0.0018).
JP9175082A 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal Granted JPS58209418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9175082A JPS58209418A (en) 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9175082A JPS58209418A (en) 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal

Publications (2)

Publication Number Publication Date
JPS58209418A JPS58209418A (en) 1983-12-06
JPS6317003B2 true JPS6317003B2 (en) 1988-04-12

Family

ID=14035205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9175082A Granted JPS58209418A (en) 1982-05-28 1982-05-28 Method of high temperature hydrostatic extrusion for metal

Country Status (1)

Country Link
JP (1) JPS58209418A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112850A (en) * 1973-02-28 1974-10-28
JPS5737506B2 (en) * 1971-06-30 1982-08-10

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919528Y2 (en) * 1980-08-05 1984-06-06 石川島播磨重工業株式会社 Underwater extrusion equipment for indirect extrusion molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737506B2 (en) * 1971-06-30 1982-08-10
JPS49112850A (en) * 1973-02-28 1974-10-28

Also Published As

Publication number Publication date
JPS58209418A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
JP3582795B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
Yun et al. Twin roll casting of aluminium alloys
FI77057C (en) FOERFARANDE FOER FRAMSTAELLNING AV ROER, STAENGER OCH BAND.
FR2715088A1 (en) Process for shaping metallic materials in the semi-solid state.
EP0014655A1 (en) Process for the manufacture of grinding members of an iron alloy
JP2009191367A (en) Method for producing aluminum-alloy molded product
US6079477A (en) Semi-solid metal forming process
JP2008127579A (en) Aluminum alloy
US1924294A (en) Apparatus and method of extruding pipe
PT871791E (en) PROCESS FOR THE MANUFACTURE OF CYLINDER SHIRTS
US6086819A (en) Process for manufacturing thin-walled pipes
US3297415A (en) Dispersion strengthened ultra-fine wires
CN107164674A (en) A kind of magnalium zinc gadolinium cerium alloy and its preparation method and application
JP2005290545A (en) Method for producing shaped-product of aluminum alloy, shaped-product of aluminum alloy and production system
JP3369009B2 (en) Piston forging method
CN107164675A (en) A kind of magnalium zinc cerium alloy and its preparation method and application
CN114231825A (en) High-carbon high-alloy steel product and preparation method thereof
US2974790A (en) Cross-extrusion process
JPS6317003B2 (en)
US2380722A (en) Method of and apparatus for making articles
US4462844A (en) Process for manufacturing hot extruded alloy products
CN107150188A (en) A kind of magnesium aluminium-zinc-cerium yittrium alloy and its preparation method and application
US6500284B1 (en) Processes for continuously producing fine grained metal compositions and for semi-solid forming of shaped articles
US4445350A (en) Extrusion method using hot lubricant
JPH11170009A (en) Horizontal continuous casting method