JPS5820913A - Recovery plant of waste heat - Google Patents

Recovery plant of waste heat

Info

Publication number
JPS5820913A
JPS5820913A JP11973881A JP11973881A JPS5820913A JP S5820913 A JPS5820913 A JP S5820913A JP 11973881 A JP11973881 A JP 11973881A JP 11973881 A JP11973881 A JP 11973881A JP S5820913 A JPS5820913 A JP S5820913A
Authority
JP
Japan
Prior art keywords
heat
medium
waste
preheater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11973881A
Other languages
Japanese (ja)
Other versions
JPS6243047B2 (en
Inventor
Shunichi Anzai
安斉 俊一
Haruichiro Sakaguchi
坂口 晴一郎
Takeshi Sakamoto
坂元 健
Haruyuki Yamazaki
晴幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11973881A priority Critical patent/JPS5820913A/en
Publication of JPS5820913A publication Critical patent/JPS5820913A/en
Publication of JPS6243047B2 publication Critical patent/JPS6243047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To keep output constant always and to maintain waste heat recovery efficiency favourably, by installing a heat accumulator upstream exhaust gas of a vaporizer, in a waste heat recovery plant wherein a low boiling point medium is heated and vaporized by waste heat gas. CONSTITUTION:A low boiling point medium is boiled and evaporated by a vaporizer 1 through a preheater 2, power is recovered by a turbine 3 and the medium is returned to the preheater 2 through condenser 5 and a medium pump 6. Exhaust gas is supplied to a heat accumulator 20 and is led to the vaporizer 1 and the preheater 2. A heat accumulating material having a melting point at about indentical temperature with that for a rated design exhaust gas is applied to the heat accumulator 20. The heat accumulator 20 absorbs variation of a temperature of the exhaust gas instantaneously for adjustment to a fixed temperature, then output can be kept constant always. Waste heat recovery efficiency can be made favourable in this manner.

Description

【発明の詳細な説明】 本発明は廃熱回収発電プラントに係り、特に廃ガス温度
の変動を考慮して廃熱回収発電効率の良好な廃熱回収発
電プラントを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste heat recovery power generation plant, and in particular provides a waste heat recovery power generation plant with good waste heat recovery power generation efficiency, taking into account fluctuations in waste gas temperature.

石油資源の枯渇が間近いと予想されることから、エネル
ギを有効に利用するための方式が種々試みられている。
BACKGROUND OF THE INVENTION Since it is predicted that oil resources will soon be depleted, various methods have been attempted to utilize energy effectively.

例えば、鉱工業生産システム等(以下生産システムと呼
ぶ)の廃熱から電気動力を回収するための装置が提案さ
れている。第1図は、従来実施されている廃熱回収発電
プラントの系統を示すものであり、1は蒸発器、2は予
熱器、3はタービン、4は発電機、5は凝縮器、6は媒
体ポンプである。かかる廃熱回収プラントの作動媒体に
は、廃ガス温度が十分高い場合には水−蒸気を用いるこ
とも可能であるが、通常は廃ガス源である生産システム
で十分に利用されて200〜400Cの温度に低下して
いるため、廃熱回収発電効率の観点からトリクロロトリ
フルオロエタン、蒸発器1に供給され、熱交換後の廃ガ
スは排ガス)胴12を通じてさらに予熱器2に導ひかれ
る。媒体は予熱器2でその供給圧力の飽和温度近くまで
予熱され、さらに蒸発器1で沸騰蒸発する。発生媒体蒸
気はタービン3へ供給して動力を回収し、凝縮器5、媒
体ポンプ6、予熱器2へ戻る閉サイクルを形成する。
For example, devices have been proposed for recovering electrical power from waste heat of mining and industrial production systems (hereinafter referred to as production systems). Figure 1 shows the system of a conventional waste heat recovery power generation plant, where 1 is an evaporator, 2 is a preheater, 3 is a turbine, 4 is a generator, 5 is a condenser, and 6 is a medium. It's a pump. Water-steam can be used as the working medium in such waste heat recovery plants if the waste gas temperature is high enough, but usually water-steam is used as the working medium in the production system, which is the waste gas source. Since the temperature has decreased to , from the viewpoint of waste heat recovery power generation efficiency, trichlorotrifluoroethane is supplied to the evaporator 1, and the waste gas after heat exchange is further led to the preheater 2 through the exhaust gas cylinder 12. The medium is preheated in the preheater 2 to near the saturation temperature of its supply pressure, and further boiled and evaporated in the evaporator 1. The generated medium steam is supplied to the turbine 3 to recover power and return to the condenser 5, medium pump 6, and preheater 2, forming a closed cycle.

かかる従来の廃熱回収発電プラントでは、廃ガス温度の
変動時に廃熱回収発電効率が低い欠点があった。すなわ
ち、廃熱回収発電プラントを設計する際には、設計熱源
温度を生産システムの廃ガス条件を見較べてほぼその平
均温度に設定されるが、実機では生産システムの生産状
況により廃ガス10の温度が常時変動する。このようが
廃ガス温度変動時における従来プラントの運転状態を、
第2図に示す。実線で示す廃ガス湛度Tが破線で示す定
格設計廃ガス温度T。以上になったときには、廃ガス胴
11のダンパー15とバイパス放出胴14のバイパスダ
ンパー16との調節により廃ガスの一部を外部放出しく
排気熱量Hとして斜線で示されている)、蒸発器lへの
廃ガス供給量を減らすことによって媒体の蒸発量を調節
し、実線で示す発電出力りを破線で示す定格出力り。に
押えている。
Such conventional waste heat recovery power generation plants have the disadvantage that the efficiency of waste heat recovery and power generation is low when the temperature of the waste gas fluctuates. In other words, when designing a waste heat recovery power generation plant, the design heat source temperature is compared with the waste gas conditions of the production system and set to approximately the average temperature. Temperature fluctuates constantly. In this way, the operating status of the conventional plant when the exhaust gas temperature fluctuates,
Shown in Figure 2. The waste gas filling degree T is shown as a solid line and the rated design waste gas temperature T is shown as a broken line. When the amount exceeds 100, a part of the waste gas is discharged to the outside by adjusting the damper 15 of the waste gas cylinder 11 and the bypass damper 16 of the bypass discharge cylinder 14. The amount of evaporation of the medium is adjusted by reducing the amount of waste gas supplied to the rated output, which is shown by the solid line and the rated output shown by the dashed line. I'm holding it down.

このように従来の発熱プラントでは、廃ガス温度が定格
設計廃ガス淵度以上に上昇したとき、有効な熱エネルギ
ーを利用することなく排棄している。なお、廃ガス淵度
Tが定格設計廃ガス淵度T。
As described above, in conventional heat generating plants, when the temperature of the waste gas rises above the rated design waste gas temperature, the waste gas is discharged without utilizing effective thermal energy. Note that the waste gas depth T is the rated design waste gas depth T.

以下に低下した場合には、蒸発器1の媒体蒸発量が減少
し、発電出力りも定格出力り。以下に低下するのは当然
である。
If it falls below, the amount of medium evaporation in the evaporator 1 will decrease and the power generation output will also be less than the rated output. It is natural that it will drop below.

本発明の目的は廃ガス湛度が変動しても高温エネルギー
を有効に利用し、廃熱回収効率を常に良好に維持する廃
熱回収プラントを提供するものである。
An object of the present invention is to provide a waste heat recovery plant that effectively utilizes high-temperature energy and maintains good waste heat recovery efficiency even when the waste gas filling level changes.

本発明の特徴に、廃ガス温度が定格設計廃ガス温度以上
に上昇したとき“にその上昇温変分の熱エネルギを蓄熱
する蓄熱器を設置し、廃ガス温度が低下したときに蓄熱
装置により蓄熱された熱を放出して廃ガスをは汀定格設
計ガス湛度まで加熱しは定格設計廃ガス温度に調節し、
常時はぼ定格発電出力を得ることを可能にして発電出力
を増加させた廃熱回収プラントである。
A feature of the present invention is that when the exhaust gas temperature rises above the rated design exhaust gas temperature, a heat storage device is installed to store the thermal energy of the temperature change, and when the waste gas temperature decreases, the heat storage device is installed. The stored heat is released to heat the waste gas to the rated design gas filling temperature, and the temperature is adjusted to the rated design waste gas temperature.
This is a waste heat recovery plant that increases power generation output by making it possible to obtain approximately the rated power generation output at all times.

本発明の一実施例である廃熱回収発電プラントを第3図
、第4図により、また前記実施例の作用効果を第5図、
第6図により説明する。第3図は、本発明を実施した廃
熱回収発電プラントの系統を示すものである。第3図に
おいて従来と同一構成部品は第1図と同一番号で示して
あり、20は蓄熱装置である。廃ガスはまず蓄熱装置録
に供給され、さらに蒸発器1、予熱器2へと導びかれる
A waste heat recovery power generation plant that is an embodiment of the present invention is shown in FIGS. 3 and 4, and the effects of the above embodiment are shown in FIGS.
This will be explained with reference to FIG. FIG. 3 shows a system of a waste heat recovery power generation plant in which the present invention is implemented. In FIG. 3, components that are the same as those of the prior art are designated by the same numbers as in FIG. 1, and 20 is a heat storage device. The waste gas is first supplied to the heat storage device and then led to the evaporator 1 and preheater 2.

蓄熱装置20の構造例を、第4図に示した。蓄熱装置長
はダクト21と蓄熱体22とからなり、蓄熱体22は容
器23とその内部に充填した蓄熱材24とから構成され
、蓄熱材24の体積変化を吸収する空間25か設けられ
る。蓄熱材24 KMzNaOH−KOH(41−59
W%、融点158゜と、融解潜熱37.3 kaa7/
kg)、 AtC1,−KCl−LiC/=(63,0
−35,3−1,7W%、融点249C,融解潜熱59
.5kcat/kg)、KCt−L i c4 (41
,5−s s、smoz%、融点325C1融解潜熱5
7.25 kcat/kg)等の固液相変化に伴なう融
解潜熱を利用するものの中から、定格設計廃ガス温度に
ほぼ等しい温度K11点のある物質を用いる。
An example of the structure of the heat storage device 20 is shown in FIG. The length of the heat storage device consists of a duct 21 and a heat storage body 22, and the heat storage body 22 is composed of a container 23 and a heat storage material 24 filled therein, and a space 25 is provided to absorb volume changes of the heat storage material 24. Heat storage material 24 KMzNaOH-KOH (41-59
W%, melting point 158°, latent heat of fusion 37.3 kaa7/
kg), AtC1,-KCl-LiC/=(63,0
-35,3-1,7W%, melting point 249C, latent heat of fusion 59
.. 5kcat/kg), KCt-L i c4 (41
,5-s s, smoz%, melting point 325C1 latent heat of fusion 5
7.25 kcat/kg), etc., which utilizes the latent heat of fusion associated with a solid-liquid phase change, a material with a temperature K11 that is approximately equal to the rated design exhaust gas temperature is used.

本プラントでも予熱器2、蒸発器1、タービン3等の発
電プラント本体の運転方法は前記従来プラントと同一で
ある。本発明の実施例の作用および効果は熱源である生
産システム′の生産状況の変化により廃ガス10の温度
Tが変動したときに現われる。つまり、本発明の実施例
による廃熱回収プラントの運転状態を第5図に示した。
In this plant as well, the operating method of the power plant main body, such as the preheater 2, evaporator 1, and turbine 3, is the same as that of the conventional plant. The functions and effects of the embodiments of the present invention appear when the temperature T of the waste gas 10 fluctuates due to changes in the production status of the production system' which is the heat source. That is, FIG. 5 shows the operating state of the waste heat recovery plant according to the embodiment of the present invention.

即ち、蓄熱器20に導かれる蓄熱器入ロ廃ガス温度T1
が定格設計廃ガス混度T0以上となったときには、廃ガ
スが蓄熱器輩を通過する間に蓄熱材24に熱を与えるの
で、蓄熱器20を経た蓄熱器出ロガス淵度T、はほぼ蓄
熱材の融点まで低下して蒸発器1へ供給される。一方、
蓄熱器入口廃ガス温度T1が定格設計廃ガス温度T0以
下に低下したときには、廃ガス10が蓄熱装置電文を通
過する間に、熱を吸収して蓄熱材24のほぼ融点まで加
熱され、蓄熱器出口ガス温度T2は蒸発器へ導ひかれる
。前記説明のごとく、蓄熱材24には定格設計ガス温度
T。に近い温度に融点のある物質を使用しているため、
その大きな融解潜熱により蓄熱器20を流下して蒸発器
1に導かれる屏ガス温度を蓄熱材の融点(すなわち定格
設計ガス温度)とほぼ同温度一定にすることが出来、廃
熱回収発電プラントの発電出力カムを常時はぼ定格出力
し。
That is, the temperature T1 of the waste gas entering the heat storage device 20 is guided to the heat storage device 20.
When the waste gas mixture becomes equal to or higher than the rated design waste gas mixture T0, the waste gas gives heat to the heat storage material 24 while passing through the heat storage device, so the temperature of the gas exiting from the heat storage device T after passing through the heat storage device 20 is almost equal to the heat storage temperature. The material is lowered to its melting point and then supplied to the evaporator 1. on the other hand,
When the heat storage inlet waste gas temperature T1 falls below the rated design waste gas temperature T0, while the waste gas 10 passes through the heat storage device telegram, it absorbs heat and is heated to almost the melting point of the heat storage material 24, The outlet gas temperature T2 is led to the evaporator. As explained above, the heat storage material 24 has a rated design gas temperature T. Because it uses a substance with a melting point close to
Due to the large latent heat of fusion, the temperature of the folding gas flowing down the heat storage device 20 and guided to the evaporator 1 can be kept constant at almost the same temperature as the melting point of the heat storage material (i.e., the rated design gas temperature). The power generation output cam always outputs the rated output.

である定格設計状態で運転することが出来る。すなわち
本発明では、高湛度廃ガスの熱エネルギを低湛度廃ガス
へ移動させて有効に利用することが出来る。従って第5
図の発電出力図において、斜線りは本実施例により発電
出力減少が防止される大きさを表わすことになる。
It can be operated under the rated design condition. That is, in the present invention, the thermal energy of the high-water content waste gas can be transferred to the low-water content waste gas and used effectively. Therefore, the fifth
In the power generation output diagram shown in the figure, the diagonal lines represent the magnitude at which reduction in power generation output is prevented by this embodiment.

次に本発明の一実施例の効果を計算により確認した。比
較確認方法として、まず定格設計廃ガス温度250r、
廃ガス量4sooooNm”/h1熱回収媒体として前
記トリクロロトリフルオロエタンを使用し、媒体蒸発圧
力10.4 k g/cm” 、蒸発器のピンチポイン
)24C,媒体凝縮圧力083kg/cm” タービン
内部効率0.7等の条件を設定して廃熱回収プラントを
設計し、廃ガス温度が±30Cでsin形状に変動した
場合の従来プラント及び本発明実施プラントの廃ガス変
動1サイクル当りの発電出力を試算して比較した。
Next, the effect of one embodiment of the present invention was confirmed by calculation. As a comparison confirmation method, first, the rated design exhaust gas temperature is 250r,
Waste gas amount: 4 soooo Nm"/h1 Using the above trichlorotrifluoroethane as the heat recovery medium, medium evaporation pressure: 10.4 kg/cm", evaporator pinch point) 24C, medium condensing pressure: 083 kg/cm" Turbine internal efficiency Design a waste heat recovery plant by setting conditions such as 0.7, and calculate the power generation output per cycle of waste gas fluctuation of the conventional plant and the plant implementing the present invention when the waste gas temperature fluctuates in a sin shape at ±30C. Calculated and compared.

前記設計条件によると、定格発電出力約3000kWの
廃熱回収発電プラントが設計される。廃ガス温度が1時
間のサイクルで±300との幅でsin形状に変動した
場合には、1サイクルすなわち1時間当カの発電出力は
、従来プラントでは約25318kW−hとなる。本発
明を実施したプラントでは、蓄熱材に定格設計廃ガス温
度250Cに近い温度249Cに融点のある前記蓄熱材
例htct、 −KCt−LICtを約25000 k
 g用いた場合、1サイクルすなわち1時間当りの発電
出力は約2997kW−hとなり、従来方式に比べ約1
8.4%の発電出力増加が見込める。
According to the design conditions, a waste heat recovery power generation plant with a rated power output of about 3000 kW is designed. When the exhaust gas temperature fluctuates in a sinusoidal manner with a width of ±300 in a one-hour cycle, the power generation output for one cycle, that is, for one hour, is approximately 25,318 kW-h in the conventional plant. In a plant in which the present invention is implemented, the heat storage material has a melting point of 249C, which is close to the rated design waste gas temperature of 250C.
g, the power generation output per cycle or hour is approximately 2997 kW-h, which is approximately 1 kW-h compared to the conventional method.
An 8.4% increase in power generation output is expected.

この増加割り合いt′i廃ガス温良の変動幅により異な
り、その計算結果を第6図に示した。廃ガス第6図にお
いて、本発明による発電出力りは実線で示し、従来例の
発電出力L′は破線で示した。
The rate of increase t'i varies depending on the fluctuation range of the exhaust gas temperature, and the calculation results are shown in FIG. In Fig. 6, the power generation output according to the present invention is shown by a solid line, and the power generation output L' of the conventional example is shown by a broken line.

また、従来例と比較した出力増加率はΔLとして示しで
ある。この第6図によれば廃ガス温度が定格設計ガス温
度250rに対して±30c、±4Or、±50r変動
したときに、従来に比べてそれぞれ約18%、23%、
29%の発電量増加が見込める。
Further, the output increase rate compared to the conventional example is shown as ΔL. According to FIG. 6, when the exhaust gas temperature fluctuates by ±30c, ±4Or, and ±50r with respect to the rated design gas temperature of 250r, the fluctuations are approximately 18%, 23%, and 23%, respectively, compared to the conventional design.
A 29% increase in power generation is expected.

このように本発明の実施例によれば、生産システムの生
産状況の変化に伴なう廃ガス温度の変動を即座に吸収し
て一定温度に調節し、従来排棄していた高温時の有熱エ
ネルギを利用して発電出力の増加が図れ、廃熱回収発電
効率の良好な一熱回収発電プラントを提供することが出
来る。しかも本発明は、蓄熱部に可動部がなく、さらに
制御系が必要なく、蓄熱装置を設置するだけで目的が達
せられる極めて実施容易な発明である。また、従来に廃
ガス温度によって廃ガス量を調節してぃたダンパー、そ
の制御装置等も不要になる。尚、本発明の実施例の効果
の説明には、トリクロロトリフルオロエタンを媒体とし
、蓄熱材にhtct、−KCt−t、ictを使いて試
算した。しかし、本発明の応用は廃ガス湛度レベルによ
っては、他の低沸点媒体、他の蓄熱材であっても良い。
As described above, according to the embodiments of the present invention, fluctuations in waste gas temperature caused by changes in the production status of the production system are immediately absorbed and adjusted to a constant temperature, and waste gas at high temperature, which was conventionally discarded, is removed. It is possible to provide a single heat recovery power generation plant that can increase power generation output by using thermal energy and has good waste heat recovery power generation efficiency. Moreover, the present invention is an extremely easy-to-implement invention that has no moving parts in the heat storage section, does not require a control system, and can achieve its purpose simply by installing the heat storage device. Furthermore, the damper, its control device, etc., which conventionally controlled the amount of waste gas depending on the temperature of the waste gas, become unnecessary. In order to explain the effects of the embodiments of the present invention, trial calculations were made using trichlorotrifluoroethane as a medium and htct, -KCt-t, and ict as heat storage materials. However, the present invention may be applied to other low boiling point media and other heat storage materials depending on the exhaust gas filling level.

さらに本実施例では、蓄熱材に物質の融解潜熱を利用す
るもめについて記述したが、油、コンクリート、レンガ
等の顕熱を利用するものであっても良いことは熱論であ
る。また、第6図に示す本発明の実施例の効果の試算で
は、廃ガス温度の変動サイクルを1時間としたが、他の
時間長さでも発明の効果は同一である。この場合には、
蓄熱装置の蓄熱容量を、そのサイクル時間およθ温度変
動幅に相応した量にする必要がある。  □ 本発明によれば、廃ガス温度に変1111iEあっても
常に出力を一定に保持出来る廃熱回収効率に優れた廃熱
回収プラントを提供できるという効果を奏する。
Further, in this embodiment, a case has been described in which the heat storage material utilizes the latent heat of fusion of a substance, but it is a thermal theory that the heat storage material may also utilize the sensible heat of oil, concrete, brick, etc. Further, in the trial calculation of the effects of the embodiment of the present invention shown in FIG. 6, the fluctuating gas temperature cycle was set to one hour, but the effects of the invention are the same even if other time lengths are used. In this case,
It is necessary to set the heat storage capacity of the heat storage device to an amount commensurate with the cycle time and the θ temperature fluctuation range. □ According to the present invention, it is possible to provide a waste heat recovery plant with excellent waste heat recovery efficiency that can always maintain a constant output even if the waste gas temperature varies by 1111iE.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の廃熱回収発電プラントのシステム系統図
、第2図は従来プラントの廃ガス温度変動時の運転状態
図、第3図は本発明の一実施例である廃熱回収発電プラ
ントのシステム系統図、第4図は第3図に示した廃熱回
収発電プラントに設置する蓄熱装置の構造図、第5図は
本発明を実施した廃熱回収発電プラントの廃ガス温度変
動時の運転状態図、第6図は本発明の実施例の効果を従
来例と比較して示した説明図である。 1・・・蒸発器、2・・・予熱器、3・・・タービン、
4・・・発電機、5・・・凝縮器、6・・・媒体ポンプ
、10・・・廃ガス、11,12.13・・・廃ガス胴
、14・・・バイパス廃カスD1.15・・・ダンパー
、16・・・パイパスタ7パー、20.、、蓄熱装置、
21・・・ダクト、22・・・蓄熱体、23・・・容器
、24・・・蓄熱材、25・・・空間−代理人 弁理士
 高機明夫 1 第 1図 第2図 栓 迦−吟 r4  (旬 第6図
Figure 1 is a system diagram of a conventional waste heat recovery power generation plant, Figure 2 is a diagram of the operating state of the conventional plant when the waste gas temperature fluctuates, and Figure 3 is a waste heat recovery power generation plant that is an embodiment of the present invention. 4 is a structural diagram of the heat storage device installed in the waste heat recovery power generation plant shown in FIG. The operating state diagram, FIG. 6, is an explanatory diagram showing the effects of the embodiment of the present invention in comparison with the conventional example. 1... Evaporator, 2... Preheater, 3... Turbine,
4... Generator, 5... Condenser, 6... Medium pump, 10... Waste gas, 11, 12.13... Waste gas cylinder, 14... Bypass waste dregs D1.15 ... Damper, 16... Pie pasta 7 par, 20. ,,thermal storage device,
21...Duct, 22...Heat storage body, 23...Container, 24...Heat storage material, 25...Space - Agent Patent attorney Akio Takaki 1 Figure 1 Figure 2 Stopper Ka-Gin r4 (season figure 6

Claims (1)

【特許請求の範囲】 1、低沸点媒体を使用し、その供給圧力のほぼ飽和温度
まで媒体を加熱する予熱器、さらにその媒体を気化蒸発
させる蒸発器、低沸点媒体駆動のタービン、媒体蒸気を
冷却液化する凝縮器および凝縮した媒体を予熱器に供給
する媒体ポンプを設置し、廃熱ガスを熱源として前記予
熱器、蒸発器により低沸点媒体を加熱蒸発させ、発生蒸
気により前記タービンを駆動して廃熱より動力を回収す
る廃熱回収プラントにおいて、物質の熱容量を利用する
蓄熱材を用いた蓄熱器を前記蒸発器の廃ガス上流側に設
置し、該廃ガスを蓄熱器を介して蒸発器、予熱器の順に
流通させることを特徴とした廃熱回収プラント。 2、前記蓄熱材として、廃ガス平均温度近傍に溶融点の
ある固液相変化性物質を用いて、その融解潜熱により蓄
熱するようにしたことを特徴とする特許請求の範囲第1
項に記載の廃熱回収プラベト。
[Claims] 1. A preheater that uses a low boiling point medium and heats the medium to approximately the saturation temperature of the supply pressure, an evaporator that vaporizes the medium, a turbine driven by the low boiling point medium, and a medium vapor A condenser that cools and liquefies the medium and a medium pump that supplies the condensed medium to a preheater are installed, and the low boiling point medium is heated and evaporated by the preheater and evaporator using waste heat gas as a heat source, and the generated steam drives the turbine. In a waste heat recovery plant that recovers power from waste heat, a heat storage device using a heat storage material that utilizes the heat capacity of substances is installed upstream of the waste gas of the evaporator, and the waste gas is evaporated through the heat storage device. This is a waste heat recovery plant that is characterized by circulating heat in the order of heat exchanger and preheater. 2. As the heat storage material, a solid-liquid phase change substance having a melting point near the average temperature of the waste gas is used, and heat is stored by its latent heat of fusion.
Waste heat recovery plant described in Section.
JP11973881A 1981-07-29 1981-07-29 Recovery plant of waste heat Granted JPS5820913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11973881A JPS5820913A (en) 1981-07-29 1981-07-29 Recovery plant of waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11973881A JPS5820913A (en) 1981-07-29 1981-07-29 Recovery plant of waste heat

Publications (2)

Publication Number Publication Date
JPS5820913A true JPS5820913A (en) 1983-02-07
JPS6243047B2 JPS6243047B2 (en) 1987-09-11

Family

ID=14768899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11973881A Granted JPS5820913A (en) 1981-07-29 1981-07-29 Recovery plant of waste heat

Country Status (1)

Country Link
JP (1) JPS5820913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202750A (en) * 1984-03-22 1985-10-14 株式会社荏原製作所 Method of recovering dry cell
JPS6143205A (en) * 1984-08-02 1986-03-01 Osaka Gas Co Ltd Power recovery method using high-temperature gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435022U (en) * 1990-07-16 1992-03-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202750A (en) * 1984-03-22 1985-10-14 株式会社荏原製作所 Method of recovering dry cell
JPS6143205A (en) * 1984-08-02 1986-03-01 Osaka Gas Co Ltd Power recovery method using high-temperature gas
JPH0535241B2 (en) * 1984-08-02 1993-05-26 Osaka Gas Co Ltd

Also Published As

Publication number Publication date
JPS6243047B2 (en) 1987-09-11

Similar Documents

Publication Publication Date Title
US4838027A (en) Power cycle having a working fluid comprising a mixture of substances
US4573321A (en) Power generating cycle
US4410028A (en) Process and installation for storing heat and for upgrading its temperature
US5664419A (en) Method of and apparatus for producing power using geothermal fluid
JPS61104108A (en) Method of utilizing thermal energy
JPH08100606A (en) Rankine cycle generating system and its operation method
US4407131A (en) Cogeneration energy balancing system
CN103075215B (en) Extracted steam type steam Rankine-ammonia steam Rankine combined cycle power generation device
JP2593197B2 (en) Thermal energy recovery method and thermal energy recovery device
JPS5820913A (en) Recovery plant of waste heat
JPS60122865A (en) Solar heat electric power generation apparatus
CN103089355B (en) Steam Rankine-low boiling working fluid Rankine combined cycle generating unit
JPS5841210A (en) Waste heat recovering power plant
CN103089354B (en) Steam Rankine-ammonia vapor Rankine combined cycle power generation device
CN103147809B (en) Boulez pauses-steam Rankine-ammonia steam Rankine combined cycle generating unit
US4063418A (en) Power producing system employing geothermally heated fluid
JPS59192808A (en) Waste heat recovery system of diesel engine
RU2787622C1 (en) Thermal power plant with a regeneration system and method of its operation
JPS5813112A (en) Waste-heat recovery power plant
JP2753347B2 (en) Steam turbine system and energy supply system
CN103161527B (en) Steam Rankine and organic Rankine combined cycle power generation device
CN103089351B (en) Steam extraction type steam Rankine-low boiling point working medium Rankine combined cycle power generation device
JPH0626310A (en) Waste heat recovery method in wet sulfurization system
JPH02187594A (en) Heat pipe type heat exchanger
JPS6042842B2 (en) thermal power generation device